Task-Level Assembly Modeling
in Virtual Environments

Bernhard Jung

University of Bielefeld, Germany
Faculty of Technology, Knowledge-Based Systems Group
Laboratory for Artificial Intelligence and Virtual Reality

Abstract. This contribution introduces a new framework for assembly
modeling in Virtual Reality. Aiming at an easy instructability of the vir-
tual environment, the framework provides a task-level interface which
directly maps logical assembly commands to corresponding changes in
the geometry scene. For example, the visual assembly of two parts is
achieved given only a single command ’connect(a,b)’. This is in contrast
to the assembly modeling style of conventional CAD systems which forces
the designer to break down each conceptual assembly task into a series of
lower-level subtasks. The proposed framework consists of two parts: (1)
A knowledge-based model of connection-sensitive part features (“ports”)
and the connections between them; and, (2), a set of algorithms that de-
fine the task-level interface for assembly, disassembly, and adjustment
operations. All algorithms are computationally efficient and easily meet
the real-time requirements of virtual environments. At the user inter-
face, both direct manipulation and directive interfaces, e.g. based on
natural language instructions are supported. A family of implemented
VR-systems, including CAVE and Internet-based applications, demon-
strates the feasibility of the approach.

1 Introduction

One of the commercially most relevant application areas of Virtual Reality (VR)
are CAD-tasks that involve the design and evaluation of so-called virtual pro-
totypes. A main goal is to enable the testing of different aspects of part design
and behavior without the need to manufacture a physical prototype first [1,9].
Whereas in most of today’s industrial applications, VR is still used as mere vi-
sualization tool for prototypes modeled in external CAD systems, recent years
have seen an intensified research interest in immersive assembly modelers which
could ultimately enable the design of virtual prototypes from within the virtual
environment. Qur main interest are immersive assembly modelers that not only
provide powerful modeling functionalities but also — and in particular — can be
easily instructed, e.g. by means of intuitive language- and gesture-based instruc-
tions. Figure 1 shows examples of the kinds of virtual environments considered.

While conventional CAD systems provide powerful assembly modeling func-
tionalities attempting to transfer the CAD-based assembly modeling style to VR,

PELmSl Chi maEl Uikl in Che Sal e
Lbs mpadgsis ba ok

Fig. 1. Virtual environments involving the assembly of CAD-based parts.

seems rather misguided. Two of the CAD systems’ inadequacies concern their
their insufficient real-time and collision handling capabilities. For the present
discussion, a further aspect is central: In CAD systems, the conceptually atomic
process of adding a part to an assembly is modeled by the successive definition
of geometric relations (constraints) between part surfaces. For example, to insert
a screw into a nut usually three constraints such as concentric, coincident,
and parallel need to be defined. Thus, when adding a part to an assembly,
the cognitive load is on the user who has to mentally break down the task into
a series of lower-level constraint definitions. Moreover, the constraints can be
defined between arbitrary surfaces of the parts (where typical industrial mod-
els are easily composed of hundreds of surfaces). This surface selection process
increases the mental load of the user even more. In desktop-based CAD sys-
tems, an assembly relation browser helps the user to understand the structural
constraints of the assembly. In VR, in contrast, the internal structure of the as-
semblies is usually hidden from the user. This, in turn, requires the availability
of alternative, higher-level assembly modeling methods.

The remainder of this contribution, after reviewing related work, introduces
such an alternative approach to assembly modeling based on the notion of task-
level control [22]. Building on a knowledge-based model of part connectivity,
these methods achieve e.g. the visual assembly of two parts in the virtual envi-
ronment given only a single command connect(a,b). Besides assembly operations,
similar methods for disassembly and adjustments of assemblies are supported.
The main goal of the proposed framework is, however, not so much a full recon-
struction of the powerful CAD-based modeling functionalities in VR (although
it is in fact more powerful than many of the existing immersive assembly model-
ers); instead, it’s main purpose is to support the easy instructability of VR-based
virtual prototyping environments.

2 Related Work

VR systems labeled in the literature as “virtual assembly” can be roughly divided
into two categories (of which only the latter provides modeling functionalities).

Fig. 2. Left: Direct manipulation based desktop user interface for task-level assembly.
Right: A car model built from 124 parts.

A first kind of virtual assembly systems enables a VR-based assembly, typ-
ically using one or two data gloves, of prototypes defined in external modelers.
The purpose of such systems is e.g. to check the general (dis-)assemblability of
the design, part accessability, tool usage, generation of sequences and trajecto-
ries of assembly operations, and so on. Examples include the VADE system [10],
Zachmann’s work with Virtual Design II [6], and applications of DBView de-
veloped at DaimlerChrysler [4]. Empirical studies confirm the usefulness of VR-
based systems for assembly planning and verification as compared to traditional
blueprints or nonimmersive desktop systems [2].

The second kind of virtual assembly systems, immersive assembly modelers,
additionally supports the combination of CAD-based parts to novel assemblies.
Typically, such systems implement some sort of snapping mechanism which au-
tomatically completes an assembly operation when two parts are moved close
enough in the virtual environment. Some systems are restricted to assemblies
composed of a few types of primitives, e.g. boxes or cylinders [5] or Lego bricks
[13]; more recently, the SeamlessDesign system used a larger set of more complex
primitives [14]. At Volkswagen, an immersive VR system for interactive cable
layout has been developed [20]. Other systems explicitly model part connectivity
by means of simple reference (snap) points on the object’s surfaces [8]. The ap-
proach of [7] uses an automatic alignment based on the objects’ bounding boxes
for snapping two parts together. ISAAC implements snap-to-grid and snap-to-
orientation methods for precision placement of parts [17]. The MAESTRO sys-
tem uses “sensitive polygons” to constrain the objects’ movement during the
coarse positioning phase [19]. Another class of immersive assembly modelers uses
constraint-based approaches very similar to those of modern CAD systems, e.g.
ICBAM [21] or the constrained virtual environment developed in Salford [16];
here, snapping can be implemented by a combination of automatic detection and
assertion of geometric constraints. Snapping addresses some of the issues raised
in the introduction concerning the transfer of CAD-style assembly modeling to
VR; however, as the constraint detection mechanism constantly has to check
for spatial relations between arbitrary part surfaces, such systems appear to
be restricted to assemblies consisting of a small number of industrial-complexity
parts. It is further unclear, how conflicts between asserted constraints and object

[. 1

1\ 4

O | - /r:- |
-l-‘-""' -h_: PointPo-r't.‘J

Fig. 3. Extrusion, Plane, and Point port connections.

collisions could be resolved. In all of the above systems, the interactive assembly
simulation is triggered by direct manipulation, e.g. using one or two datagloves.

Our approach to immersive assembly modeling aims to overcome some of
the limitations of existing systems by combining the following properties: (1) it
supports not only assembly and disassembly but also adjustments in the relative
positioning of parts; (2) it scales well for assemblies consisting of a large number
(e.g. in the order of hundreds) of parts; and, (3) it supports not only direct
manipulation, but also natural language instructions. The last aspect, and even
more so the combination of these features makes our approach unique.

3 A Knowledge-Based Model of Ports and Connections

The proposed framework for task-level assembly modeling utilizes a knowledge-
based model of connection-sensitive part subvolumes or ports, e.g. the shaft of a
screw or the inside thread of a nut, and constraints imposed by different kinds
of connections, e.g. screwed, inserted, or welded. Taxonomies with predefined
port and connections concepts capture the most common mating properties of
CAD-based parts which facilitates the reuse of once developed models.

The port taxonomy is organized around geometric and mechanical properties
which differentiate the port concepts at the higher and, resp., lower levels of the
taxonomy. At the top-level, the taxonmoy is divided into the following concepts:

— Eztrusion ports model connection properties of object subvolumes with ex-
trusion geometries. For example, extrusion ports model connection proper-
ties of objects involved in peg-in-hole type assembly operations. In general,
connections between extrusion ports afford one translational and one rota-
tional degree of freedom. Extrusion ports are differentiated into male ports,
such as the shaft of a screw and female ports, e.g. the hole of a nut. Matings
between two extrusion ports generally invole one male port and one female
port. For two extrusion ports to be connected, they must be collinear, par-
allel (in same or opposed direction), and their capacities must overlap.

— Plane ports model connection properties of planar object surfaces. Connec-
tions between two plane ports afford two translational and one rotational
degree of freedom. For two plane ports to be connected, they must be copla-
nar, anti-parallel, and their capacities must overlap.

SCREW-22
((type: ThreadedShaft)
(name: shaft)

origin of shaft coordinate system

Efc?tzittiig:': ((ggg()))» 0 SCREW-22-yellow-1::shaft
L 5- capacity: [0,22]
Efﬁzzggt-c(ﬁ %2;)) 10 - consumedCapacity: (15,15)
:0. _ isOccupied: fal
(geometry: (type:cylinder) 15 scctpled. Talse
(radius: 7) (length: 22)))) 22-

Fig. 4. Left: Port definition for a screw with a 22mm shaft. Right: In concrete assembly
tasks, among other dynamic attributes, a list of consumed capacities is maintained.

— Point ports model point-like object connections that induce no translational
and one rotational degree of freedom when objects are connected. Connected
point ports are coincident and parallel. Point ports can be understood as
borderline cases of both extrusion and plane ports but introduce a separate
concept that has conceptual and computational advantages.

The port taxonomy currently consists of 204+ concepts; it is complemented
by a taxonomy of connection concepts that define further constraints concerning
the relative movement of connected objects. E.g. screw-in-hole insertions can
be defined with either independent or dependent rotational and translational
degrees of freedom (in the latter case the screw needs to be rotated in order to
be inserted into the hole). Or, a welding-type of connection can be defined as
one that allows no transformational degree of freedom at all. The connection
taxonomy mirrors a taxonomy developed by Roth in the field of mechanical
engineering [18].

Figure 4, left, shows how the CAD model of a screw is enriched with port
information. The port definition makes reference to the port taxonomy — the
screw’s shaft thus inherits e.g. the property to take part in screwing-type op-
erations — and defines additional part-specific, dimensional information. During
an on-going assembly task, among other dynamic attributes, a list of consumed
capacities is maintained for each port. The consumed capacity of a port is used
e.g. by the assembly algorithms to prevent matings with third parts at those
positions. A detailed description of the port and connection representations can
be found in [11].

4 Algorithms for Task-Level Assembly Modeling

Aiming at a task-level instructability of virtual prototyping environments, a
comprehensive set of algorithms has been developed that transforms high-level
specifications of various assembly-related tasks to corresponding changes of the
virtual environment’s lower-level graphics representation. In particular, these
algorithms accomplish the assembly and disassembly of parts and aggregates as
well as adjustments of already connected parts along their remaining degrees of
freedom. Building on the port and connection representations described above,

connect(a,b)

1. Heuristically refine the input data, i.e. select ports, hotspots, as-
sembly direction (if not already present in input descriptions) based
on current snap policy

2. Perform preliminary mate of the two parts, account for already
consumed capacities of ports being mated

3. Handle collisions possibly resulting from step 2

4. Infer the new connection relationships and assert them in the con-
nection graph

Fig. 5. The connect algorithm for task-level assembly.

collision
handllng

Fig. 6. Phases of the connect algorithm.

preliminary

mate\ *—

the algorithms operate on and manipulate several part, port, and connection
representations at once. The algorithms further incorporate polygon-precision
collision handling methods and thus ensure physical realism to a large extent.
Due to space limitations, the present discussion is focussed on the algorithm for
task-level assembly. A more detailed pseudo code description of all algorithms
can be found in [11].

The connect algorithm achieving a task-level assembly is shown in Figure 5.

A first and important issue concerns the data structures of its input arguments.
Just like the other task-level algorithms, the connect algorithm expects only in-
formation as input that can be derived from natural language (NL) instructions.
NL instructions, however, can specify the task at very different levels of granu-
larity. E.g. in the assembly task shown in Figure 6, the objects to be connected
could have be described as individual parts or as aggregates (insert the screw
into the bar vs. insert the upper aggregate into the lower one); or, a specific port
may have been specified (. ..into the middle hole of the bar); further, an assembly
direction ...from above) or the amount of the insertion (insert the screw fully
..) may have been provided. Correspondingly, the connect algorithm is called
with parameters of a flexible data-structure. At a minimum, the set of involved
parts must be specified. Optionally, further fields describing e.g. a specific port or
a hotspot (snap point) on that port can be supplied. In step 1 of the algorithm,

screw-1 screw-2
1 1

5 B i N i
i [|
.- i h 4 | I
:u =p- . cube-1 cube-2
- - - o /bar-z
screw-3 screw-4

Fig. 7. Each assembly operation may establish multiple connections; in the connec-
tion graph, two components are merged. Likewise, each disassembly operation may
require the resolution of multiple connections; in the connection graph, the component
representing the original aggregate is split in two components.

the unfilled fields of the two input parameters are heuristically filled, based on a
globally defined snap-policy. In Figure 6, e.g., a snap-policy is assumed that tries
to mate the closest ports, in an assembly direction that matches best the moved
objects’ current orientation, and with a preference to insert extrusion ports as
far as possible into another.

Steps 2 and 3 of the connect algorithm are illustrated in Figure 6. In step
2, the parts are preliminarily mated based on the locally available informa-
tion about consumed port capacities. While the mating conditions are locally
satisfied for the two ports, a collision occurs between two other parts in the as-
sembly. Therefore, step 3 performs a collision avoidance procedure. The screw is
pulled out (in inverse assembly direction) of the bar until a collision-free state
is reached. Collision avoidance operates at polygonal precision by utilizing de-
tailed geometry information about the CAD-based parts. The final step 4 of the
connect algorithm tests the resulting assembly for new connection relations and
asserts them in the connection graph. Figure 7 shows an example, where multiple
connections result from one assembly operation.

Figure 7 can also be read as an example of an disassembly operation. Just
as a single assembly task may result in the establishment of multiple new con-
nections, a single disassembly task may involve the breakup of several connec-
tion relationships. Put slightly differently: While assembly operations merge two
components of the connection graph into one component, disassembly opera-
tions split one component of the connection graph into two. Accordingly, the
disconnect algorithm, shown in Figure 8, first splits the connection graph into
two components, and then fully separates the two components in the graphics
scene. Collision avoidance ensures that the disassembled parts do not penetrate
any other objects in the virtual environments.

Finally, besides assembly and disassembly operations, the present framework
for task-level assembly modeling further supports adjustment operations that
modify the relative placement of some parts in an assembly w.r.t. other, sta-
tionary parts. Both rotational and translational adjustments are supported, cor-
responding to the degrees of freedom of port connections; see Figure 9 for an

disconnect(a,b,dirhint)

1. Split the connection graph of the aggregate containing ¢ and b
into exactly two components o’ and b’ by retracting one or more
connection relations. All retracted connection relations must sup-
port the same disassembly direction dir, which must approximately
match the optional dirhint, if provided.

2. Graphically separate the parts o’ from b’ in direction dir, such that
their distance exceeds a threshold and the removed parts a’ do not
collide with any other parts in the environment.

Fig. 8. Disconnect algorithm for task-level disassembly.

example of a translational adjustment. The adjustment algorithms are similar
to the disassembly algorithm in that they first (although temporarily) split the
connection graph of the modified aggregate into two components of the trans-
formed and stationary parts. The following graphical displacement, however, is
limited such that in the resulting state the mating conditions of the modified
connections still hold and no parts are separated from the assembly.

5 Conclusions

We have presented a novel framework for task-level control of virtual environ-
ments for assembly modeling. As representational foundation, a knowledge-based
model of ports and connections was devised that captures stereotypical mating
properties of CAD-based parts. Compared to conventional lower-level CAD de-
scriptions, port and connection representations provide a more abstract mod-
eling means closer to the human conceptualization. Building on the port and
connection representations, a set of algorithms was developed that accomplishes
a task-level control of various assembly related operations such as assembly, dis-
assembly, and adjustments. Desirable properties of the algorithms include their
real-time capabilities and built-in collision avoidance. Further, the algorithms

Fig. 9. Translational adjustment by direct manipulation: The selected part is moved,
constrained by the mating conditions of its connection to another part.

Max (System): Jure logged on
Thies: Hello Jure

Jure: Hello Bernhard and Thies
Bernhard: Everybody is here. Lets start
building something

‘Thies: Max, add a yellow cube

Max (System): ok

Jure: Max, insert the screwinto the middle
hole of the bar

Max (System): ok

Bernhard: looks good

nsert the screw int the top ofth cube. -

Fig. 10. Left: Immersive assembly modeling in a large-screen environment using speech
and gesture. Right: A web-browser interface based on typed natural language.

can accommodate a variety of information present in verbal (or gestural) in-
structions of the user. They are, however, also able to perform the task when
only minimal information is provided in the instruction.

The framework for task-level assembly modeling has been integrated into sev-
eral complete virtual assembly systems. In the large screen environment shown
on the left of Figure 10, natural language and gesture instructions enable an
interaction with both close and distant parts [15]. In web-browser based envi-
ronments, as the one shown on the right of Figure 10, the updates rates of the
visualization are particularly slow; here, the natural language interface proves
advantegeous as it allows for instantaneous updates of the virtual environment as
opposed to direct manipulations that require continuous updates [12]. Of course,
as illustrated in Figures 2 and 9, the task-level interface to virtual assembly also
supports user interfaces based on direct manipulation. Current work aims at
extending the task-level interface to scaling operations that preserve the shape
of certain subparts [3].

Acknowledgment. This work is partly supported by the Deutsche Forschungsge-
meinschaft (DFG).

References

1. J. A. Adam. Virtual reality is for real. IEEE Spectrum, 30(10):22-29, 1993.

2. A. Banerjee, P. Banerjee, N. Ye, and F. Dech. Assembly planning effectiveness
using virtual reality. Presence, 8(2):204-217, 1999.

3. P. Biermann, B. Jung, M. E. Latoschik, and I. Wachsmuth. Virtuelle Werkstatt:
A plattform for multimodal assembly in VR. In Proceedings Virtual Reality Inter-
national Conference (VRIC 2002), pages 53—62, 2002.

4. M. Buck and E. Schémer. Interactive rigid body manipulation with obstacle con-
tacts. In Proceedings 6th International Conference in Central Europe on Computer
Graphics and Visualization, pages 49-56, 1998.

5. J. Butterworth, A. Davidson, S. Hench, and T. M. Olano. 3DM: A three dimen-
sional modeler using a head-mounted display. In Procedures of the Symposium on
Interactive 3D Graphics, pages 134-138. ACM Press, 1992.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

A. G. de Sa and G. Zachmann. Virtual reality as a tool for verification of assembly
and maintenance processes. Computer Graphics, 23(3):389-403, 1999.

P. Drews and M. Weyrich. Interactive functional evaluation in virtual prototyping
illustrated by an example of a construction machine design. In JECON-98 — Proc.
24th Annual Conference of the IEEE Industrial Elctronics Society, volume 4, pages
2146-2151. IEEE, 1998.

J. Gausemeier, M. Grafe, and R. Wortmann. Interactive planning of manufacturing
systems with construction sets. In IECON-98 — Proc. 24th Annual Conference of
the IEEE Industrial Elctronics Society, volume 4, pages 2146-2151. IEEE, 1998.
R. Gupta, D. Whitney, and D. Zeltzer. Prototyping and design for assembly analy-
sis using multimodal virtual environments. Computer-Aided Design, 29(8):585-597,
1997.

S. Jayaram, U. Jayaram, Y. Wang, K. Lyons, and P. Hart. VADE: A virtual
assembly design environment. IEEE Computer Graphics and Applications, 19(6),
1999.

B. Jung. Intelligent virtual prototyping environments: Foundations and applica-
tions of task-level CAD in virtual reality. Habilitation Thesis, Faculty of Technol-
ogy, University of Bielefeld, 2002.

B. Jung, T. Pfeiffer, and J. Zakotnik. Natural language based virtual prototyping
on the web. In Proceedings Structured Design of Virtual Environments and 3D-
Components. Aachen: Shaker, 2002.

K. Kiyokawa, H. Takemura, Y. Katayama, H. Iwasa, and N. Yokoya. Vlego: A
simple two-handed modeling environment based on toy blocks. In Proceedings
ACM Symposium on Virtual Reality Software and Technology (VRST ’96), 1996.
K. Kiyokawa, H. Takemura, and N. Yokoya. SeamlessDesign: A face-to-face col-
laborative virtual/augmented environment for rapid prototyping of geometrically
constrained 3-d objects. In Proceedings of the IEEE International Conference on
Multimedia Computing and Systems, Vol. 2, pages 447-453, 1999.

M. Latoschik, M. Frohlich, B. Jung, and I. Wachsmuth. Utilize speech and gestures
to realize natural interaction in a virtual environment. In IECON’98 - Proceedings
of the 24th Annual Conference of the IEEE Industrial Electronics Society, volume 4,
pages 2028-2033, 1998.

L. Marcelino, N. Murray, and T. Fernando. A constraint manager to support
virtual maintainability. In 1st Ibero-American Symposium in Computer Graphics,
2002.

M. A. Milne. ISAAC: A meta-CAD system for virtual environments. Computer
Aided Design, 29(8):547-553, 1997.

K. Roth. Konstruieren mit Konstruktionskatalogen, volume I. Springer-Verlag,
Berlin, 2. edition, 1994.

R. Steffan and T. Kuhlen. Maestro - a tool for interactive assembly simulation
in virtual environments. In B. Frohlich, J. Deisinger, and H.-J. Bullinger, ed-
itors, Immersive Projection Technology and Virtual Environments, pages 141 —
152. Springer Verlag, 2001.

M. Symietz. Echtzeitbasierte Generierung und Verlequng von Leitungsobjekten in
einem digitalen Fahrzeugmodell mit einem Virtual-Reality-System. PhD thesis,
University of Bielefeld, Faculty of Technology, 2000.

M. R. Thompson, J. H. Maxfield, and P. M Dew. Interactive virtual prototyping.
In Proceedings of Eurographics UK ’98, pages 107-120, 1998.

D. Zeltzer and S. Gaffron. Task-level interaction with virtual environments and
virtual actors. International Journal of Human-Computer Interaction, 8(1):73-94,
1996.

