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Abstract

We study the number of all possible alignments of IV sequences, N > 2,
for two distinct alignment concepts proposed in the literature — standard
alignments and effective alignments (consistent equivalence relations). Re-
cursion formulae are developed to calculate these numbers. For standard
alignments and for effective alignment of just two sequences an explicit
formula is also presented. The number of all effective alignments of a
given site space is shown to be related to Stirling numbers of second kind.

1 Introduction

Sequence alignment is one of the most important tools for data analysis in
molelcular biology. There are different notions of what an alignment is: By
standard theory, an alignment of NV sequences si,...,sy of length Lq,...,Ly
is defined to be an N x L matrix A with max(Li,...,Ly) <L <Y, ,.nLi
whose rows are obtained from the original sequences by insertion of so-called
‘blanks’ or ‘gap characters’ — with the additional requirement that no column
of the matrix A consists exclusively of blanks (cf. [1]; p. 186).

Recently, Morgenstern et al. [2] have proposed a different way of defining
alignments (see also [3] and [1], p. 188, for the case of two sequences and [4] for
a thorough discussion of this concept for any number of sequences). In their
definition, an alignment of the sequences s;,...,sy is a consistent equivalence
relation defined on the so-called site space S := {[i[j] | 1 <i < N,1 < j < L;}.
This definition avoids a certain redundancy inherent in the standard definition
and allows to apply the mathematical theory of sets and relations to inves-
tigate the state space associated with an alignment problem. To distinguish
these alignments from standard alignments, we will refer to them as effective
alignments.

No matter which definition is preferred, in either case the alignment problem
is the problem of finding an optimal alignment — according to some well-defined
criterion — and the search space for this optimization problem is the set of all
possible alignments of a given set of sequences.



Therefore, it seems to be worthwile to study the structure of this space in
more detail. In this paper, we show how to calculate the number of all possible
alignments of N sequences. We generalize the results of Laquer [5] and Water-
man [1] who solved this problem for the special case of N = 2 sequences. We
derive recursive functions to calculate both, the number of standard alignments
and the number of effective alignments. We also present explicit formulae for
the number (i) of standard alignments and (ii) of effective alignments of just
two sequences.

Although these numerical values themselves are of minor interest to biolo-
gists, our study might still be of some use as it sheds light on the structure of
the state space associated with the alignment problem.

2 The number of standard alignments

Assume that we are given N sequences si, Sg,...,sy of length Ly, Lsy,...,Ly.
Then, clearly, there exist, for any given L > max(Ly,...,Ly), exactly
N (L
£ = £ G i) = 1 (1)
i=1 N °

standard alignments of total length L provided we allow columns consisting of
blanks, only.
More precisely, given a subset X of {1,..., L} of cardinality

z < L —max(Ly,...,Ly),

there exist
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such alignments with at least all those columns consisting of blanks only which
are indexed by elements j € X.
Consequently, by M6bius inversion [6], the sum
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coincides with the number F(L1,...,Ly; L) of all standard alignments of total
length L without any column consisting of blanks only.

Remark: The standard proof for this fact runs as follows: for X C {1,...,L}
as above, let f(X,L) denote the number of alignments of total length L with
exactly those columns consisting of blanks only which are indexed by elements
j € X; then, if x := #X, we have
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and hence

z>0 i=1 XCc{1,...,.L}

= ) ¥ Y L) =
XC{l,...,L} XCYC{L,..,L}

= ) fWL)Y (-)** =f(0,L) = F(Ly,...,Ly; L),
YC{1,..,L} XCYy

Clearly, this implies that the number F(Ly,...,Ly) of all standard align-
ments without any column consisting of blanks only coincides with the double
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where the sum could be taken over all L and z, yet non-zero terms will arise
only for max(Ly,...,Ly)+2<L<L;+...+ Ly.

As any such alignment has a first column involving a well-defined non-
empty subset V of {1,...,N} of rows without blanks, it is clear that for

L,L,,...,Ly > 0, we also have the Pascal-triangle type recursion formulae
F(Ly,...,Ly;L)= Y, F(Li—xv(1),...,Ly —xv(N); L —1)
0GVC{L,...,N}
and
F(Ly,...,Ln) = >, FLi—xv(1),-., v —xv(N))
0GVC{L,..,N}
with
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the characteristic function of V' C {1,..., N}, as usual. Together with
F(1;1)=F(1) :=1,
F(1;L):=0for L >1,
and
F(Ly,...,LN;L):=F(Ly,...,L; 1,Lit1,...,Ly; L)

as well as
F(Ll,...,LN) = F(Ll,...,Li_l,Li+1,...,LN)

whenever L; := 0 for some ¢ € {1,..., N}, this recursion formula can of course
also be used to compute the values of F(Ly,...,Ly;L) and F(Ly,...,Ly) in
an efficient way.

Remark: Note that a similar argument establishes the recursion formula

FrLy,- o IysD) = Y fH(La—xv(1),..., Ly —xv(N); L - 1).
vc{y,...,N}



3 The number of effective alignments

Let us now denote by G(Ly,...,Ly) the number of effective alignments of the
given sequences, that is, of equivalence relations A defined on the set S :=
{[#]4] | 1 <i< N,1<j < L;} with the property that there exists a partial
order < defined on the set S/A of A-equivalence classes A(z), A(y),...(z,y € S)
satisfying the consistency condition

(*) A([els]) = A([ER]) = G <k

foralli € {1,...,N} and 5,k € {1,..., L;}. Note that, if any such partial order
exists, there exists a unique smallest one which can be defined as the transitive
closure of the relation defined by (*) and which will be denoted by “=<,”.

In case N =1, we clearly have G(L1) = 1; and — just as above — we have

G(L], .. ,LN) = G(Ll, .. -,Li—laLH-la .. .,LN)

in case L; = 0 for some ¢ € {1,...,N}. It is also easy to see (cf. [1], p. 188)
that, in case N = 2, we have
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because — in view of the identity
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— this number is well known to coincide with
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Li+le=L li+la=Ly

and because any effective alignment A of two sequences is uniquely determined
by the two subsets K; C {1,...,L;} and K5 C {1,..., Ly} which are defined
by

Ki:={j1 € {1,...,L1} | there exists j» € {1,..., Ly} with [1]j;] ~[2|2]}
and

Ky :={ja € {1,..., Ly} | there exists j1 € {1,..., L1} with [2[j5] Z[1]51]}



which can be chosen freely in {1,...,L;} and {1,..., Ly} subject only to the
condition that they have to have the same cardinality.

In the general case N > 1, we can at least derive a Pascal-triangle type
recursion formula for G(L4,...,Ly). To this end, consider a partial partition
YV = {V1,...,Vi} of {1,...,N}, that is a non-empty set of non-empty and
pairwise disjoint subsets Vi,..., V% of {1,..., N} and define G(Ly,...,Ln;V)
to denote the number of effective alignments A for which V coincides with the
set

V(A):={V c{1,...,N}|{[ill] | i e V} € §/A}.

Clearly, V(A) is non-empty because every A-equivalence class contained in S
which is minimal with respect to the partial order < 4 defined by A is necessarily
of the form {[i|1] | i € V'} for some non-empty subset V' C {1,...,N}.

So, we have

G(Li,...,Ly) = ZG(Ll,...,LN;V),
v

where the sum is taken over all (non-empty) partial partitions V of {1,..., N}.
Moreover, if we denote for every such V by G*(Ly,...,Lx;V) the number
of all effective alignments A with V C V(A), we surely have

Y G(Ly,.. o, LniW) = GT(Ly,..., Ly; V) = G(Ly—xp(1), - -, Iy —xu(N))
yow

where xy denotes the characteristic function of ¥ := |J V, because that last
vey
number just counts the number of effective alignments of the IV suffix sequences

resulting from our original sequences by eliminating the first entry in each of
the sequences s; with ¢ € Y which is exactly the number of those alignments A
of the original sequences with V C V(A4).

Consequently, Mébius inversion yields the following recursion formula

G(Li,...,Ly;V) = > G(Ly,...,LysW') Y (-1)#V-V) =

vow’ vowow'
= > ()N G(Ly, ., L W) =
vow wow'
=) (-)FVIIGH(Ly, ..., Ly W) =
yvow
=Y ()FVVG(Ly - xw(1),- ., Ly — xw ()
yvow



which obviously implies the recursion formula

G(Ly,...,Ln) =Y | Y (D) IG(Ly — xw(1),..., Ly —xw(N)) | =
0£Y \VCW

=3 | 3 ()FY V)G xw(D), -, Iy — xw(N)) =

0w \0£vCw
=3 (-)"FYG(Ly - xw(1), ..., Ly — xw(N))
0#W
in view of
S (CDFV L (P = 3 (cE) .
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Moreover, we can rewrite these formulae by introducing the numbers

a(k) :== Z(_l)#({l,...,k}/N)

~

where, for any given k € Ny, we sum over all equivalence “~” relations defined

on {1,...,k}. Clearly, we have a(0) = 1,a(1) = —1,a(2) = 0,a(3) = 1,a(4) =
1,a(5) = —2,a(6) = —9,a(7) = —9,a(8) = 50 and so on, as can be read off from
the obvious recursion formula

ak+1) = —é (';>a(k—

Remark: The series a(k) also describes the expansion of exp(1 — €®) and is
closely related to the Stirling numbers of second kind o7, (7, 8]: With o}, being
the number of equivalence classes with exactly j classes on a set of k& distinct
elements, we have

j=1
Using these numbers while sorting the above formulae for multiply occuring
equal terms, we get

G(Ly,...,Lx;V) = > (-1)*OVIG(Ly — xw(1),..., Ly — xw(N)) =
VoW

- Z (~1)*YVG(Ly — xw(1),..., Ly —xw(N)) | =

Z(—l)#((WV)/N)> G(L1 —xw(1),..-,Ln —xw(N)) =

a(#W =V))G(Ly — xw(1),..., Ly —xw(N))



as well as

G(Ly,...,In) = Y —a#W)G(L — xw(1),-..,Ln — xw (V).
0£AWC{L,....N}

In case N := 2, this implies

G(Ll,Lz; {{1}}) == G(Ll - 1,L2) - G(L1 - ].,L2 - ].),
G(Ll,Lz; {{2}}) G(Ll,L2 - 1) - G(Ll - 1,L2 - 1),
G(Ly, La; {{1},{2}}) G(L1, L2;{{1,2}}) = G(L1 — 1, L2 — 1)

as well as

G(Ly,Ly) = G(Ly — 1, Ly) + G(Ly, Ly — 1)

corroborating the result

Li+ L
G(Ll’LZ)_< T 2)
1

in view of

Li+Ly\ (Li+Ly—1 4 Li+Ly—1\ (Li+Ls—1 n Li+Ly—1
L B L;-1 L - L;-1 Ly—1 '
In case N := 3, we get

G(Ly, Ly, Ls; {{1}})
G(L1, Lo, L3; {{17 2}})

G Ll - 17L27L3) - G(Ll - ]-aLZ - ]-aLS) - G(Ll - 1aL27L3 - 1)

(
G(L1, Ly, Ls; {{1},{2}})
= G(Ly1—1,Ly—1,L3) —G(Ly — 1,Ly — 1,L3 — 1),
(
(

G(Lla Ly, Ls; {{L 2, 3}}) = G(Li1,Ly, Ls; {{17 2}7 {3}})
= G(Ly, Ly, Lg; {{1},{2},{3}}) = G(L1 —1,L2 —1,L3 — 1)

as well as
G(L1,Ls,Ls) = G(Ly—1,Ly,Lg)+ G(Ly, Ly —1,L3) +
+G(Ly,Ly, L3 —1) — G(Ly —1,Ly — 1,Lg — 1).
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