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New Challenges in Neural Computation

NC2 – 2014

Barbara Hammer1, Thomas Martinetz2, and Thomas Villmann3

1 – Cognitive Interaction Technology – Center of Excellence,
Bielefeld University, Germany

2 – Institute for Neuro- and Bioinformatics, University of Lübeck, Germany

3 – Faculty of Mathematics / Natural and Computer Sciences,
University of Applied Sciences Mittweida, Germany

The workshop New Challenges in Neural Computation, NC2, took place for
the fifth time, accompanying the prestigious GCPR conference in the beauti-
ful town of Münster, Germany, where many buildings still mirror its historic
relevance: here, important events such as the Westphalian peace took place.
The workshop itself centers around challenges and novel developments of neu-
ral systems and machine learning, covering recent research concerning theoret-
ical issues as well as practical applications. This year, ten contributions from
international participants have been accepted as short or long contributions,
respectively, covering diverse areas connected to knowledge integration, appli-
cation challenges, feature detection, or dynamics. In addition, we welcome two
internationally renowned researchers as guest speakers, Prof. Dr. Peter Tiño
from Birmingham University, U.K., presenting ‘Learning in the model space for
temporal data’ and Prof. Dr. Michael Biehl from Groningen University, The
Netherlands, presenting a talk on ‘Prototype-based classifiers and their applica-
tion in the life sciences’. This invitation became possible due to the sponsoring
of the European Neural Networks Society (ENNS) and the German Neural Net-
work Society (GNNS). Within the workshop, a meeting of the GI Fachgruppe
on Neural Networks took place.

We would like to thank our international program committee for their work
in reviewing the contributions in a short period of time, the organizers of GCPR
for their excellent support, as well as all participants for their stimulating con-
tributions to the workshop.
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Keynote talk: Learning in the Model Space

for Temporal Data

Peter Tiño, University of Birmingham, U.K.

Abstract:

I will first introduce the concept of learning in the model space. This talk will

focus on time series data. After reviewing recent developments in model based

time series kernels, I will introduce a framework for building new kernels based

on temporal filters inspired by a class of ”reservoir” models known as Echo State

Networks. I will briefly outline the key theoretical concepts of their analysis and

design. The methodology will be demonstrated in a series of sequence classifica-

tion tasks and in an incremental fault detection setting.
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Keynote talk: Prototype-based classifiers

and their application in the life sciences

Michael Biehl, University of Groningen, The Netherlands

Abstract:

This talk reviews important aspects of prototype based systems in the context
of supervised learning. Learning Vector Quantization (LVQ) serves as a partic-
ularly intuitive framework, in which to discuss the basic ideas of distance based
classification. A key issue is that of choosing an appropriate distance or similarity
measure for the task at hand. Different classes of distance measures, which can be
incorporated into the LVQ framework, are introduced. The powerful framework
of relevance learning will be discussed, in which parameterized distance mea-
sures are adapted together with the prototypes in the same training process.
Recent developments and insights are summarized and example applications in
the bio-medical domain are presented in order to illustrate the concepts.
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Sparse Spectrum Hidden Markov Models of

Metastable Systems

Hao Wu

Department of Mathematics and Computer Science, Free University of Berlin,
Arnimallee 6, 14195 Berlin, Germany

hwu@zedat.fu-berlin.de

Abstract. The spectral decomposition and estimation plays a very im-
portant role for analyzing and modeling metastable systems, because
the dominant eigenvalues and eigenfunctions usually contain a lot of es-
sential information of the metastable dynamics on slow timescales. The
projected Markov model theory shows that a metastable system can be
equivalently described as a small-sized hidden Markov model (HMM)
under the assumption of strong metastability, therefore the dominant
spectral components of a metastable system can be identified from sim-
ulation and experimental data by HMM learning. However, in the case
that the number of dominant spectra is unknown, the choice of number
of hidden states is still a challenge for traditional HMMs. In this paper,
a sparse spectrum HMM is presented to address this problem

1 Background

For many physical and chemical process, the coarse-graining dynamics can be
formulated by the following model:

xt+τ |xt ∼ p (xt+τ = x|xt = x′) = (P (τ) δx′) (x) (1)

yt|xt ∼ Pr (yt = k|xt = x) = χk (x) (2)

where xt and yt represent the system state and observation at time t, the state
process {xt} is assumed to be an ergodic and reversible Markov process driven
by a Markov propagator P (τ), the observation space O = {1, . . . ,K} is a finite
set, and χk (x) is called the observation probability function for the observed
value k. Generally speaking, the system observations {yt} are obtained from
Galerkin discretization. In such cases, each k represents a finite element space in
the state space and χk (x) is the corresponding characteristic basis function with
χk (x) ∈ {0, 1}. Obviously, the above model is in fact an HMM, but it is generally
infeasible to reconstruct P(τ) from {yt} by direct statistical inference because
of the continuity of state space and the complexity of the dynamics of {xt}. In
[1], it was shown that if the state process {xt} has only m metastable states and
satisfies some technical assumptions, the dynamics of {yt} can be described by
an m-state HMM, and the dominant eigenvalues and projected eigenfunctions of
P (τ) can be extracted from transition probabilities and observation probabilities
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of the m-state HMM. Thus, if a suitable m is given, we can efficiently perform
the spectral identification through HMM learning. However, the choice of m is
difficult in practical applications, and the numerical experiments in [1] show that
the estimation results of the HMM method is very sensitive to the value of m.

2 Sparse spectrum HMMs

Here we develop an infinite-state Bayesian HMM called sparse spectrum HMM

for spectral estimation, which is a modified version of the stick-breaking half-
weighted model (SB-HWM) proposed in [2] and constructs prior distributions of
the infinite-dimensional transition matrix A = [aij ] = [Pr(st+τ = j|st = i)] and
observation matrix B = [bij ] = [Pr(yt = j|st = i)] as

G =

∞
∑

k=1

wkδbk
∼ DP(β,D)

H ′ =
∑

i,j

h′

ijδbi×bj
∼ DP(γ,G×G)

H = [hij ] = [(h′

ij + h′

ji)/2]

A = A(H) (3)

where st denotes the discrete state of the HMM at time t, bi = (bi1, . . . , biK)
denotes the i-th row of B, D represents the prior distribution of {bi}, DP(α,G0)
denotes a Dirichlet process with concentration parameter α and base measure
G0, the symmetric matrix H is the half-weighted matrix of the HMM and the
transition matrix A can be viewed as a function of H (see [2] for details). In
contrast with the other infinite-state HMMs, including the SB-HWM, the sparse
spectrum HMM has the following advantages:

1. The sparse spectrum HMM defines a sparse prior distribution of eigenvalues,
i.e., in most cases, the transition matrix A generated by (3) has only a few
eigenvalues which are significantly larger than zero. (Note that most infinite-
state HMMs cannot guarantee the sparsity of the eigenvalue set, and tend
to generate a lot of “pseudo-dominant eigenvalues”. The detailed analysis is
given in [2].)

2. This model involves only two Dirichlet processes, whereas most of the exist-
ing infinite-state HMMs contain infinite Dirichlet processes or stick-breaking
processes.

3. The prior of this model is exchangeable, i.e., if we renumber the states and
permute the indices of elements in A and B accordingly, the prior density
value remains unchanged.

4. It is easy to construct a truncated approximation of (3) by replacing the

prior of G with G =
∑L

k=1
wkδbk

and

(w1, . . . , wL) ∼ Dir(β/L), bk
iid
∼ D (4)
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and the posterior distribution of the truncated model can be efficiently sam-
pled by the Markov chain Monte Carlo approach. (The detailed sampling
algorithm is omitted here due to the space limitation.)

3 Open problems and future work

3.1 Theoretical analysis of sparsity

In [2], it was proved that the i-th eigenvalue λi of an SB-HWM satisfies

E [|λi|] = O
(

c
i
3

)

(5)

where c is a constant belonging to (0, 1). It is worth investigating if we can get
the similar results on the sparse spectrum HMM in this paper.

3.2 Convergence of truncated models

Because we can only use the truncated approximation of sparse spectrum HMMs
for Bayesian inference in practice, the following problem is very important for
both applications and theoretical analysis: Does the prior distribution of state

sequence {x0, xτ , . . . , xNτ} and spectral components of the truncated sparse spec-

trum HMM converge to that of infinite sparse spectrum HMM as the truncation

length L → ∞? If the answer is yes, can we further get the convergence rate?

3.3 Combination with neural networks

In all the above, we assume that the observation variables yt is a discrete variable,
which is generally obtained by clustering observation data in practical applica-
tions. By combining multilayer perceptron (MLP) networks, we can extend the
proposed method to continuous observations. Note that for the continuous ob-
servation yt, the observation probability density of the HMM can be expressed
as

p (yt|xt) =
p(xt|yt)p(yt)

p(xt)
(6)

where p(xt) can be given by HMM, p(yt) is a constant which has nothing to do
with the estimation procedure, and the conditional probability p(xt|yt) can be
estimated by an MLP network [3].

References
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The impact of frequency distributions in a
perceptual grouping oscillator network

Martin Meier, Robert Haschke and Helge J. Ritter

Neuroinformatics Group
Bielefeld University, 33501 Bielefeld, Germany

{mmeier,rhaschke,helge}@techfak.uni-bielefeld.de

The Kuramoto Model [2] is a recurrent network composed of limit cycle
oscillators, whose dynamic is designed to facilitate phase synchronization among
populations of oscillators. A single oscillator On in a population of N oscillators
is described by it’s phase θn and frequency ωn. The recurrent update equation
of the model is

θ̇m = ωm +
K

N

N∑
n=1

sin(θn − θm). (1)

Hence, the oscillators are globally coupled with a coupling strength K. The fre-
quencies ωm are constant and drawn from a random distribution. These frequen-
cies introduce a separating force into the network model, which drives oscillators
away from each other. The K/N

∑
sin(θn − θm) term counteracts this separa-

tion, forcing the oscillators into a phase-synchronized state. This model can be
used to describe different kinds of natural phenomena, for example synchronous
flashing of fireflies or the synchronization of pacemaker cells in the heart. Please
see [4] for a review of synchronization effects in Kuramoto models.

In [3], a network based on a hierarchical model of coupled Kuramoto oscilla-
tors is introduced, which is able to solve a broad spectrum of perceptual grouping
tasks, for example texture based image segmentation and contour integration.
The key principle of this network is to represent features from an input space in
a one-to-one relation by Kuramoto oscillators. The coupling strength between
the oscillators is chosen based on the similarity of the features according to some
distance metric.

In contrast to the original Kuramoto model (1), the hierarchical model in-
cludes individual coupling strengths fmn between oscillators Om and On to fa-
cilitate feature-dependent synchronization of oscillators. It is described by the
recurrent update equation

θ̇m = ωm +
K

N

N∑
n=1

fmn sin(θn − θm). (2)

Using this equation, positively coupled oscillators, e.g. fmn = 1, will attract
each other and gather at a similar phase whilst negatively coupled oscillators
(fmn = −1) act repelling and spread in their phases.

In the original model, the frequencies ωn are drawn from a random distri-
bution and constant. We proposed to employ a set of discrete frequencies ω0α,
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α = 1, . . . , L and update the frequency of each oscillator based on the support
they gain from all oscillators. The support is calculated based on cosine similarity
of oscillator phases, limited to the range [0, 1] and weighted by their local cou-
pling i.e. Sm(α) =

∑
n∈N (α) fmn · 1

2 (cos(θn − θm) + 1). The new frequency wm
is then chosen to maximize the support, thus boosting phase synchronization:

ωm = ω0 · argmax
α

(
Sm(α)

)
(3)

This adaptation allows an easy assignment of grouping results: Oscillators shar-
ing a common frequency index α represent the same group. Additionally, adapt-
ing oscillators to the same frequency reduces the phase spread compared to
randomly drawn, constant frequencies.

(a) fmn (b) Initialization. (c) 10 updates. (d) 20 updates.

Fig. 1: This figure displays an example of the dynamics for a network with 100
features, 10 discrete frequencies and 4 target groups. The leftmost panel shows
the coupling matrix fmn between features, where a black pixel indicates an
attracting coupling while white represents a repelling coupling. Fig. 1b to 1d
visualize the state of the oscillators in phase space (polar coordinates) at ini-
tialization, after 10 and 20 updates. The color and symbol of the oscillators
represents the desired target state.

The behavior of the network in an artificial grouping task is shown in Fig. 1.
The coupling matrix fmn for 100 features, divided into four groups with 10%
noise is shown in Fig. 1a, whilst the state of the oscillators in phase space is shown
in Fig. 1b–1d. After 10 updates the network achieves a perfect grouping result
in terms of frequency assignment. After 20 updates, oscillators representing the
same target group have a high phase synchrony as well.

Although the recurrent update (2) appears intriguingly simple, the model and
its’ variations opened a wide spectrum of research, e.g. see [1] for an overview.
By introducing a frequency adaption (3) in conjunction with discrete frequencies
and recalling the original update equation (1), where the frequencies ωn induce
phase spread while the sin() term drives the oscillators towards a mean phase,
the question arises whether the distribution of these frequencies has an impact
on the network dynamics. To get a first insight into this question, we employed
genetic algorithms (GA) to generate different sets of discrete frequencies and
analyzed if the GA was able to improve the target state of the network by
varying the discrete frequencies.
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The initial grouping problem was similar to the settings in [3]. The compat-
ibility fmn was expressed as a matrix which encodes the couplings among 100
features, split into four target groups of 25 features. The matrices contained 25%
noise. The oscillator networks contained 10 discrete frequencies. The crossover
probability of the GA was set to 50% with a mutation probability of 3%. The
population consisted of 100 chromosomes, where each chromosome encoded the
discrete frequencies of an oscillator network. The fitness function was designed
in terms of the grouping quality q = [0, 1] and the oscillator order r = [0, 1].
A grouping quality q of one represents a perfect result compared to a given
target labeling, whilst the order r represents the phase coherence of the oscil-
lators. A value of one means that all oscillators share the same phase θ. For a
more comprehensive description of both evaluation measures please refer to [3].
For the initial trials, two fitness functions are evaluated. On the one hand the
product of quality and order q ∗ r and on the other hand the average of quality
and order q+r

2 . Additionally, two different ranges of frequencies are used, [π2 , 2π]
and [π2 , 20π]. The results are shown in table 1 for the different conditions. The
last column shows the product of quality and order without a GA optimization,
averaged over 1000 trials.

cond. avg, 2π avg, 20π mul, 2π mul, 20π no GA

µ and σ 0.986 ± 0.001 0.989 ± 0.01 0.971 ± 0.001 0.979 ± 0.001 0.963 ± 0.03

Table 1: Mean and standard deviation of the fitness function over 1000 evolution
steps for each condition. The leftmost column shows the result over 1000 trials
for a non-optimized oscillator network.

These results suggest, that the frequency distribution does not have a sig-
nificant impact on the grouping behavior of the oscillator network, at least for
the considered artificial grouping problem. In contrast to the hierarchical model
(2), the frequency adaption (3) reduces the phase spread induced by randomly
drawn, fixed ω values in oscillator groups, which could counteract possible im-
pacts of different ω distributions on the dynamics. Extending this investigation
towards a mean phase analysis of oscillator groups will be of future interest.
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Spiking network simulations

Tim U. Krause, Phil Y. Schrör, and Rolf P. Würtz

Institut für Neuroinformatik, Ruhr-Universität, Bochum, Germany
e-mail: utz.krause@web.de, phil.schroer@rub.de, rolf.wuertz@ini.rub.de

Action potentials, also called spikes, are a very widespread, though not uni-
versal, communication mechanism between neurons. Their biophysics are well
understood and extensively modeled [1, 2].

It is less well known what the precise code of these spike trains is. Classically,
it is assumed that the frequency of spikes codes for the activation of the neuron.
The evidence for that is strong at the sensory and motor end of the nervous
system. It takes, however, relatively long integration times (at least 3 spikes)
to measure such a frequency for further processing. Therefore, a system using
this code throughout would be rather slow. Also each spike costs energy, and it
would be rather inefficient to require many spikes for some bits of information.

On the other hand, the timing of spikes carries much more information than
the frequency, to a theoretical limit of a real number for each spike. That preci-
sion is, of course, also limited by the noise on the timing. There is a continuum
of possible codes from pure frequency coding to relevant information carried by
a single spike time.

To speed up processing, it has been suggested by Thorpe [3] that the order
of arrival times of spikes at a neuron can distinguish between w! cases, with
w the number of incoming synapses. We have exploited that idea for learning
of (arbitrary) invariances by rank-order coding [4, 5]. We could also show that
timing noise as well as interfering spikes from bursting can be tolerated to a
certain extent without breaking the performance of the network.

Furthermore, it has been observed in real neurons that the precise timing of
spike arrival can be an important variable for plasticity or weight learning. This
phenomenon is called spike-time dependent plasticity (STDP) [6, 7].

Beyond biological relevance the question arises what technical problems can
be solved by computation based on spike-times. We have started to explore that
question experimentally by computer modelling. In the current work we will
completely abstract from spike shape and propagation dynamics and describe
each spike by a single floating point number, which is its creation time.

For that view, a neural network consists of a directed graph with neurons
as nodes and connections as edges. Edges have two scalar properties. The first
is the classical weight, which specifies how much the potential of a postsynaptic
neuron is changed by one incoming spike. The second is the time one spike needs
to travel from the creating neuron to the postsynaptic one, which we will call
delay.

Neurons accumulate incoming weighted spikes in a local potential and create
a new spike once a threshold has been passed. The second relevant parameter for
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neurons is the decay rate of the potential, the third a possible refractory period,
during which incoming spikes have no effect.

The evolution of the network is calculated by adding delays to creation times,
updating neuron potentials, and recording new spikes. We have built a simula-
tor [8] to model such a network efficiently by simple bookkeeping of the times
new spikes are created in the network. The implementation is able to simulate
large numbers of spikes, such that comparisons between rate coding and tempo-
ral coding can be made.

We present first results on small networks like a frequency bandpass filter, a
coincidence detector, and a fully connected network. We also compared STDP
to rate-based Hebbian learning in a feedforward network in a supervised training
mode.

We have made some experiments on image segmentation [9], which must be
fast to account for the speed of perception.

Future applications will include more learning experiments. A particularly
interesting question is how delays can be learned (by, e.g., by myelinization),
what the time constants and implications for information processing are.
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Role of competition in robustness under loss of

information in feature detectors

Arash Kermani Kolankeh1 Michael Teichmann and Fred Hamker

Chemnitz University of Technology, Department of Computer Science, Chemnitz,
Germany,

arash.kermani-kolankeh@informatik.tu-chemnitz.de

Abstract. In this work the robustness under loss of information is con-
sidered as a new criterion for effectiveness of feature detectors. Four
feature detectors with different levels of competition among their units
are evaluated and it is observed that robustness under loss of information
is directly related to the quality of competition in the feature detector.

Keywords: competition, neural networks, Hebbian learning, lateral in-
hibition, independent component analysis, non-negative matrix factor-
ization, predictive coding/biased competition, occlusion, information loss

1 Introduction

There exist some criteria like sparseness, independence and visual appearance
of components which have been widely used to measure the effectiveness of
feature detectors. In this work we have introduced a new criterion based on the
robustness of systems under loss of information. This is important as it measures
the effectiveness of solution in a real task and is not based just on theoretical
concepts.

2 Methods

In order to investigate the role of competition in robustness against loss of in-
formation we compared Fast Independent Component Analysis (FastICA) [1],
Non-Negative Matrix Factorization with Sparseness Constrains (NMFSC) [2],
Predictive Coding/Biased Competition (PC/BC) [3] and a Hebbian neural net-
work with anti-Hebbian lateral connections [4] on occluded, whitened and resized
MNIST handwritten digits. The occlusion was made by randomly putting 5 to
60 percent of the pixels to zero (Figure 1) which simulates loss of information.
At first, each of the feature detectors was trained on the train set of the MNIST
dataset and (after convergence) the activities were captured. Then the occluded
data was fed to each of the feature extractors and the same as for the train set,
the activities were saved. Then the train and test phase activities were given to
Linear Discriminant Analysis (LDA) classifier to observe how much the accuracy
of the classification drops by increasing the occlusion (loss of information). A
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Figure 1. Digit 0 as an example of 0% to 95% occlusion of the input digit patches.
Zero to 60% occlusion was used for the current study.

simple LDA classifier was chosen, as a sophisticated classifier would compensate
the loss of information itself. A higher accuracy of classification under occlusion
would mean that the feature detector has been able to correctly ”guess” what
the occluded input has been and compensate the loss of information.

3 Results

We observed (Figure 2) that FastICA shows the lowest robustness, NMFSC takes
the second place, Hebbian neural network comes after and the highest robustness
is shown by PC/BC. This is consistent with the fact that there is no competition
in FastICA. In NMFSC while giving the opportunity of learning novel features
to units by implicitly inhibiting the input to well-tuned components [5], it does
not let the tuned components compete with each-other. In other words, although
competition exists implicitly, it doesn’t strongly occur among well-tuned compo-
nents and they may share some redundant information. In the Hebbian network
although, competition occurs among the components by suppressing activities
which frequently happen simultaneously. This kind of local competition among
cells prevents them from learning redundant information. This helps the units to
be well-tuned to very important characteristics of the data and minimally con-
fuse different structures if some parts of the input are missing. Finally, PC/BC
as a generative model benefits from feedback error detecting weights which di-
visively inhibit the input. Like Non-Negative Matrix Factorization, this method
tries to minimize the error between the input and its reconstruction, although
some additional normalizations in feed-forward weights and in feed-back weights
(which are proportional to the feed-forward weights) make competition possible
also among well-tuned components. This generative method in fact benefits from
a globally guided competition which is superior to the Hebbian neural network
which uses locally available information to each cell for competition.

Workshop New Challenges in Neural Computation 2014

Machine Learning Reports 17



0 10 20 30 40 50 60
40

50

60

70

80

90

100

Occlusion percentage

L
D

A
 c

la
s

s
if

ic
a

ti
o

n
 a

c
c

u
ra

c
y

 p
e

rc
e

n
ta

g
e

 

 

Hebbian Learning with lateral inhibition; Threshold = 95% of the population maximum activity
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Figure 2. Classification performance on the output of FastICA, NMFSC, Hebbian
Neural Network, and PC/BC as well as on the raw data. The robustness of

classification under occlusion is in direct relation to the effectiveness of competition
among units of feature detectors.

We have concluded that the more effectively components compete with each
other during and after learning, the more robust is the system against loss of
information. Although the Hebbian neural network is an attempt to simulate the
function of primary visual cortex in a biologically plausible way and it could rely
only on local information, we used the new idea to improve its efficiency. In the
original network [4] the border between increasing and decreasing phases of feed-
forward weights was the population mean. Increasing this threshold to 95% of the
maximum activity which implies a kind of winner take all mechanism increased
the robustness of the neural network. This also supports the idea that even within
a single system, increasing the competition among units improves robustness
against loss of information. On the other hand turning the competition off (after
learning) resulted to the worst robustness (Figure 2). This tells us that even if
the components are correctly learned, lack of competition will result in confusion
if a small amount of data is lost.
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Learning Transformation Invariance for Object
Recognition

Jens Hocke, Thomas Martinetz

Institute for Neuro- and Bioinformatics, University of Lübeck

Abstract. Based on Tomaso Poggio’s M-theory, we propose a method to
learn transformation invariant representations. Using an artificial dataset,
we demonstrate that our supervised method learns invariance to shifts,
and on the MNIST data we show first results for learning the unknown
transformations underlying handwritten digits.

1 Introduction

Visual object recognition is a challenging task in computer vision. Even small
changes to an object’s pose can yield dramatic changes to the 2D image in
its pixel representation. Therefore, a representation invariant to such changes
is mandatory for achieving good recognition rates. Modern approaches to that
problem are scale-invariant feature transform (SIFT) [1] for coping with scale
invariance and convolutional neural networks [2, 3] for coping with shift invari-
ance.

Recently, the M-theory [4] was proposed explaining how invariance could be
implemented in the ventral stream. Besides the theoretical insights on invariance,
also a simple algorithm based on this theory is presented to find transformation
invariant representations. However, there are two limitations. First, the theory
explains only in-plane transformations, and, second, in the algorithm presented,
the transformations are assumed to be known in advance. Addressing the later
drawback we present a method based on the M-theory to learn invariance to
unknown transformations. This enables us to gain (approximate) invariance to
complex and unknown transformations.

After introducing the core ideas of the M-theory and describing our approach
we demonstrate its potential in an artificial setting and on handwritten digits, as-
suming these digits undergo complex transformations when written by different
people.

2 M-theory

According to the M-theory [4], invariance to a group G of transformations can be
achieved in a representation using orbits O. This is the core idea of the M-theory,
which we used for our method. In the following we will describe this concept,
and refer the reader to [4] for a more exhaustive description of the theory. Here,
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we use g ∈ G to denote the group elements, and by g(x) we denote the group’s
action applied to the image x ∈ RD. By applying all transformations gi ∈ G to
some image x an orbit Ox = {gi(x)|gi ∈ G} is induced. This orbit is unique for
the object in x, and it is invariant to the transformations in G. For example the
group of in-plane rotations would induce an orbit containing all possible rotated
versions of the original image x1. The orbit for some other image x2 = gi(x1)
that can be obtained from x1 by rotation would be the same, because for both
x1 and x2 all possible rotated versions are contained in the orbit. Of course for
some different image x3 that can not be obtained from x1 by rotation the orbit
would be different.

For object recognition we would need to generate and compare the orbit of
an unknown object to the stored orbit of a known object. It is not clear how
to measure the similarity of two obits. One possibility is to use the probabil-
ity distribution Px induced by the transformations gi on the image. For these
distribution the following holds:

x1 ∼ x2 ⇐⇒ Ox1 = Ox2 ⇐⇒ Px1 = Px2 . (1)

However, these probability distributions are extremely high dimensional making
it impractical to obtain them. Therefore, we would like to embed the invariance
and discrimination properties of the distributions to a space of lower dimension.
The Cramér-Wold theorem [5, 4] ensures that these high dimensional probability
distributions can be described by D distributions P〈gi(x),pn〉 over one dimen-
sional projections 〈gi(x),pn〉, where pn, n = 1, . . . D are the projection vectors.
To discriminate a finite number of distributions, empirically a small number of
projections N < D is sufficient [4].

Instead of transforming the input image x, we can also apply the inverse
transformation to the projection vectors pn:

〈gi(x),pn〉 = 〈x, g−1i (pn)〉. (2)

By applying the transformations to the templates, we avoid transforming every
new image. This allows an invariant and discriminative representation in a simple
two layer neural network with the transformations stored in the synapses. The
first layer generates all the outputs using scalar products of all weight vectors
win = g−1i (pn) with the input x, and the second layer quantifies the distributions
over the outputs of the first layer.

The restriction to groups of transformations allows only few transformations
like periodic boundary shifts and in-plane rotations. Other common transforma-
tions such as shifts and scaling may not be fully observed by projection vectors
of finite length. However, invariance to these partially observable groups can be
achieved for a range of parameters and for non-group transformations approxi-
mate invariance can be achieved.

3 Invariance Learning

In the original M-theory, the weight vectors win are derived from the given
transformation, e.g., translation or rotation. In our approach we want to learn
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these weights to be able to adapt to unknown transformations. We quantify the
distributions P〈gi(x),pn〉 by moments m. So every input image x is characterized
by

ynm(x) =

I∑
i

(
w>inx

)m
, (3)

which is invariant to the transformations gi ∈ G. In order to obtain a unique
and discriminate set of outputs ynm, the number N of projections, the num-
ber I of weight vectors per projection and the set of moments need to be set
appropriately.

For our supervised approach a set of labeled training images is needed, and
there should be multiple images per class available. For every class c ∈ C, mo-
ment m ∈M , and projection pn, n = 1, . . . N a target value tcmn is introduced.
These target values are used to learn the unknown outputs ynm for every class,
with equal outputs for intraclass tuples and different outputs for interclass tu-
ples. The following energy term enforces the moments of the projections to match
their target

ES =
∑
k

∑
m

(
tcmn −

∑
i

(
w>inxk

)m)2

. (4)

By minimizing this term invariance to transformations in the training set is
obtained, because the distributions for intraclass tuples are matched. However,
this term will not guarantee a discriminative result. Therefore, a second energy
term is introduced to enforce a minimum distance between the target vectors of
every possible tuple of different classes c and c′

ED =
∑
c,c′

max (1− ||tc − tc′ ||, 0)
2
, (5)

with the target vectors tc =
(
tc,1,1, tc,1,2, . . . , t|C|,|M |,N

)>
. The energies ES and

ED are combined using the weighting factor α

E = αES + (1− α)ED. (6)

Using this energy term (6) targets tcmn and the weight vectors win can be
learned by gradient optimization, after the targets tcmn and the weight vectors
win have been initialized randomly. In our experience stochastic gradient descent
was too slow, and, therefore, we used the Sum of Functions optimizer [6], which
in addition to the speed also needs no learning rates to be set.

4 Distance to Center Classification

In case we were able to learn full invariance to a transformation, all images
of one class c∗ will lie exactly on the corresponding target vector tc∗. If only
approximate invariance was achieved, all these images are clustered around tc∗.
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Therefore, the closest target vector determines the class label c∗ for some image
x:

c∗ = arg min
c
||y(x)− tc||, (7)

with y =
(
y,1,1, y1,2, . . . , y|M |,N

)>
.

5 Experiments

We show first experimental results. Many of the parameters are not optimized,
yet. For all the presented results only the second moment was used to quantify
the distributions. By setting the weighting parameter α to 0.01, the interclass
term was emphasized, which according to our experience leads to faster conver-
gence. The number of projections and the number of weight vectors per projec-
tion vary for the experiments, and are described for each experiment separately.

As a proof of concept we used shifted binary patches of size 4×4. 100 patches
were generated randomly by setting each pixel to either one or to zero with
probability 0.5. Then every patch was shifted using periodic boundary conditions
(see Figure 1). On the resulting 1600 training samples, we trained two projections
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Fig. 1. The left image shows a random example patch in all its 16 possible shifts. The
plot on the right shows the two second moments we obtain from projecting the orbits
of the test data, i.e., y1,2 and y2,2 from Equation (1). Each patch is denoted by a
different shape and color. All the shifted versions of a patch indeed fall on the same
point, demonstrating perfect shift invariance of this representation. The 10 different
test patches now can easily be discriminated.

with 16 weight vectors each. We used 16 weight vectors per projection, because
we know there are 16 possible shifts. Like the training samples, 160 test samples
were obtained from ten random patches by shifting. The orbits of the test samples
were then projected with the learned weights using Equation (1). Since we only

Workshop New Challenges in Neural Computation 2014

Machine Learning Reports 23



use the second moment, the two projections provide two values for each input
image x. In Figure 1 we see that the representation is perfectly invariant to the
learned transform, because all the shifted versions of a patch fall on a single
point.

Going one step further, we tested our method on handwritten digits from the
MNIST [3] dataset. It contains 60.000 training and 10.000 test samples. Here,
we assume that every sample of a certain digit is a transformed version of a
prototype digit. From the training data we learn invariance to the unknown
transforms underlying MNIST, which is a much larger challenge than learning
the known shifting transform in the experiment above. Since the transforms
are unknown, we do not know how to select the number of weight vectors per
projection, and in addition the images are of size 28× 28, therefore many more
parameters need to be learned.

For the visualization shown in Figure 2, we trained 2 projections with 20
weight vectors each and again take the second moments. The test data are nicely
clustered into the ten digits. Since not all equally labeled digits are perfectly
aligned, only an approximately invariant representation was found. However,
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Fig. 2. This plot shows the two second moments we obtain from projecting the orbits
of the MNIST test data using our method. Clearly, for every digit the samples form a
cluster.

if these two projections we chose for visualization are not enough for perfect
separation, we can increase the number of projections. If we use 10 projections,
the distance to center classification described in Section 4 achieves 2.86% error
rate on the test data significantly improving the 16.63% error rate obtained for
the two projection setting. If the distance to center classification is applied in
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the input pixel space of 768 dimensions, 17.97% of the samples are not classified
correctly. This shows how well our method organizes the space.

6 Conclusion

Based on the M-theory, we introduced a supervised learning method to find
an invariant representation. In the experiments we showed that our method can
learn perfect invariance to periodic boundary shifts. For the much more complex,
unknown transformations in MNIST full invariance was not achieved. However,
the data was clustered good enough for a decent classification performance.
We hope to improve these promising results by a better understanding of the
different parameters.
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Abstract. In this paper we highlight Freemium games as an attractive
domain of study for machine learning research, not only because of the
huge amount of data that is readily available but also because of the ben-
efits that even small improvements can bring. We discuss several options
to apply machine learning methods to this domain’s data, making use of
the inherent information and learning business relevant predictions and
classifications. Using behavioral information about the actions of 192 000
players inside the game, we demonstrate that it’s possible to beat the
industry gold standard solution for predicting future revenues. We also
succeed in narrowing down large user groups to a small subgroup that
is very likely to generate large parts of the future revenue. We conclude
our case study with an outlook on how such a machine learning approach
could become a module in a larger predictive analytics solution automat-
ically evaluating and optimizing a company’s marketing spendings.

Key words: Data Mining, Multilayer Perceptron, Random Forest, Freemium.

1 Introduction

The Freemium model is a pricing strategy in which a game product or other
service is provided for free, however the usage of some proprietary features,
functionalities or ‘virtual goods’ are provided at a cost. Because revenues in
the Freemium model aren’t realized before the usage of the product, as with
a boxed title, but are usually delayed until after an initial free usage period
of days or even weeks, developers are very interested in optimizing the user
experience and satisfying their customers, thus making them stay longer in the
game. Furthermore, it’s in the very best interest of a developer to remove all
obstacles that hinder the progress of users in a so-called ‘conversion funnel’ [21] to
finally become (returning) customers. As a result, improvement and optimization
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Fig. 1. Infographic with one main result of this case-study.

of every aspect of the product is a continuous and ongoing effort over the whole
lifetime of the product or service.

Because of this strong need to understand how users use and interact with
their system, developers usually collect huge amounts of data (truly ’Big Data’).
Data typically includes session events, payment events, feature usage, game pro-
gression, and social interactions, often going as far as recording every single click
of every single user on every single button within the game or service. This data
is used to analyze and optimize the game in every aspect, feature by feature. A
huge treasure for applying machine learning methods.

Within this article, we report on an idea to mine this data, namely the
prediction of future long-term revenues from users’ early behavior within a game.
For this case study, we received more than 38 million player events recorded over
the first seven days of play for about 192 000 new users in an international block
buster game. From these events we generated high-dimensional user profiles and
then tested several models on predicting the total spendings of each particular
user within the following half year of playing the game. While we trained and
compared different deep and shallow models, with and without feature selection,
we achieved the very best results with a composite neural model.

This prediction could help developers improve a central aspect of their busi-
ness model: evaluating and optimizing marketing campaigns. Profit is generated,
if average lifetime spendings are higher than the average acquisition costs. De-
velopers can’t wait long to measure the value of each campaign and as such
they want to have early indicators for the quality of an individual campaign
to support their decision whether to stop or enlarge it. But since the primary
metric of concern, the long-term revenue, can’t be measured directly after only
a few days, most developers use ad hoc secondary metrics (e.g. 2nd-day-return)
to evaluate campaigns that do or do not correlate with the revenues. The few
developers that try to rely on the primary metric through prediction, use a sim-
ple extrapolation of early spendings that was published by Faber et al [8]. In
section 2, we demonstrate that including behavioral data and applying machine
learning methods can actually beat this de-facto industry gold standard.
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After elaborating on this case study and our findings in the following section,
we’ll report on how the learning and neural prediction is going to be automatized
and deployed into a large-scale distributed predictive analytics software (sec. 3).
We conclude with a treatment of related work (sec. 4) and a discussion (sec. 5).

2 Behavioural Prediction of Future Revenues

For our study we had available the actions and spendings performed by each user
during its first 7 days in the game and then the information about the money
spent after 180 days. Our working hypothesis was that it is possible to predict
a user’s future spendings (spendings after 180 days) from the actions he takes
very early in the game (recorded events during first 7 days of play).

As a baseline method for comparing our learned behavioral model, we use a
simple extrapolation based on just the money users spent during the observation
period of the first 7 days, ignoring the behavior. This algorithm uses the ratio
between the historical revenue during the prediction target period length and the
historical revenue during the observation period length averaged over all users
in the historical (training) data. This ratio is then multiplied by the revenue
of the particular user whose prediction is being made [8]. Despite its simplicity
this algorithm produces reasonable results and is regarded as the gold standard
for revenue prediction. We also benchmark against a slightly improved, bias-
corrected version of the baseline. In this improved version, users without any
payments during the first 7 days of play are not assigned 0 but the somewhat
larger expectation, calculated from the historic data about users who didn’t pay
during the first 7 days of play but started paying afterwards.

In our experiments, we started with supervised learning in a traditional setup:

a) Generation of high dimensional user profiles X.

b) Automatic feature selection (optional) φ : X 7→ Z.

c) Supervised learning of a predictor f : φ(X) 7→ r with r the revenue.

Step a: Using the data available from the observation period we created
several hundred features divided in 6 categories: spending, gameplay, game pro-
gression, social interactions, success metrics and game settings preferences. Some
of these features were constructed manually (e.g.: passed an activity threshold)
but most are ’automatic’ (e.g.: id, min, max, sum, average, median, trend of
time series and singular events).

Step b: For some methods, to reduce the dimensionality of the input space
we performed automatic feature selecting using a a technique based on random
forests [12].

Step c: We tested a number of linear (ordinary least squares [14], ridge [13])
and non-linear predictors (SVM [6], Random Forest [3], deep and shallow MLPs
[18] trained with RPROP [17]).
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Results. In these initial experiments, we found that many out-of-the box methods
didn’t produce good results when trained on predicting r, some–including all
deep models we’ve tried–produced even worse results then the baseline methods.
What brought an improvement and finally did the trick, was to not train on the
revenue directly, but to only learn to predict an individual user’s difference to an
‘average user’. This was done by a) adding the output of the improved baseline
to the input of the model and b) setting the learning target to the absolute
difference between the baseline prediction and the user’s actual revenue r.

Another improvement was achieved by using a composite model of two in-
dependent models; one model trained and used for those users, that did spend
something in the observation period, and another model for those users who did
not. An ensemble of two MLPs using the absolute-differences technique achieved
the cross-validated mean squared error (MSE) of 966, substantially improving
over the 1192 of the industry standard. This can be considered the best result
of our study, concerning purely ‘generic’ and thus fully-automatizable methods.

We collected only the best results for different types of models in table 1
and added also a model with a complex, human-constructed architecture for
a ‘prediction correction’ (MLP Composite + PC) module considering the data
of similar users for each individual prediction. The construction of this model
was the result of human investigation and usage of domain knowledge, thus
cannot be easily done automatically. Nevertheless, it demonstrates, what can be
accomplished within this domain.

Table 1. 10-fold Cross-Validated Regression Results. DK stands for domain knowl-
edge, ltv7 refers to the spendings during the observation period. Models that have the
improved baseline as input as well as all MLPs, were trained on absolute differences.

Model Input (X) MSE Non-Linear DK

Baseline ltv7 1192
Improved Baseline ltv7 1104

Ordinary Least Squares ltv7 1087
Ridge Improved Baseline,ltv7 1053

SVM Improved Baseline, Behavioral 1380 X
Random Forest ltv7 1159 X

MLP Improved Baseline, ltv7 1061 X
MLP Composite Behavioral 966 X

MLP Composite + PC Multiple 886 X X

Further experiments. To better understand the complexity of this data set and
the observed high variances in the predictions, we did further experiments in the
direction of a simple binary classification (paying / non-paying). In the t-SNE-
generated [16] scatter plot (fig. 2) of the high-dimensional user profiles, there
is no clear decision boundary between target classes of non-paying (red) and
paying users (blue). There is some structure, for example in a clearly separated
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Fig. 2. t-SNE visualization of user profiles. The classification task is non paying (red
’f’) and paying users (blue ’t’).

group of early spenders (ltv7 > 0), but also a huge amount of overlap. Reasons
are the high randomness in users’ decision to start spending and all sorts of
external factors that are outside the scope of recorded ingame events.

Nevertheless, even in this situation, it’s absolutely possible to come-up with a
classification that is useful to developers, if one relaxes the decision criterion. The
results presented in figure 1 using the RIPPER rule induction algorithm [5] for
classifying if a user belonged to the class of heavy-paying user (in this particular
case belonging in the top 15% highest paying users) or not. The results of the
RIPPER algorithm were improved by reweighting the training instances in order
to increase the cost of misclassification in the minority class [20]. After training,
it was then possible to mark only about 4.6% percent of the user profiles in the
testing set, who then actually generated more then 90% of the total revenue
within the next 180 days (see fig. 1).

3 Integration Into a Predictive Analytics System

After proving behavioral prediction to be feasible, we decided to build a sys-
tem for collecting and storing huge amounts of user events, for running learning
methods against the data and for predicting revenues as well as any other target
value of concern. The goal is to provide fully-automated feature selection, learn-
ing, and prediction to a number of games and services and also to do this in a
highly-parallelized, distributed–thus scalable–way. The schema in figure 3 gives
a general overview of the different modules that compose the system.

Collecting Events. The first concept in our system is that all the relevant game
data a user generates is categorized into events. An event can be, for example,
gaming session start, unit constructed, message sent or battle won. All the events
are transferred directly from the game client to our system using REST protocols.
To allow for very high loads of millions of events per hour, the event cache
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Fig. 3. Overview of the different modules of our predictive system and the way it
interacts with game developers.

computers form a thin layer of additional servers in front of the database, which
is tasked with caching the events and later insert them in the event database.

Big Data Storage. The event database is supposed to be a permanent storage
place of all the raw events that occur in the game under analysis. Due to the
characteristics and the huge amount of data that will be generated through
events – billions to trillions over the years – and also due to the continuous
event processing tasks that will be needed to run for generating and updating
the user profiles, we use a non-relational distributed database implementation of
Google’s BigTable [4] named HBase. Our instances of HBase are scalable from
clusters of several dozens to hundreds of node computers running distributed
map-reduce tasks [7].

Aligning the data. When the users pass our initial target prediction time (180
days) we add them to our training data. The data of individual users is ‘aligned’
according to their ‘age’; the time since account creation. This aligned data sup-
ports a sequence of models for predicting revenues on the basis of only the first
3 days of play, only the first 4 days of play, only the first 5 days of play, and
so on. This allows us to give a very early prediction for players that come into
the system, the first time, for example, on day 3 (with the 3-days model). We
generate an improved prediction with every day the user grows older and more
data becomes available (using the 4-days, ..., n-days model).

Making Predictions. Revenue predictions run daily on the users whose origin
is from an active marketing campaign. The predictions are made by the N++2
neural network simulator which implements a highly parallelized multilayer per-
ceptron with resilient propagation and is about 50-times faster than the sequen-
tial implementation in the original N++ [15]. (Re-)training can be run at a lower
frequency, for example on a weekly basis, automatic feature selection would run
with an even lower frequency.
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Presenting results and insights. The predictions are available for the game devel-
oper under a web interface which also uses Google AdWords API and Facebook
Ads API to integrate information about the ongoing marketing campaigns. De-
velopers can see present acquisition cost per user, generated revenue per user
so far, and predicted total revenue per user (the so-called average lifetime value
of a user) next to each other, for every individual channel and marketing cam-
paign. The integration of these API’s also allows the developer to modify and
tune ongoing marketing campaigns directly on our interface, next to the data he
needs for his decision making.

4 Related Work

A previous study on knowledge extraction from player behavior was made by
us on a freemium game called Wack-a-Doo where we focus on identifying and
understanding which features help distinguish different types of users [1].

One of the techniques used for analysing player data is calculating metrics
that serve as key performance indicators (KPIs); examples of KPIs in MMOGs
could be the session times, the churn rate or if applicable even tutorial com-
pletion information [10]. Because of the more mature state of the field of web
analytics there are some techniques that were adapted from this field and used in
the context of MMOGs. Examples of this adaptation could be conversion rates
analysis, user acquisition cost analysis or cohort analysis [11].

There are also data mining techniques used on more traditional computer
games that have objectives such as behavior prediction [19], classification of
user behavior [2], that can potentially provide very useful information to the
MMOGs developers [9].

5 Discussion

Using data about the players behaviour inside the game we were able to beat
the results of the de-facto industry gold standard for revenue prediction. This
prediction helps developers improve their evaluation and optimization of mar-
keting campaigns. We were also able to discern some other interesting ways for
applying modern machine learning to a problem in this area.

Taking into account the needs of the game developers and the general archi-
tecture of this kind of games we proposed an automatic system that integrates
collection, processing and storage of players’ behavioural events, a prediction
module and an interface where all the generated player information is displayed
along with the marketing campaigns data. The objective of this system is to
allow the game developers to evaluate their running marketing campaigns as
quick as possible and to compare them.

We believe this domain to be of interest for further research, not only because
of the huge amount of data but also because within this industry, there are many
cases where only small improvements can already generate a huge, monetary
benefit for the developers. In our experience, compared to other more traditional
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industries game developers are already aware of this potential and very open to
all kind of experimental machine learning methods.
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Abstract. This paper describes some ongoing research to model dy-
namic obstacles in occupancy grid maps. Two approaches from the field
of machine learning have been evaluated. Even though, some results are
already promising, the proposed problems, which appear to be simple in
nature, seem to be challenging for machine learning approaches.

Keywords: HMM, MLP, occupancy grid maps, dynamic obstacles

1 Introduction

In the field of mobile assistance robotics a number of scenarios like tour guide
robots, shopping assistants, or elderly care, have been discussed in the recent
years. For all of these scenarios some of the problems, that need to be solved,
stay the same. One main aspect for being mobile, obviously is the navigation in
the current environment. To achieve this several approaches have been published
to represent the environment. One of the major representatives are occupancy
grid maps [9].

Since assistance robots aim at supporting the human, they have to work
in environments where a number of people are present and the environment
is subject to changes. For some scenarios the environment can even be very
crowded, e.g. tour guide robots in a museum. Unfortunately, the large number
of dynamic obstacles can lead to malfunctions of the navigation algorithms. In
particular, the localization will be error prone or even fail. Without going to much
into detail, this is caused by the fact that the representation of the environment
– the occupancy grid map – does not fit the current sensor impression any more,
due to occlusion by the dynamic obstacles.

To cope with this problem, a few approaches have been published, that try
to model dynamic obstacles into the occupancy grid maps. The experiments
discussed in this paper are based on an approach by Meyer-Delius [8, 7], who
uses Hidden Markov Models (HMM) with two states at each grid cell to describe
the observed dynamics.

⋆ This work was supported by ESF grant number 100076162

Workshop New Challenges in Neural Computation 2014

34 Machine Learning Reports



(a) free (b) occupied

(c) unknown (d) dynamic

Fig. 1. Examples for the four different classes in our data. The observation over time
has been windowed with 20 time steps lasting 100ms each. The data can be as clean
as in (a) or noisy as in (b) for all four classes.

This paper is not meant to propose a new method that helps solving the
described problem. Our intention is to point out a problem that seems to be
very simple and for which a heuristic solution can probably be found quite
easily, however machine learning approaches seem to have some difficulties to
solve the problem adequately. However, facing a practical application mostly
means we have to deal with changing environments. This results in the demand
for an adaptive approach, which can not be achieved with a inflexible expert
knowledge based solution.

To emphasize the contribution of this paper, we do not aim at a solution
for coding cells that a frequently occupied with dynamic obstacles. Instead our
focus is to decide whether a dynamic obstacle is present within in certain time
frame. This time frame is meant to be as short as possible to classify a current
measurement, and together with the classification result to decide whether this
measurement can be used to adapt the map.

The remainder of this paper is divided as follows. We start with a description
of the problem in Sec. 2. Subsequent two approaches from the field of machine
learning based on Hidden Markov Models (HMM) in Sec. 3 are evaluated with
respect to the described problem. For both the experimental results are directly
discussed in the respective section. Finally, the paper concludes in Sec. 4.

2 Description of the problem

To compute occupancy grid maps, the environment around the robot is divided
into discrete grid cells. Each grid cell then codes the probability of the corre-
sponding position being occupied. This probability is derived from the sensor
readings of the robot. The probabilities are assumed to be independent for the
different grid cells. To gain a stable map and to cope with sensor noise, the
observations of the sensor are superimposed over time. However, this has the
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drawback that standard occupancy grid maps are only able to model static
(or slow changing) environments. Commonly, the probabilities are furthermore
discretized to 0.0 (free), 0.5 (unknown), and 1.0 (occupied) to improve the ro-
bustness of algorithms that rely on occupancy grid maps. The probability of 0.5
occurs if a certain cell can not be observed. This also happens if an obstacle is
in the sensor’s line of sight and hence occludes the cell.

Since assistance robots are used in crowded environments, the goal is now to
somehow cope with the dynamic obstacle. A dynamic obstacle is an element of
the environment, e.g. a person or a door, that changed its position over time. The
already existing attempts to solve the problem can roughly be divided into those
that try to track the object for filtering it out [1, 3, 12], and those that try to
figure out whether a single grid cell currently is occupied by a dynamic obstacle
[11, 8, 7]. For the first method some kind of tracking or at least detection system
has to exist. This is hard to come up with for all possible dynamic obstacles.
Hence, we want to focus on the second method here.

Summarizing, the problem we are facing can be regarded as a classification
problem for time series (see Fig. 1). The data we need to classify originates from
sensors that can usually be modeled as a ray, e.g. laser scanner, sonar scanner,
or depth cameras. Thus, the state of the occupancy grid map cells can either be
observed as free (where the ray passes through), occupied (the position of the
obstacle), or not observed (all cells behind the obstacle, in the direction of the
ray). From the depiction in Fig. 1 it becomes clear that the sensor readings need
to be observed over a certain amount of time to be able to make a decision.

The classes we need to distinguish are free, occupied, dynamic (an obsta-
cle traverses the cell), and unknown (the cell cannot be observed for a certain
amount of time). Note that the data usually is noisy as it is exemplarily shown in
Fig. 1(b). The examples shown for the classes unknown and dynamic are meant
to illustrate that these two classes can be quite similar. Basically, the discrimi-
native difference is the short observation of the cells being observed as occupied
for one time step.

To generate the data we used a trained static map from a real life scenario
as description for a simulated environment. Moving obstacles are modeled in the
environment around the robot. The simulation is used to easily generate a large
amount of data and not to simplify certain aspects of the problem.

After all, the problem occurs to be quite simple. We even benefit from a
number of simplifications coming from the pre-processing methods, like the dis-
cretized observation probabilities. The first guess would certainly be that a hand
crafted solution might come up easily. However, the (not yet sufficient) exper-
iments with several machine learning methods suggest that this easy-looking
problem still offers a challenge.

3 Hidden Markov Models

In particular in language processing, but also in other time series applications
Hidden Markov Models (HMM) [10] belong to the most established approaches.
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Fig. 2. HMM observation probabilities for the states 1 to 10. Each state model the
discrete probabilities for observing free, occupied (occ), and not observed (n-o). The
colors range from blue for a probability of 0.0 to red for a probability of 1.0 following
the hue order.

Lately, they were also used for modeling the dynamics of the environment. For
this, Meyer-Delius [8, 7] uses a two-state HMM in his approach. This basically
describes whether there are changes occurring at all, which can also be due to
noise or other side effects. In our opinion, which is based on previous experiments
with the method proposed in [8, 7], it would be beneficial to focus on a longer
time period.

Hence, we do not use a two state cyclic HMM, but a directed non-cyclic
chain. For the experiments shown in this paper, four different HMMs – one for
each class – were applied, each with ten states in the chain. Contrary to [8, 7] all
parameters of the Hidden Markov Model were trained applying the expectation-
maximization (EM) algorithm [10]. In Fig. 2 the learned observation probabilities
are depicted for each class. As it can be seen, the different HMM can nicely be
interpreted with respect to their respective class (compare Fig. 1).

Figure 3 summarizes the results achieved with the four HMMs. Each grid cell
in the depicted local map is observed for a certain time. The first four plots (Fig.
3(a)-(d)) show the likelihood for the observed sequence being modeled by the
respective HMM. For the computation of the classification decision a maximum
likelihood approach is used. The results of this (Fig. 3(e)) are than compared
with the ground truth (Fig. 3(f)) to compute the confusion matrix (Fig. 3(g)).
To derive the local maps the robot is positioned at the lower center position. A
laser scanner with a field of view of 270◦ is modeled. From the laser scans a local
occupancy grid map is derived, which serves as input for the classification.

Even though for some classes the results are already satisfactory, the major
problem arises in the cells that are occluded by the dynamic obstacle. The change
from dynamic (red) to unknown (yellow) takes place at a position where a wall
can be found in the underlying global map. Behind this wall the cells can never
be observed, which seems to be simple enough to be classified correctly. In front
of the wall the case depicted in Fig. 1(c) is observed.
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(a) free (b) occluded (c) unknown (d) dynamic

(e) result (f) ground truth (g) confusion matrix

Fig. 3. Classification results using four HMMs. (a)-(d) The likelihood of one grid cell
belonging to the respective class (color scale is logarithmic and follows the hue order
from blue for a low probability to red for high probability). The result in (e) is gained
by maximum likelihood selection. The true class is depicted in (f). For both, the colors
stand for free (blue), occupied (cyan), dynamic (red), and unknown (yellow). Finally
(g) shows the misclassifications in a confusion matrix the rows contain the true class,
while the columns the predicted class.

A closer look at the likelihoods of each single HMM reveals that at the posi-
tions, where the misclassification occurs, the HMMs are uncertain. A maximum
selection does not seem to be the adequate decision strategy at this point.

3.1 Post-Classification using Multi-Layer-Perceptron

From the results of the HMM classification, we concluded, that the maximum
likelihood selection seems to be the cause of the misclassifications. The decision
obviously has to deal with the fact, that all single class HMMs seem to be uncer-
tain about the classification results. Our idea is to use a multilayer perceptron
(MLP) with a single hidden layer to serve as decision maker. A similar approach
has already been proposed in [5] using SVM instead of MLP.

The likelihoods from each HMM serve as input for the MLP, which is trained
according to the labeled class information of our data set. Figure 4 shows the
result applying the same trained HMMs as in 3. Again the first plots (Fig. 4(a)-
(d)) show the results for one single class. This time we use the activation of the
output neurons to gather the depicted information. Here as well, the results (Fig.
4(e)) are compared with the ground truth (Fig. 4(f)) to compute the confusion
matrix (Fig. 4(g)).

Workshop New Challenges in Neural Computation 2014

38 Machine Learning Reports



(a) free (b) occluded (c) unknown (d) dynamic

(e) result (f) ground truth (g) confusion matrix

Fig. 4. Classification results using four HMMs together with a MLP. (a)-(d) The ac-
tivation of the output neurons of one grid cell responsible for the respective class (the
colormap follows the hue order from blue for a low activation to red for high activa-
tion). The result in (e) is gained by maximum selection. The true class is depicted
in (f). For both, the colors stand for free (blue), occupied (cyan), dynamic (red), and
unknown (yellow). Finally (g) shows the misclassifications in a confusion matrix the
rows contain the true class, while the columns the predicted class.

Obviously, the MLP helped to eliminate the misclassification in the shadow
of the dynamic objects. However, this came with the price that also most for the
grid cells containing a dynamic obstacle cannot be classified correctly any more.

As stated earlier, to compute occupancy grid maps the assumption is made
that all grid cells are statistically independent. With this assumption it is possible
to process occupancy grid maps in real time. Even though this assumption is
worth to be discussed it works for applications in static environments. However,
for a dynamic environment it should be possible to improve our results, since
dynamic obstacle moves from one cell to an other without appearing out of thin
air and even tend to occupy multiple cells.

From a mathematical stand-point, we could start modeling the dependence
on the neighboring cells, e.g. with the help of Markov random fields to connect
the HMM in the spatial dimension. However, we still have to obey the require-
ment for real time processing. A simple idea is to model the neighborhood after
the pre-classification of the grid specific HMMs and use the responses of the
eight neighboring cells as additional input to the MLP, which results in an input
dimension of 36.

The results for this idea are shown in Fig. 5. The activation of the output
neurons are plotted in Fig. 5(a)-(d). The confusion matrix (Fig. 5(f)) is derived
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(a) free (b) occluded (c) unknown (d) dynamic

(e) result (f) ground truth (g) confusion matrix

Fig. 5. Classification results using four HMMs together with a MLP that considers the
eight neighboring cells. (a)-(d) The activation of the output neurons of one grid cell
responsible for the respective class (the colormap follows the hue order from blue for
a low activation to red for high activation). The result in (e) is gained by maximum
selection. The true class is depicted in (f). For both, the colors stand for free (blue),
occupied (cyan), dynamic (red), and unknown (yellow). Finally (g) shows the misclas-
sifications in a confusion matrix the rows contain the true class, while the columns the
predicted.

from a comparison between the the classification results (Fig. 5(e)) and the
ground truth(Fig. 5(f)).

Even though there are still some misclassifications the results are very promis-
ing. A closer look reveals that the side of the dynamic obstacles facing to the
robot is classified correctly. The grid cells behind this front row should show the
same behavior as for the unknown class if no noise would be present. Due to
the accumulation of the ground truth data over the time window some artifacts
might occur resulting from the noise. Hence, it is important for further exper-
iments to verify whether the ground truth labels are correct. Furthermore, it
might be useful to introduce yet another class that codes the noise.

4 Conclusion

This paper presented a simple yet challenging problem for machine learning.
Even though it seems that an adequate solution has been found, the question
arises why this combination of both neural and probabilistic methods is neces-
sary. Would it not be possible to use only one paradigm to solve the problem?
Several aspects of the problems were discussed by evaluating solutions for the
problem applying Hidden Markov Models, multi-layer perceptrons and time de-
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lay neural networks. The lessons learned from these experiments is that (a) one
solution for the problem is a combination of HMM and MLP, (b) the neighbor-
hood context has to be taken into account, (c) the wrong representation can
make the problem even more difficult.

Since this paper is meant to describe ongoing research there are a number
of approaches that are not yet addressed here. For example, recurrent neural
networks (RNN) don’t have to face the problem with a constant size time win-
dow. In particular echo state networks (ESN) will be taken into account [4].
Another interesting approach is the idea behind convolutional neural networks
(CNN) [2, 6] that basically learn the right convolution for the presented problem.
This seems to be a promising idea for learning the right form of representation.
Finally, relevance learning seems to be an adequate tool for selection the right
representation from a set of given representations.
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Abstract. The most transfer learning approaches are based on the as-
sumption of having correspondence information between two sets of ob-
servations. This knowledge allows finding correlations among these dif-
ferent observation spaces for a knowledge transfer. Therefore, this cor-
respondence information is crucial. We present an approach for finding
unknown correspondences between two data sets under the assumption of
having the same shared latent structures. For this, we optimize a genera-
tive model such that it generates one observed set, while being based on
the other. We perform this optimization in a low dimensional space, such
already allowing a transfer of information. Additionally, the found corre-
spondences can be used in combination with any other transfer learning
method.

Keywords: Transfer Learning, Generative Models, Finding Correspondence,
Manifold Alignment

1 Introduction

For predicting unseen data, generalization is an important aspect in machine
learning. The most used assumption to grant some kind of generalization is that
feature space and marginal data distribution remain the same. In fact, there
are many cases where this is not valid. For example, training the model with
data that has been recorded under lab conditions and then going into practical
application. This usually leads to additional changes in the data and thus the
learned model would be inaccurate. Another scenario could be having only few or
even no data for a specific problem, while in another similar problem are plenty
available. Instead of learning a completely new model, we could be interested in
using the knowledge from previous or related models. Transfer Learning (TL)
addresses this problem how the knowledge from a task can be transferred to
another similar task. TL can be divided in many different settings with different
conditions. For further information, Pan and Yang [9] briefly summarize these
in a survey.

In the following we distinguish between source and target domain, where we
are interested in transferring knowledge from a source problem to a related target
problem. For this, some knowledge about the relationship between source and
target domain has to be available. Therefore, the most TL approaches require
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correspondence information between two related sets of observations X ⊂ X and
Y ⊂ Y . Correspondence is the knowledge about which observation sample xi

from some source data X relates to which sample yi from some target data Y.
Having this knowledge allows finding correlations among these different obser-
vation spaces and even allows to transform samples from one feature space into
the other. Therefore, this correspondence information is crucial.

Since there exist many TL methods assuming to have correspondence infor-
mation, only a few approaches try to deal with problems where this information
is not available. We want to present our approach for finding correspondences
between two data sets under the assumption of having same shared latent struc-
tures. The found correspondences can be used in any other TL method.

2 Related Work

Many TL approaches have the mentioned assumption that source and target
space have some latent structures in common and try, therefore, to find a shared
latent space of two sets of observations. One generative approach for this is
proposed by Ek et al. [4]. They extend the Gaussian Process Latent Variant
Model [7] by a shared and private feature space for each observation set. The
shared and the private latent space together model the generation of one fea-
ture space. The shared latent space is found by using Canonical Correlation
Analysis (CCA) [5] which finds the directions in two observation spaces that are
maximally correlated. On the other hand, the private spaces are found by using
Non-Consolidating-Component-Analysis [4], an extension of CCA, which finds
the directions of maximum variance in each observation space that are orthogo-
nal to the shared bases. However, this approach still requires the corresponding
information between the observations sets.

An approach for TL without correspondences is introduced by the work of
Pan et al. [8]. Their main idea is to find a shared latent space where the marginal
distribution of both observation spaces are close to each other. This is done by
minimizing:

dist(X,Y) =

∥

∥

∥

∥

∥

1

n1

n1
∑

i=1

φ(xi)−
1

n2

n2
∑

i=1

φ(yi)

∥

∥

∥

∥

∥

H

(1)

where n1 is the number of elements in observation setX, n2 inY and φ(x) : X →
H. H denotes the reproducing kernel Hilbert space (RKHS). Therefore, based
on the Maximum Mean Discrepancy theory [2], (1) can be seen as the distance
between two distributions by calculating the distance between the means of the
samples mapped into a RKHS (see [8] for further details). However, this approach
tries only to match the first moments of both spaces and, hence, its capabilities
are restricted.

Wang and Mahadevan proposed a framework to find a shared latent space
without correspondences [12]. Their idea is to first find a joint structure to de-
scribe source and target data by local geometries and then join the two manifolds.
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Their approach is based on the minimization of the following cost function:

C(α,β) =µ
∑

i,j

(αTxi − βTyj)
2W i,j

+ 0.5
∑

i,j

(αTxi −αTxj)
2W i,j

x + 0.5
∑

i,j

(βTyi − βTyj)
2W i,j

y

(2)

where µ is a weighting factor, α and β a projection to the shared latent space,
W i,j the similarity between xi and yi andW i,j

x andW i,j
y the similarities between

points within each observation space. The first term penalizes differences in the
shared latent space while the other two terms guarantee the preservation of the
neighborhood relationship within each data set. The goal is to find α and β such
that (2) is minimized (see [12] for more details). The similarities W i,j model the
correspondences between both observation sets. Although this approach is more
powerful than [8], it relies on a heuristic cost function with parameters which
need to be tuned.

3 Our Approach

In the following we present our algorithm for transfer learning without prior
knowledge about the correspondences. It is based on maximizing the probability
that a generative model learned from one set generates the other. We assume
that X and Y were generated by the same latent manifold and we try to find
a linear projection matrix W which aligns the two manifolds of X and Y in a
low dimensional space. Based on this projection, we create correspondences by
linking the most similar points between both observations (see Figure 1).

Given the mean centered matrices X = [x1x2 . . .xN ] and Y = [y1y2 . . .yK ]
where the points live on arbitrary dimensional manifolds X and Y. We first find
a latent space for the pointsX. For this purpose, we utilize a linear mapping onto
the first p principal components of X. The resulting points in the p-dimensional
space are denoted by Z = [z1z2 . . . zN ] where zi ⊂ Z represent points in the
latent space. With respect to the assumption that X and Y share the same
latent space, we now want to find a projection matrix W : Y → Z such that
a density estimation model based on WY generates the points Z with high
probability.

For this purpose, we employ a probabilistic approach. We define a Gaussian
Mixture Model with centroids Q = {Wy1, ...,WyK} in the standard way as a
linear supposition of Gaussians. Then, the probability that this model generates
a point z is

p(z|W,Y) = NG

K
∑

k=1

πk exp

(

−
‖z−Wyk‖

2

2σ2

)

, (3)

where NG is the normalization constant for Gaussians.
Similarly as in [3, 1], we introduce binary latent variables hn which have a

1-of-K representation, i.e. hnk ∈ {0, 1} and
∑

k hnk = 1. Following the literature
of GMMs, we assume that each Gaussian generates points zn and this is modeled
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Fig. 1. Overview of the EM approach for finding correspondences between source (red)
and target (blue) space. First, we linearly project the source data onto a latent space.
Afterwards, we find an optimal projection matrix W to fit the target data in the latent
source space. The correspondences can then be made by comparing the similarities in
the shared latent space.

by the random variable hn. The distribution of this random variable is p(h) =
∏K

k=1
πhk

k with p(hk = 1) = πk, where we set πk = 1/K, ∀k, for simplicity.
Following the literature, we are interested in maximizing the log-likelihood

ln p(Z,H|W, Y ) with

p(Z,H|W,Y) =

N
∏

n=1

K
∏

k=1

πhnk

k (NG)
hnk exp

(

−
‖zn −Wyk‖

2

2σ2

)hnk

. (4)

But since the hidden variables hn are unknown, we consider the expectation

EH [ln p(Z,H|W,Y)] =

N
∑

n=1

K
∑

k=1

EH [hnk]

(

ln(πnkNG)−
‖zn −Wyk‖

2

2σ2

)

(5)

where

γn,k := EH [hnk] =
exp

(

−‖zn−Wyk‖
2

2σ2

)

K
∑

j=1

exp
(

−‖zn−Wyj‖2

2σ2

)

(6)
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can be seen as the responsibility of the k’th component of the mixture for the
n’th point.

Now, we can maximize (5) with the popular iterative scheme known as the
EM algorithm which converges to a local optimum [3, 1]: For initial parameters
Wt we estimate γn,k (E-step). Based on these fixed responsibilities, we maximize
(5) with respect to W yielding new parameters Wt+1 (M-step). Note that, in
addition to the E-step, also the M-step can be computed in closed form since
it requires to find a solution for a weighted least squares problem. Further, an
additional regularization in this step can often be advantageous. This can be
modeled straight forward by a Gaussian prior with zero mean.

For the bandwidth σ we employ the deterministic annealing scheme [11], i.e.
we decrease the value by a small amount every EM-step. The whole algorithm
is summarized in the following.

function findCorrespondences(X, Y, p, maxIterations)
Z← ProjectWithPCA(X, p) ⊲ p is the target dimension
W← ComputeProjMatrixPCA(Y, p) ⊲ Initial projection matrix
σ ← initialize
for i = 1 to maxIterations do

for all n, k do

γ(n, k)← calculateResponsibility(Wyk, zn, σ) ⊲ E-Step

W← solveWeightedLeastSquares(Y,Z,γ) ⊲ M-Step
σ ← decrease(σ)

correspondences← findOptimalAssignment(γ)
return correspondences

end function

In order to find assignments, the responsibilities from the last iteration step
can be used. It is possible to either have binary assignments by taking the most
probable neighbor or having soft assignments represented by the responsibili-
ties. In addition to providing correspondences, also transfer learning is possible
by mapping source points from the latent space Z to the target space with
the pseudo inverse of W. If label information are available, this can be done
class-wise for reducing the problem to only find correspondences within class
structures, which is a lot easier.

An alternative stopping criteria for the algorithm is also possible. For exam-
ple, comparing the alteration of the Frobenius norm of W between two iteration
steps or checking if σ is smaller than a specific value. Using the log-likelihood
(5) as a criteria is difficult due to the annealing of the bandwidth which changes
the likelihood function in each step.

Regarding the computational complexity of this algorithm, the M-step is the
most crucial part. We use the closed form solution W = (Y∗TQY∗)−1Y∗TQZ∗.
Assuming Y is a K × d and Z a N × p matrix, then let Y∗ be a NK × d and
Z∗ a NK × p matrix representing all combinations of Y and Z, weighted by a
NK × NK diagonal matrix Q. The complexity of Y∗TQY∗ is O(d2NK) and
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Table 1. Percentage of points which have the true corresponding point among the k
nearest neighbors.

data sets k Average correspondence quality

data set1
1 98.8%
2 100%

data set2
1 98.2%
2 100%

data set3
1 98.3%
2 100%

data set4
1 97.1%
2 100%

MNIST
1 97%
2 100%

for the inversion O(d3). The asymptotically dominating upper bound for each
iteration step is therefore O(d2NK + d3).

4 Experiments

In the following experiments, we evaluate our approach only in terms of the
computed correspondences. A good performance here implies that the manifolds
of the two domains have been matched well and this provides a good starting
point for further transfer learning.

We evaluate the correspondence quality of our approach in different toy sce-
narios and two possible scenarios involving the MNIST data set. In each test we
have a source data set X and a target data set Y. The target data consists of the
modified source data in order to have a reference for the optimal assignment of
an observation sample xi to yi for evaluation. We apply our approach to the data
sets and compare the found correspondences with the optimal one. This is done
by checking if the optimal assignment xi to yj is one of the k-nearest neighbor
in a found two dimensional shared latent space. The results are averaged over
20 runs with randomly generated or sampled data points.

For data set1 we generate 100 two dimensional data points on an ”L”-shape
and add a third noise dimension. This serves as source data X. Here, we generate
noise with small variance. The target data Y consists of the 45 degree rotated
source data (see Figure 2). Our approach should be able to find a projection forY
which covers the latent structure of X. To evaluate this, we check if the optimal
correspondence yi is one of the k-nearest neighbor of xi in the latent space. The
results for k = 1, 2 are summarized in Table 1. Already the direct neighbors agree
almost perfectly. This shows that the latent space of X is accurately covered by
Y.

To increase the complexity of data set1, we modify the data set in two ways.
First, we add 4 additional noisy features to the target data Y with much higher
variance than the two intrinsic ones. We refer to this set by data set2. The
mapping on the first two principal components ofY is shown in Figure 3. Second,
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Fig. 2. Example of a toy test case with L-shaped data. The target data consists of the
45 degree rotated source data. In this case, the first two principal components of the
target data are the reflection of the source data. Our algorithm tries to maximize the
probability that the source data were generated by the GMM defined on the target
data and, hence, aligns the latent spaces.
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Fig. 3. Here, the rotated target data has additional noisy dimensions with much higher
variance than the two intrinsic ones. The algorithm is still able to align the latent spaces.
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Fig. 4. The overall quality of the found correspondences with respect to the k-nearest
neighbors. Blue represents the results for p = 2 and red for p = 3.

for a more realistic scenario we add an additional leg of the L-shape to the
target data in 2 further dimensions. This is referred as data set3. The average
correspondence quality of both data sets is shown in Table 1. Also in these two
cases, the found correspondences are nearly optimal.

For data set4, we generated two random projection matrices with entries
sampled from N (0, 1) to project the source and the rotated target data from
data set2 into a 20-dimensional space. The agreement of neighbors is shown in
Table 1. Since the latent structure remains the same and the random projections
are linear, there were no problem to find the correspondences. Two additional
tests were done with theMNIST data set which consists of images of handwritten
digits from 0 to 9. The source data are the original images and the target data
are the same images scaled down to 0.5 of the original size. For each run, we
randomly select 100 images from the class of the digit ”4”. We obtain similar
results as before, as shown in Table 1. Scaling the images can be seen as a linear
operation and the results should, therefore, be similar to those with data set4.

In a last test we utilize all classes from the MNIST data set. For the full
data set, linear mappings are probably not enough to correctly map the data set
in a two dimensional space and, hence, the quality drops. Further, the quality
heavily depends on the selected points because in some cases the sampled points
have a symmetric structures which is difficult or impossible to correctly cover
by linear operations. The result for all values of k and averaged over 100 runs
are shown in Figure 4. For higher values of p the average quality with k = 1 was
nearly 100% except of some cases with symmetric structures.

In our experiments we used PCA for the mapping from X to Z, but any
linear dimensionality reduction approach can be utilized. Some approaches, such
as probabilistic PCA [10], try to cope with noise in the data and this could
generally lead to better results. However, in our experiments were no significant
differences.

Workshop New Challenges in Neural Computation 2014

Machine Learning Reports 49



5 Discussion

We presented an algorithm for finding unknown correspondences between two
data sets from different feature spaces. Since many methods exist to find a shared
latent space, the most approaches assume correspondence information. Although
our approach already allows linear TL, the resulting correspondences from our
algorithm can also be used for any kind of TL method. We evaluated the quality
of the found correspondences by comparing them with the optimal ones. The
results are very promising, but since we use a linear approach, it struggles in
non-linear cases.

Therefore, the next natural step would be to extend the currently linear
mapping to a non linear one, such allowing much more powerful TL. Current
tests show promising results by kernelizing our approach, but this needs much
more regularizations with respect to W and the additional kernel bandwidth.
We are also still checking other non linear techniques, such as Extreme Learning
Machines (ELM) [6]. The output weights of an ELM can be represented by W

which allows an easy integration into our algorithm.
Another interesting idea could be to develop a similar EM algorithm for

the approach of Wang and Mahadevan. Since they try to find and align a shared
latent space ofX andY at the same time, optimizing (2) by using responsibilities
instead of local features could lead to better results in terms of the manifold
alignment. In this context, CCA could be used for finding α and β.

ACKNOWLEDGEMENTS

Funding from DFG under grant number HA2719/7-1 and by the CITEC center
of excellence is gratefully acknowledged.

References

1. C. M. Bishop. Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

2. K. M. Borgwardt, A. Gretton, M. J. Rasch, H.-P. Kriegel, B. Schoelkopf, and
A. J. Smola. Integrating structured biological data by kernel maximum mean
discrepancy. In IN ISMB, page 2006, 2006.

3. A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incom-
plete data via the em algorithm. JOURNAL OF THE ROYAL STATISTICAL
SOCIETY, SERIES B, 39(1):1–38, 1977.

4. C. H. Ek and N. Lawrence. Shared Gaussian Process Latent Variables Models.
PhD thesis, Oxford Brookes University, 2009.
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Abstract. Interpretable classification models become more and more
interesting for practitioners from various domains like for instance health
care or spectral analysis. The strength of prototype methods allow them
to inspect the resulting prototypes in the same way as the given data.
They greatly benefit of having representative models in order to get ad-
ditional insights. In this contribution we introduce formulations for two
prototype classification methods: Generalized learning vector quantiza-
tion (GLVQ) and a probabilistic variant of it, robust soft LVQ (RSLVQ).
With the use of their specific classification rules, we enforce discrimina-
tion by hard constraints where representivity of the models is maximized.
Since both objectives, discrimination power and representivity, may be
contradictory, we also soften the optimization problem (OP) by intro-
ducing slack variables in order to allow misclassifications. These models
show impressive classification performance on a two benchmark datasets.

1 Introduction

Prototype based classification models such as LVQ [4] and modern variants of
it (Generalized LVQ [6] or Robust Soft LVQ [8]) represent data in terms of
representatives (prototypes). This has one major benefit: The resulting models
are directly interpretable by humans since prototypes can be inspected in the
same way as data points. It may help to answer questions like what is typi-
cal for a certain class with respect to discriminate them from another. In [3]
it is shown that the objective of finding the most representative prototypes is
not included in the cost functions of GLVQ as well as for RSLVQ. For some
instances both algorithms tend to learn non-typical prototypes, since they are
not aiming representivity explicitly. Also in [3] a first approach is given in order
to include representivity. This is done by adding a penalty term to the original
cost function weighted with a parameter to handle the influence of the penalties.
In case of GLVQ finding a suitable parameter is challenging since both objec-
tives differ in their magnitudes. Another drawback for both is that classification
performance is not effectively controllable. In this contribution we provide con-
strained optimization problems (cOP) for classification, where the constraints
are described in terms of decision rules coming from LVQ classifiers. Further,
the main objective of these cOP’s is to maximize class-wise representivity ac-
cording to the given training samples. However, this is formalized as a class-wise
quantization error for GLVQ (GLVQ OP) and a class-wise Gaussian mixture in
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case of RSLVQ (RSLVQ OP). Since both main objectives, quantization error as
well as the Gaussian mixture model, can be used for clustering, this approach
can be interpreted as a constrained clustering method. Typically, as mentioned
for instance in [1], constraints describe sets of must-link and cannot-link con-
nections between the data. A must-link constraint specifies that a pair of points
connected by the constraint belong to the same cluster (or class in our case).
On the other hand, a cannot-link constraint specifies that a pair of points con-
nected by the constraint do not belong to the same cluster. In our approach we
only take cannot-link constraints into account. But therefore, we do not compare
memberships between pairs of data points. We rather enforce assignments to pro-
totypes in terms of distances or probabilities, respectively. Therefore, we briefly
introduce both classification methods to derive the constraints. In section three
we explicitly formulate the cOP’s for each method and discuss some theoretical
properties of them. To demonstrate their functionality we provide classification
results for an artificial dataset as well as for a real world dataset available on
UCI database. Results are compared to the standard approaches as they are
introduced in section two. Practical properties of our cOP’s are addressed in the
last section, where we also mention research question for future work.

2 The LVQ framework

In this section we briefly describe GLVQ as well as RSLVQ to derive constraints
for the resulting optimization problem. Therefore we use the decision rules of
the respective classifier.

A LVQ classifier is given by a set of prototypes W =
{wi | wi ∈ R

n; i = 1, . . . , k}, where each of them is equipped with a label
c(wi) ∈ {1, . . . , C}, assuming a multi-class problem with C classes. For
standard LVQ, classification of a point x ∈ R

n takes place by a winner takes all
scheme: x is mapped to the label c(x) = c(wi) of the best matching prototype
wi as measured in some distance measure. In case of the probabilistic RSLVQ
classifier a probability connected to the given classes. For simplicity, we restrict
ourselves to the Euclidean metric, even though general metrics might be suitable
for a certain dataset.

Given a training data set X = {xj | xj ∈ R
n; j = 1, . . . ,m}, together with

labels Y = {yj | yj ∈ {1, . . . , C}; j = 1, . . . ,m}, the purpose of LVQ training is
finding prototypes such that the resulting classifier achieves a good classifica-
tion accuracy, i.e. yj = c(xj) for as many data xj out of the training data set.
Classical LVQ schemes such as LVQ 1 or LVQ 2.1 take use of a Hebbian learn-
ing heuristic. Despite all of its benefits, like classification power, the easiness of
updates as well as their interpretation ability, both are not connected to a valid
underlying cost function [2]. A few alternative models have been proposed which
are derived from explicit cost functions. These costs aim at describing the classi-
fication performance of the respective classifier. As it is shown in [6,8] they lead
to learning paradigms comparable to the update rules of classical LVQ schemes.

2.1 Generalized learning vector quantization

Generalized LVQ (GLVQ) [6] takes use of the following cost function - a sum-
mation over local errors µ (xj)
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E =
∑

j

f (µ (xj)) E =
∑

j

f

(

d+(xj)− d−(xj)

d+(xj) + d−(xj)

)

, (1)

where d+(xj) belongs to the squared Euclidean distance of xj to the clos-
est prototype with a matching label. As opposed to that, d−(xj) refers to the
closest prototype with a non-matching label. Further, the function f relates to a
monotonic increasing function. Frequently the identity or the sigmoidal function
is used. If f approximates the Heavyside function, e.g. when sigmoidal is used, E
is close to the number of misclassifications. Because the numerator becomes neg-
ative iff a datum xj is classified correctly. The denominator prevents divergence
and numerical instabilities by normalizing the costs.

d+(xj)− d−(xj)

{

≤ 0, if xj classified correct

> 0, if xj classified wrong
(2)

As mentioned in [7], the numerator of the summands can be interpreted
as the hypothesis margin of the classifier, such that a large margin and hence
good generalization ability is aimed for while training. Hence, the objective is to
minimize the GLVQ cost function E. Optimization typically takes place using a
gradient technique in terms of online learning.

2.2 Robust soft learning vector quantization

In contrast to GLVQ, robust soft LVQ (RSLVQ) is based on a probabilistic model
[8] aiming an optimization of the Bayesian error in terms of a likelihood ratio,
but results in similar update rules compared to GLVQ

E =
∑

j

log
p(xj , yj |W )

p(xj |W)
=

∑

j

log p(yj |xj ,W). (3)

Where p(yj |xj ,W) describes the probability that a given datum xj is as-
signed to its label. Further, p(xj |W) =

∑

i p(wi)p(xj |wi) is given as a mixture
of Gaussians with prior probability p(wi) (often taken uniformly over all proto-
types). While p(xj |wi) describes the probability that xj is being generated from
prototypewi, commonly chosen as an multivariate isotropic Gaussian with mean
in wi. Non-isotropic Gaussians slightly extend this approach using a diagonal
covariance matrix Σi

p(xj |wi) =
1

√

(2π)n|Σi|
exp

(

−
1

2
(xj −wi)

T
Σ−1

i (xj −wi)

)

, (4)

with entries (σ2
i1, . . . , σ

2
in).

The probability p(xj , yj |W) =
∑

i δ
c(wi)
yj p(wi)p(xj |wi) (δ - Kronecker delta)

corresponds to the mixture components with the correct labelling. The likelihood
ratio is optimized using a gradient technique.

Considering a datum xj with its label yj . The datum xj is classified correctly
iff

p (yj |xj ,W) ≥ p (yk|xj ,W) ∀yk 6= yj (5)
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3 LVQ as a constrained optimization problem

In this section we show possibilities how to model LVQ as a constrained opti-
mization problem. Therefore we use the decision rules provided by the GLVQ as
well as the RSLVQ classifier.

Enforcing interpretability in GLVQ, we chose the class-wise quantization er-
ror as a soft constraint as it is also used in our previous work [3]. Then, the basic
constrained optimization problem can be expressed by

GLVQ OP1: min
∑

j

d+(xj)

such that d+(xj) ≤ d−(xj) ∀j.

Following Eq. 2, for each datum xj ∈ X a constraint is build by compar-
ing distances of the closest prototypes with a matching (d+(xj)) and a non-
matching (d−(xj)) label. If the given classes are well separated, all constraints
are easy satisfiable by performing a class-wise clustering according to the ob-
jective

∑

j d
+(xj). Further, in case of providing only one prototype per class,

the challenge of finding closest prototypes vanishes. Because, first, for each con-
straint (datum) the closest correct prototype can be addressed directly. Secondly,
to avoid the necessity of finding the closest wrong prototype, we can introduce
class-specific constraints. Doing so, it results in m× (C − 1) constraints, forcing
that the distance to the correct prototype is smaller then the distance to all of
the others.

Of course, this is not given in classification scenarios in general. To take some
misclassifications into account, we introduce a specific slack variable ǫj ≥ 0 to
all constraints in case of merged classes, e.g. no feasible solution exists.

In order to keep them small, we incorporate the sum over all slacks to the
objective weighted with a parameter α ≥ 0.

GLVQ OP2: min
∑

j

d+(xj) + α
∑

j

ǫj

such that d+(xj) ≤ d−(xj) + ǫj ∀j

For all data points which are safely classified by the prototypes ǫ becomes zero.
For all other data points ǫ describes how far the prototype with a matching
label must been moved to classify correctly. However, for a given α the solution
is a set of prototypes which satisfy the constraints as best as possible under
being class-typical as best as possible, together with a set of slack variables ǫi
indicating misclassifications.

Now, we formulate in an analogous manner a constrained optimization prob-
lem based on the decision rules coming from the RSLVQ classifier. But first we
provide the main objective invoking class representivity. Therefore, the idea is
to use a term which maximizes the likelihood of the observed data being gen-
erated by the underlying model. In accordance to RSLVQ, we can consider a

class-wise Gaussian mixture model p(xj , yj |W) =
∑

i δ
c(wi)
yj p(wi)p(xj |wi) with

prior probability p(wi) and Gaussian p(xj |wi). This term aims at a generative
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model, i.e. we address the class-wise data log likelihood

log
∏

j

δcyj
p(xj |c,W ) =

∑

j

δcyj
log

∑

i

δc(wi)
yj

pc(wi)p(xj |wi), (6)

with prior pc(wi) = p(wi)/p(c) summing to one for every class c.
By having the main objective, we can design an optimization problem in-

cluding slack variables ǫj,c derived from the decision rule Eq. 5

RSLVQ OP: max
∑

c

∑

j

δcyj
log

∑

i

δc(wi)
yj

pc(wi)p(xj |wi)− α
∑

j,c

ǫj,c

such that p(yj |xj ,W ) ≥ p(c|xj ,W )− ǫj,c ∀j; ∀c 6= yj

4 Experiments

For experimental data we take use of an artificial dataset besides a well known
real world dataset. For demonstrating representivity and how the parameter α
affects the final position of the prototypes, we do the analysis for a three-class
problem which consists of two two-dimensional Gaussian clusters with different
covariance matrices and some degree of overlap and one cluster being separated
from both. Data are randomly generated leading to 1000 points for each class.
In order to show the functionality for high-dimensional data also, we use the
Tecator dataset [5]. It consists of 215 spectra with 100 spectral bands ranging
from 850 nm to 1050 nm. The task is to predict the fat content of the probes.
We also compare the found solutions against GLVQ and RSLVQ according to
classification performance and representivity.

We only focus on optimization problems GLVQ OP2 and RSLVQ OP. These
are solved in Matlab with fmincon which is part of the optimization toolbox.
For the optimization method itself we use by default an interior-point method
without providing gradient informations. Initial values for the prototypes were
set to class-means in each case, whereas all ǫj were set to zero.

Gauss dataset:
For each class we only spend one prototype. The optimization procedure was
executed with four different values of α = {0; 2.5; 5; 7.5}. What we can observe
is that α affects the final position, at least for class 1 and class 2 (see Fig.
1). As expected α has no influence for class 3, since there is no need to move
the respective prototype in order to improve classification. According to the
main objective its best location is the mean of its class. In contrast to that,
prototypes of class 1 and 2 move towards the decision boundary, which improves
the classification performance. For α = 0, e.g. learning class means, we achieve
an accuracy value of 87.27%. However, increasing α to 7.5 leads to a gain
of around 3% in accuracy. Obviously, for α = 7.5 both prototypes become
more or less equal, indicating that an appropriate value ranges between 0 and 7.5.

Tecator dataset:
The dataset itself is indicated in Fig. 2 (left). There the means together with
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Fig. 1: From the upper left to the bottom rigth: Locations of the resulting proto-
types for the Gauss dataset for varying α ∈ {0; 2.5; 5; 7.5}. We achieve accuracies
of 87.27%, 89.00%, and 90.30% for the last two values of α.

standard deviations are depicted. We can observe that there is some overlap
between the classes. For this dataset we performed a simulation over α in the
range of [0, 25] ([0, 50] in case of RSLVQ OP) with step size 0.25. We also use
only one prototype for each class.

Fig. 2: Left: class means ± standard deviation for Tecator dataset
Right: Prototypes learned with GLVQ with a steep sigmoidal transferfunction.
The shape of the resulting prototypes do not look representative compared to
the class means. Similar results could be achieved with RSLVQ [3].

Starting with α = 0 we end up with prototypes which coincide with the re-
spective class means (see Fig. 4 upper left). After slightly increasing α we can
observe an enormous increase in classification performance (see Fig. 3 top row)
for training as well as for the test set. In comparison to standard GLVQ we are
able to classify the test set error-free with α ≥ 14.5 for GLVQ OP2. With stan-
dard GLVQ only 69% of the training set could be classified correctly. Varying the
parameter of the transfer-function in GLVQ improves performance but only with
loss in representativity (see Fig. 2 right). In Fig. 4 together with Fig. 3 we can
observe that we are able to increase classification performance but in contrast
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to GLVQ with class-typical prototypes. It is also noticeable that both proto-
types tend to become similar, but they differ slightly in discriminative regions
of wavelengths, where both GLVQ and RSLVQ seem to distend in such regions.
Comparing both GLVQ OP2 and RSLVQ OP, we can observe that they per-
form extremely good with comparable results on this dataset. Obviously, GLVQ
OP2 is more sensitive to parameter α, because slacks ǫj are much larger then in
RSLVQ OP, since they are bounded there. Instabilities in training performance
are caused by numerics of the solver.

Fig. 3: Top row: Classification performance for Tecator on training and test set:
Left: GLVQ OP2; Rigth: RSLVQ OP.
Bottom row: Left: class-wise quantization error; Right: class-wise data log-
likelihood. Parameter: α ∈ [0, 25] for GLVQ OP2; α ∈ [0, 50] for RSLVQ OP.

5 Discussion

Standard LVQ approaches are very often excellent methods for classification
tasks. But, class-representivity is not modelled explicitly. However, discrimina-
tion power and interpretability might be contradictory in most of the practical
cases. Thus, we actually should treat this issue as a multi-objective optimiza-
tion problem leading to pareto optimal solutions. In this contribution we de-
signed constrained optimization problems in order to solve classification tasks.
Since classification decision is modelled by the constraints while interpretability
is maximized, we were able to combine both objectives. Therefore, classifica-
tion constraints were introduced in terms of decision rules coming from mod-
ern LVQ variants. Two formulations (GLVQ OP2 and RSLVQ OP) were given.
Both showed excellent performance on two benchmark datasets with compara-
ble results in accuracy and representativity. For the practical usage, resulting
prototypes for a given parameter α can be inspected and validated by the user,
whether they find favour for a discriminative or a representative solution.
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Fig. 4: From the upper left to the bottom rigth: Shape of the resulting prototypes
for α ∈ {0; 1.25; 2.25; 12.75; 14.25; 25}.

Highlighting RSLVQ OP, we did not take use of a diagonal covariance matrix
at the moment. For further research it might be interesting how taking a covari-
ance matrix into account affects the solution. This question is also comparable
to use other distance measures for the GLVQ OP formulation. For instance a
generalized quadratic form as it is used in [7]. Thus, the question arises if metric
learning is doable in this framework. Also kernel distances might be interesting.
But it is not clear in how far representivity should be modelled in that case.
From the theoretical point of view, getting deeper insights into the nature of
the optimization problem is another task for future work. We suggest that the
solution is unique in case of using only one prototype for each class since the
objective itself is convex.
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Abstract. Core vector data description aims at outlier detection using kernelized
linear separations such as well known from support vector machines [15], but
relying on an equivalent formulation for its efficient optimization as a minimum
enclosing ball problem [16]. Besides the mere training data, auxiliary information
might be available such as e.g. monotonicity of the mapping prescription. In this
contribution we investigate in how far auxiliary information can be used in core
vector data descriptions, thus yielding to faster and sparser models as compared
to its counterparts which rely on a direct optimization.

1 Introduction

While machine learning methods such as support vector machines (SVM) provide state
of the art classifiers with numerous successful industrial and scientific applications,
they suffer not only from the fact that the decision function is given as a black box
mechanism [12], but also the resulting models can be very large if large data sets are
dealt with.

There exists a variety of technologies to avoid the black box character of machine
learning techniques such as SVM: examples include sparse modeling [4], relevance
learning [8], or explicit rule extraction [5]. One specific technology is to explicitly con-
strain the functional form of the model by incorporating prior knowledge [10, 11]: a
wide range of constraints can be expressed in terms of derivatives of the function pre-
scription. One key step is to express the derivatives of the function in a suitable form
such that its constraints can be included into the training pipeline. This way, the form
of the model is restricted to a shape which takes into account priorly known invariances
of the application. Instantiations of this principle deal with monotonicity constraints for
function approximation [14], the incorporation of functional characteristics [6, 9], or
the incorporation of symmetries in the functional form [13], to name a few recent ap-
proaches. In this contribution, we are interested in ways to integrate functional knowl-
edge of a general form into a machine learning model.

The addition of constraints enables an improved generalization ability of the model
for data regions which are covered by incorporated invariances rather than explicit train-
ing data. Still, the resulting models can be very large provided large data sets are dealt
with. The technique proposed in [16] provides one elegant way to arrive at considerably
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sparser solutions. Relying on a technique which is typically referred to as core method.
The key observation underlying this core technology is that a small subset actually suf-
fices to characterize the full data approximately: a connected geometric problem, the
minimum enclosing ball problem, can be approximately solved by efficient geometric
algorithms as proved in [2], and which induce an approximate solution of the SVM
problem via this solution. While leading to very sparse solutions for the classical un-
constrained models, the formalism as introduced in [16] does not incorporate further
prior constraints on the function.

In this contribution, we are interested in the question whether the addition of con-
straints is possible for core techniques to incorporate prior knowledge. We propose an
extension of the core vector data description technique [16] which realizes data descrip-
tion [15] towards constraints which are expressed as linear inequalities of the function
and its derivatives. This allows us to iteratively construct a core set which approximately
describes the given data under constraints on the solution.

2 Core vector data description

We will first introduce support vector data description (SVDD) and its relation to core
algorithms via a link of the dual problem of SVDD to a geometric problem, the mini-
mum enclosing ball problem (MEB).

Assume data xi ∈ S ⊂ Rn are given. Assume a fixed kernel k : Rn × Rn → R
is chosen which is associated to the feature map Φ: k(x,y) = Φ(x)tΦ(y). The goal of
support vector data description (SVDD) [15] is to find a generalized linear mapping

x 7→ sgn(f(x)) = sgn(wtΦ(x)− ρ)

which defines a separation of the given data to outliers by means of its sign, whereby
the separation boundary corresponds to a linear separation in the feature space induced
by Φ. The problem to find suitable parameters w and ρ for a given data set S can
be formalized as optimization problem which aims at a separation of the given data
from the origin with maximum margin. This leads to the following primal optimization
problem:

SVDD(primal)
minw,ρ,ξi

1
2 · ||w||

2 − ρ+ C
2 ·
∑
i ξ

2
i

such that wtΦ(xi) ≥ ρ− ξi ∀i
where C > 0 is a fixed constant, and the parameters ξi refer to the slack variables
to allow for potential errors. Using the Karush-Kuhn-Tucker (KKT) conditions, the
Lagrange dual problem becomes

SVDD(dual)
maxαi − 1

2 ·
∑
ij k(xi,xj)αiαj + 1

C ·
∑
i α

2
i

such that αi ≥ 0 ∀i∑
i αi = 1

This dual problem can be directly optimized relying on linearly constraint convex quadratic
optimization. The solution w and ρ of the primal problem can then be recovered from
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the dual variables αi. These are non-vanishing for support vectors only, hence we arrive
at a sparse description. Still, its size is increasing with the size of the sample set S.
Empirically, a linear dependency can usually be observed.

Instead of a direct optimization of this formalization, the approaches [16] propose
to solve this problem in an iterative fashion, linking it to a geometric problem, the
minimum enclosing ball problem (MEB). This problem consists in the objective to find a
minimum ball which contains all data points xi. In kernelized form, its primal objective
is given as

MEB(primal)
minR2,c R2

such hat ||c− Φ(xi)||2 ≤ R2 ∀i

where c denoted the centre and R the radius of the ball. Again, the KKT conditions
allow to simplify the Lagrangian dual to obtain the following form

MEB(dual)
maxαi − 1

2 ·
∑
ij k(xi,xj)αiαj +

∑
i αik(xi,xi)

such that αi ≥ 0 ∀i∑
i αi = 1

Obviously, the dual SVDD and the dual MEB are equivalent provided k(xi,xi) =
const, which holds for the Gaussian kernel or normalized kernels, for example. This
means that the SVDD and MEB are equivalent, and optimal dual variables αi simulta-
neously offer an optimum solutions for both problems. Hence, instead of an optimiza-
tion of SVDD, we can optimize MEB or its dual. Having solved the dual MEB (or dual
SVDD), the KKT conditions allow us to retrieve a solution for the primal SVDD prob-
lem from the dual variables of the MEB because of the relation w =

∑
i αiΦ(xi) and

ρ =
∑
i,j αiαjk(xi,xj) +

∑
i α

2
i /C. Note that this representation leads to a descrip-

tion of outliers in terms of the kernel evaluated for the support vectors for which αi 6= 0
holds:

x 7→ sgn
(∑

i

αik(xi,x)− ρ
)

The question occurs whether there are alternatives to arrive at even sparser descrip-
tions of the data. As pointed out in [2], there exists an efficient geometric algorithm
which approximately solves the MEB problem and which eventually leads to even
sparser solutions of the MEB with constant size support vector data descriptions. The
proposed algorithm relies on the notion of core sets: given a set S and ε > 0, a core set
S0 is a subset of S, S0 ⊂ S, such that the following holds: assume R0 and c0 refer to
the centre and radius, respectively, of a minimum enclosing ball for S0. Then it holds
for all x ∈ S that

||x− c0||2 ≤ R2
0(1 + ε)2

Hence the optimum solution of the MEB for the core set S0 of S induces an ε-
approximate solution for the whole set S.
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Core algorithm:

choose S0 := {Φ(xi)} for a random data index i
choose Φ(xj) ∈ S\S0 with maximum ||Φ(xi)− Φ(xj)||2
set S0 := S0 ∪ {Φ(xj)}
repeat

solve the MEB problem for S0,
this gives centre c and radius r
if ∃Φ(xk) ∈ S with |Φ(xk)− c|2 > r2(1 + ε)

set S0 := S0 ∪ {Φ(xk)}
until no such data can be found

Per construction, this algorithm terminates with a core set S0 of S and an approximate
solution for the SVDD for S represented by the solution for S0.

Note that all steps can be solved relying on the kernel only rather than the feature
map Φ: we can compute distances on the feature space based on kernels only. Further,
we can formulate the MEB via its dual, resulting in a kernel form which yields solutions
for the dual variables αi which approximately solve the MEB, and, hence, also the
SVDD.

Since S0 is usually much smaller than S, this algorithm is faster than a direct op-
timization of the MEB (or the SVDD) for the full data set S. Further, the resulting
solution is usually much smaller. Actually, it has been proven in [2] that a constant size
set S0 will suffice where the size depends on the quality of the approximation ε only.
Hence a linear time algorithm and constant size support vector data description results.
We refer to this approximate solution of the SVDD as core vector data description
(CVDD) in the following.

3 Integration of prior knowledge

Often, prior knowledge of the learning problem is available in the form of constraints
of the function f . Typical examples include the following settings:

– There is a priorly limited range U of acceptable values for the data, i.e. f(x) = −1
for x 6∈ U .

– Monotonicity of the function with respect to some or all coefficient dimensions R
holds, i.e. f(x) = −1 ⇒ f(y) = −1 for all y with yk = xk for k 6∈ R and
yk ≥ xk for k ∈ R.

– Limited variability/smoothness of the outlier function is given as indicated by a
limited curvature of f .

– etc.

Such restrictions might be caused by knowledge about the sensitivity of sensors or their
maximum range, for example.

Notably, all restrictions as specified above can be expressed in terms of (sets of)
inequality constraints on the function f and its derivatives: monotonicity at a point xi
is equivalent to the derivative being positive at this position, a limitation of the range can
be expressed as inequality f(xi) < 0 for points directly at the boundary, the curvature
of the function can be expressed in terms of its second derivative, etc. See [11] for more
details about these formulations.
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Here, we formulate this approach in terms of SVDD. Essentially, the main obser-
vation is that constraints on the function f can be expressed efficiently using its dual
representation

f(x) =
∑
i

αik(x,xi)− ρ

Hence derivatives with respect to coefficient k of x can be expressed as

∂f(x)
∂xk

=
∑
i

αi
∂k(x,xi)
∂xk

− ρ

This constitutes a linear term in the dual variables αi which depends on the derivatives
of the kernel. For the Gaussian kernel k(x,xi) = exp(−||x − xi||2/(2σ2)), as an
example, this term yields the linear term expression

1
σ2

(Xj − 1xk)
t diag

(
K
(
x,Xt)

))
α

where α is the vector of dual parameters αi, X is the data matrix, Xj its jth column, 1
refers to the vector with entries 1 and dimensionality equal to the number of data points,
K refers to the Gram matrix evaluated at the indicated points, and diag is the operation
which turns a vector into a matrix with the vector as diagonal. Similarly, higher order
derivatives can also be expressed as linear terms of the dual variables αi.

This observation offers an easy way to integrate constraints into SVDD which are
linear in terms of the function f(x) and its derivatives: Assume a linear constraint
depending on f and its derivatives is given for some points xi. Then, because of the
linearity of the derivatives of f with respect to αi, we arrive at constraints of the form
L(α,xi) ≥ 0 with a linear term L. Hence we can easily enrich the dual SVDD by
these constraints for any given finite set of points for which these constraints should be
satisfied, using standard convex quadratic solvers for its optimization. Obviously, the
inequalities can be enriched by slack variables in the standard way if a feasible solution
cannot be guaranteed otherwise. We refer to this technique as SVDD with constraints
(SVDD-C) in the following.

Putting a possibly high number of constraints to the dual SVDD results in an even
less sparse support vector data description. Here we are interested in possibilities to
integrate the core technique into SVDD-C to arrive at sparser solutions. We assume that
there exists a number of constraints on f which can be expressed as linear constraints
L(α,xi) ≥ 0 for the dual parameters and some data points xi. Note that the core
algorithm can be formalized in terms of dual variables only, such that we can easily
enrich the algorithm by corresponding constraints. Assume IS refers to the indices of
all considered points in S:
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Constraint core algorithm:

choose IS0 := {i} for random i
choose j ∈ IS\IS0 with maximum ||Φ(xi)− φ(xj)||2
set IS0 := IS0 ∪ {j}
repeat

solve the dual problem restricted to αi where i ∈ IS0 :
maxαi − 1

2
·
P
ij k(xi,xj)αiαj +

P
i αik(xi,xi)

such that αi ≥ 0,
P
i αi = 1

L(α,xi) ≥ 0
this gives centre c and radius r in kernel form:

c =
P
i αiΦ(xi)

R2 =
P
i αik(xi,xi)−

P
ij αiαjk(xi,xj)

if ∃k ∈ S with
k(xk,xk)− 2

P
i αik(xk,xi) +

P
ij k(xi,xj) > r2(1 + ε)

or L(α,xi) < 0:
set IS0 := IS0 ∪ {k}

until no such index k can be found

Obviously, this algorithm yields an approximate solution for SVDD-C per construction.
We refer to the method as CVDD-C in the following.

Unlike SVDD-C, the method starts with a small subset of the data, such that a sparse
support vector data description can be expected which fulfills the additional constraints.
We will confirm this expectation in experiments. Note that CVDD-C corresponds to the
geometric problem posed by MEB where the location of the centre is limited by linear
constraints. Since these constraints can be arbitrary if there are no restrictions on the
kernel, we can no longer guarantee a fixed size core set in the worst case since the
problem contains the problem to find a feasible solution for a given LP with arbitrary
dimensionality as a subproblem. Still, the solution set is always smaller than the solution
set found by SVDD-C.

4 Experiments

In the following we consider three different data sets to evaluate the Core Vector Data
Description (CVDD) and the Support Vector Data Description (SVDD) with and with-
out constraints. For all data sets, we have a set of non-outliers which constitutes the
training set, and a set of data points for testing, which is given by a mix of outliers
and non-outliers. In all settings, we incorporate prior knowledge by a monotonicity
constraint as concerns one component of the data, as specified below. The tolerance
parameter of the CVDD was set to ε = 0.005.

DS1: The first dataset consists of three two-dimensional Gaussians. The first Gaussian generates
the known non-outlier data. It is defined as G1(x) = exp

“
− (x1−v1)2

2·0.52 − (x2−v2)2

2·22

”
, v =

(0, 0), and σ = (0.5, 2) with N = 530 points (500 for training and 30 for tests). G2 is
defined as a gaussian with centre (−2.7,−0.08) and variances σ = (1.1, 0.06). G3 is a
Gaussian with center (2.7, 0.08) and variances σ = (1.1, 0.06) both with 30 samples each.
G2 specifies the outlier data andG3 is considered as unknown data which are expected to be
non-outliers. For parameter studies 100 points where removed from the non-outlier points.
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Fig. 1. Left: synthetic data set DS1 without constraints using CVDD. One can observe that all
entries not belonging to G1 are considered to be outliers. Right: the same data but trained using
the constraint that f is monotonic in the first dimension. This enables a correct identification of
the rightmost Gaussian, which does not contain outliers per construction.

The prior knowledge to be integrated consists in a monotonicity of f with respect to x1,
hence realizing that G3 are non-outliers, which cannot be inferred directly from the data.

DS2: The second dataset (DS2) is the well known Breast-cancer-Wisconsin dataset available at
UCI3 with 699 samples and 9 features4, normalized to N(0, 1) for each dimension. Origi-
nally proposed as a classification problem we will consider it as an outlier task. Thereby the
known non-outliers used for training are points with values x2 ∈ (−0.4, 1.0) of class 0 in
the original data. The outlier data are formed by the class 1. In addition, the test set contains
unobserved non-outliers which are data from class 0 with value x2 > 1. For parameter stud-
ies, 20 points where removed from the non-outlier points. We incorporate monotonicity of
f with respect to dimension x2 as a constraint. The suitability of this constraint is supported
by the decision tree classification as found in [3]. It accounts for the fact that non-outliers
with x2 > 1 can be detected, albeit not present in the training data.

DS3: The third dataset (DS3) is an extended version of DS1 with N = 10000 samples for the
first Gaussian to test for the scalability of the approaches.

Results are shown in Table 1. For DS1, CVDD as well as SVDD can correctly de-
scribe the data, but the description is not able to identify the rightmost Gaussian as
non-outlier, since these data are not represented in the training set. Incorporating con-
straints enables us to do so, as shown in Fig. 1. This effect is mirrored by an increase of

3 http://archive.ics.uci.edu/ml
4 Here we used the version provided in the Matlab Neural Network Toolbox

DS1 DS2 DS3

SVDD 63.33|300|27.31 67.41|20|0.30 n.a.
CVDD 63.33|29|1.0 78.10|33|0.07 65.56|24|0.10
SVDD-C 81.11|300|29.52 90.17|20|0.50 n.a.
CVDD-C 93.33|4|1.36 89.00|29|0.23 84.44|4|27.96

Table 1. Test set accuracies for three outlier datasets. We also provide the runtime and number of
support/core vectors in the model as tuple (accuracy|runtime|complexity).
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the classification accuracy by 20% for SVDD-C versus SVDD and by 30% for CVDD-
C versus CVDD. Interestingly, the size of SVDD and SVDD-C as compared to CVDD
and CVDD-C is larger by one or two orders of magnitude, respectively. Hence integrat-
ing core techniques enables a sparser description of the data in these cases. Similarly,
the computation time is reduced by two orders of magnitude due to the limited size
problems which are solved for CVDD(-C) in comparison to SVDD(-C).

This effect becomes even more pronounced for DS3 with the same statistical char-
acteristics but enlarged to 10000 samples. While CVDD is able to describe the data with
core sets which have the same size as for the small problem, and the running time in-
creases linearly only, the mere SVDD(-C) implementation did not converge within the
given time limit. The classification accuracy of CVDD-C versus CVDD is improved by
about 20%.

For DS2, results are similar albeit less pronounced: incorporating constraints allows
a significant improvement of the classification accuracy, this way extending the support
of the data description towards regions of the data space where no training examples
have been present, but the constraints specify the structural invariance. The number of
core vectors is not significantly reduced, being small already for the direct optimization.
In consequence, training times are only mildly decreased for the core techniques (by a
factor of two only for CVDD-C versus SVDD-C) since they involve an iteration over
several small size optimization problems instead of only one for the direct method.

5 Conclusions

We have investigated the possibility to integrate prior knowledge and fast core methods
in one approach. Due to the core technology, we arrive at an efficient and sparse core
vector data description which is particularly suited for incremental settings. Further,
the method generalizes beyond the data support due to the auxiliary information. We
have developed an explicit algorithm which combines the core vector technique with
auxiliary constraints which are represented as linear constraints of the data description
functions and its derivatives. Albeit a fixed size core set can no longer be guaranteed
for arbitrary kernels for principled reasons (LP being a subproblem if arbitrary kernels
are permitted), small size core vector data descriptions have been reached in practical
benchmarks, enabling training also for large data sets due to its speedup by several
orders of magnitude. Thus, this offers a promising technique for modeling big data.

We expect that similar techniques can be used to constrain core vector classifica-
tion or core vector regression based on auxiliary information such as a limited range,
limited curvature, or similar. It will be a subject of future work to test the results for re-
gression tasks and alternative constraints. Further, the test of the technology in settings
with streaming data, thereby relying on the achieved sparse representation for presented
windows similar to the patch approach as proposed in [1,7] for (relational) clustering is
the subject of ongoing work.
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