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Abstract

We propose a functional approach to relevance learning and matrix adaptation for
learning vector quantization of high-dimensional functional data. We show how
parametrization of the functional relevance profile or functional matrix learning can be
established for a reasonable number of adaptive parameters. In particular we empha-
size model sparsity in terms of structural sparsity and feature selection.
Keywords: functional vector quantization, relevance learning, matrix learning, infor-
mation theory, feature selection
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About Sparsity in Functional Relevance Learning in Generalized Learning Vector Quantization

1 Introduction

During the last years prototype based models became one of the widely used
paradigms for clustering and classification. Different strategies have been proposed in
classification: Whereas support vector machines (SVMs) emphasize the class borders
by the support vectors while maximizing the separation margin, the family of learning
vector quantization (LVQ) algorithms is motivated by class representative prototypes
and decision margin optimization to achieve high classification accuracy [2]. Based
on the original but heuristically motivated standard LVQ introduced by KOHONEN [7]
several more advanced methods were proposed. One key approach is the generalized
LVQ (GLVQ) suggested by SATO&YAMADA [11] approximating the accuracy by a differ-
entiable cost function to be minimized by stochastic gradient descent. This algorithm
was extended to deal with metric adaptation to weight the data dimensions according
to their relevance for classification [4]. Usually, this relevance learning is based on
weighting the Euclidean distance, and, hence, the data dimensions are treated inde-
pendently leading to large number of weighting coefficients, the so-called relevance
profile, to be adapted in case of high-dimensional data. An extension of this approach
is matrix learning where a parametric quadratic form of the distance is used [13].

If the data dimension is very large, as it is frequently the case for spectral data or
time series, the relevance determination and the parameter adaptation may become
infeasible or numerically instable. However, functional data have in common that the
vectors can be seen as discrete realizations of functions. For this kind of data the index
of the vector dimensions is a representative of the respective independent function
variable, i.e. frequency, time or position etc. In this sense the data dimensions are
certainly not uncorrelated or independent.

The aim of the new relevance and matrix learning methods proposed here is to
exploit this property. We will interprete the relevance profile as well as a discrete
representation of an one-dimensional relevance function. For the parameters of the
quadratic form in matrix learning a two-dimensional function description is assumed.
We suggest to approximate these functions as a superposition of only a few basis
functions depending on a drastically decreased number of parameters compared to
the huge number of independent weights or matrix elements in the original formulation
of relevance learning. We call the resulting algorithms Generalized Functional Rele-
vance LVQ (GFRLVQ) and Generalized Functional Matrix LVQ (GFMLVQ). Further, we
propose the integration of a sparseness criterion for minimizing the number of basis
functions based on an entropy criterion resulting in Sparse GFRLVQ (S-GFRLVQ) and
Sparse GFMLVQ (S-GFMLVQ).

2 Relevance and Matrix Learning in GLVQ – GRLVQ

As mentioned before, GLVQ is an extension of standard LVQ based on energy function
E approximating the accuracy. Given a set V ⊆ RD of data vectors v with class labels
xv ∈ C = {1, 2, . . . C}, the prototypes w ∈ W ⊂ RD with class labels yj (j = 1, . . . , N )
should be distributed in such a way that they represent the data classes as accurate
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as possible. In particular, the following cost function is minimized

E (W ) =
1

2

∑
v∈V

f (µ (v)) with µ (v) =
d+ (v)− d− (v)

d+ (v) + d− (v)
(1)

where f is a monotonically increasing function usually chosen as sigmoidal or the
identity function. The function µ (v) is the classifier function where d+ (v) = d (v,w+)
denotes the distance between the data vector v and the closest prototype w+ with the
same class label yw+ = xv, and d− (v) = d (v,w−) is the distance to the best matching
prototype w− with a class label yw− different from xv. The similarity measure d (v,w)
is supposed differentiable with respect to the second argument but not necessarily to
be a mathematical distance. More general similarity measures could be considered.
Possible choices are the standard Euclidean distance or their weighted counterpart

dλ (v,w) =
D∑
i=1

λi (vi − wi)2 (2)

with relevance weights λi ≥ 0 and
∑

i λi = 1. The vector λ is called relevance profile.
Learning in GLVQ of w+ and w− is done by stochastic gradient descent with respect

to the cost function E (W ) according to

∂SE (W )

∂w+
= ξ+ · ∂d

+

∂w+
and

∂SE (W )

∂w−
= ξ− · ∂d

−

∂w−

with ξ+ = f ′ · 2·d−(v)

(d+(v)+d−(v))2
and ξ− = −f ′ · 2·d+(v)

(d+(v)+d−(v))2
. Relevance learning in this model

can be performed by adaptation of the relevance, weights again by gradient descent:

∂ES (W )

∂λj
= ξ+ · ∂d

+
λ

∂λj
+ ξ− · ∂d

−
λ

∂λj
. (3)

The respective algorithm is named Generalized Relevance LVQ – GRLVQ [4], which
aims at the optimization of the decision margin and therefore is comparable to sup-
port vector machines (SVM) [3]. Yet, in this model the relevance weights as well as
the vector components are treated independently as it seems natural in the Euclidean
distance or its weighted variant.

Matrix learning generalizes the idea of relevance learning [14, 13]. Instead of the
weighted Euclidean distance (2), a positive definite bilinear form is used:

dΛ (v,w) = (v −w)T Λ (v −w) (4)

with a quadratic, positive semi-definite matrix Λ. Using the fact that each matrix Λ can
be decomposed into

Λ = ΩTΩ , (5)

where Ω ∈ RD×m and m > 0 an arbitrary positive integer [1], the distance (4) can be
rewritten as

dΛ (v,w) = (Ω (v −w))2 (6)

In analogy to relevance learning, we get

∂SE (W )

∂Ωij

= ξ+ · ∂d
+
Λ

∂Ωij

+ ξ− · ∂d
−
Λ

∂Ωij

(7)

for the matrix learning vector quantization algorithm (GMLVQ).
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3 Functional Relevance and Matrix Learning for GLVQ

As we have seen, the data dimensions are handled independently according to their
sequence in both, GRLVQ and GMLVQ. This leads to a huge number of relevance
weights to be adjusted, if the data vector are really high-dimensional as it is the case in
many applications. For example, processing of hyperspectral data frequently requires
the consideration of hundreds or thousands of spectral bands; time series may consist
of a huge number of time steps. This huge dimensionality may lead to instable behavior
of relevance learning in GRLVQ. For GMLVQ the number of free parameters scales with
the square of the number of input dimensions although a self-regularizing mechanism
leads to the fact that the effective number of free parameters is linear as in GRLVQ
[12].

Yet, if the data vector are discrete representations of functions, both relevance
and matrix learning can make use of this functional property to reduce the number
of parameters in relevance learning. More precisely, we assume in the following that
data vectors v = (v1, . . . , vD)T are representations of functions v (t) with given values
vi = v (ti).

3.1 Functional Relevance Learning

In functional relevance learning the relevance profile is interpreted as a function λ (t)
with λj = λ (tj), too. In the recently proposed generalized functional relevance LVQ
(GFRLVQ) [5], the relevance function λ (t) is supposed to be a superposition

λ (t) =
K∑
l=1

βlKl (t) (8)

of simple basis functions Kl depending on only a few parameters with the restriction∑K
l=1 βl = 1. Famous examples are standard Gaussians or Lorentzians:

Kl (t) =
1

σl
√

2π
exp

(
−(t−Θl)

2

2σ2
l

)
(9)

and

Kl (t) =
1

ηlπ

η2
l

η2
l + (t−Θl)

2 , (10)

respectively. Now, relevance learning takes place by adaptation of the parameters βl,
Θl,σl and ηl, respectively. For this purpose, again a stochastic gradient scheme is
applied. For an arbitrary parameter ϑl of the dissimilarity measure d we have

∂SE

∂ϑl
= ξ+ · ∂d

+

∂ϑl
+ ξ− · ∂d

−

∂ϑl
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Using the convention tj = j we get in the case of Gaussians for the weighting coeffi-
cient βl, the center Θl and the width σl for

∂d (v,w)

∂βl
=

1

σl
√

2π

D∑
j=1

exp

(
−(j −Θl)

2

2σ2
l

)
(vj − wj)2 (11)

∂d (v,w)

∂Θl

=
βl

σ3
l

√
2π

D∑
j=1

(j −Θl) exp

(
−(j −Θl)

2

2σ2
l

)
(vj − wj)2 (12)

∂d (v,w)

∂σl
=

βl

σ2
l

√
2π

D∑
j=1

(
(j −Θl)

2

σ2
l

− 1

)
exp

(
−(j −Θl)

2

2σ2
l

)
(vj − wj)2 (13)

whereas for the Lorentzian we obtain

∂d (v,w)

∂βl
=

1

π

D∑
j=1

ηl

η2
l + (j −Θl)

2 (vj − wj)2 (14)

∂d (v,w)

∂Θl

=
βl
π

D∑
j=1

2ηl (j −Θl)(
η2
l + (j −Θl)

2)2 (vj − wj)2 (15)

∂d (v,w)

∂ηl
=

βl
π

D∑
j=1

(j −Θl)
2 − η2

l(
η2
l + (j −Θl)

2)2 (vj − wj)2 (16)

Instabilities may occur if the center locations Θl, Θk become very similar for l 6= k. To
avoid this phenomenon a weighted penalty term

PR =
K∑
l=1

K∑
m=1
m 6=l

exp

(
−(Θm −Θl)

2

2ξlξm

)
(17)

is added to the cost function (1) according to the used basis functions. The resulting
new cost function is

EGFRLV Q = E (W ) + εRPR (18)

with a properly chosen penalty weight εR > 0. For Gaussian basis functions we set
ξk = σk, and for the Lorentzians we take ξk = ηk. The penalty can be interpreted
as a repulsion with an influence range determined by the local correlations ξlξm. The
resulting additional update term for Θl-learning is

∂PR
∂Θl

=
1

2

K∑
m=1

(Θl −Θm)

ξlξm
exp

(
−(Θm −Θl)

2

2ξlξm

)
leading to a minimum spreading of the basis function centers Θl. Analogously, an addi-
tional term occurs for the adjustments of the ξl according to ∂PR

∂ξl
, which has to be taken

into account for the update of σk and ηk for Gaussians and Lorentzians, respectively.

3.2 Functional Matrix Learning

For Functional Matrix Learning Vector Quantization (GFMLVQ) we assume in complete
analogy to the functional relevance learning approach that the matrix Ω involved in (6)
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by the decomposition (5) is described in terms of a superposition

Ω (t1, t2) =
K∑
l=1

βlKl (t1, t2) (19)

of two-dimensional basis functions Kl (t1, t2), i.e. we have

Λ (t1, t2) =

∫
Ω (t1, t) Ω (t2, t) dt

and, therefore,

Λ (t1, t2) =
K∑
l=1

K∑
m=1

βlβm ·
∫

Kl (t1, t) ·Km (t2, t) dt . (20)

The basis functions Kl (t1, t2) are now two-dimensional. For the Gaussian example we
have

Kl (t1, t2) =
1

σ1,l · σ2,l · 2π
exp

(
−

(
(t1 −Θ1,l)

2

2σ2
1,l

+
(t2 −Θ2,l)

2

2σ2
2,l

))
(21)

whereas for the Lorentzian we get

Kl (t1, t2) =
1

η1,l · η2,l · π2

(
η2

1,l

η2
1,l + (t1 −Θ1,l)

2 ·
η2

2,l

η2
2,l + (t2 −Θ2,l)

2

)
(22)

and the derivatives have to be performed accordingly.
The penalty term (17) known from GFRLVQ avoiding there the total overlap of dif-

ferent basis functions Kl and Kk for k 6= l has also to be adapted and reads now
as

PM =
K∑
l=1

K∑
m=1

exp

(
−

(
(Θ1,m −Θ1,l)

2

2ξ1,mξ1,l

+
(Θ2,m −Θ2,l)

2

2ξ2,mξ2,l

))
(23)

again with the settings ξi,k = σi,k and ξi,k = ηi,k for Gaussians and Lorentzians, respec-
tively. Thus the full cost function

EGFMLV Q = E (W ) + εMPM (24)

is finally obtained for GFMLVQ with the penalty weight εM > 0.

4 Sparse GFRLVQ and GFMLVQ

We have to distinguish at least two different kinds of sparsity. The first one is structural
sparsity emphasizing the sparsity of the generative model of the relevance profile with
respect to the selection of basis functions. The second one we call feature sparsity
reflecting the sparsity in terms of data dimensions, which are taken into account for
classification.
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4.1 Structural Sparsity

In the GFRLVQ model the number K of basis functions to be used can be chosen
freely so far. Obviously, if K is too small, an appropriate relevance weighting is impos-
sible. Otherwise, a value of K too large complicates the problem more than necessary.
Hence, a good adjustment is demanded. This problem can be seen as a structural
sparseness requirement in functional relevance learning model.

A suitable methodology to judge sparsity is information theory. In particular, the
Shannon entropy H of the weighting coefficients β = (β1, . . . , βK) can be applied to
quantify structural sparsity. Maximum sparseness, i.e. minimum entropy, is obtained,
iff βl = 1 for exactly one certain l whereas the other βm are equal to zero. However,
maximum sparseness may be accompanied by a decrease of accuracy in classification
and/or increased cost function value EGFRLV Q.

To achieve an optimal balancing, we propose the following strategy: The cost func-
tion EGFRLV Q is extended to

ES−GFRLV Q = EGFRLV Q + γ (τ) ·H (β) (25)

with τ counting the adaptation steps. Let τ0 be the final time step of the usual GFRLVQ-
learning. Then γ (τ) = 0 for τ < τ0 holds. Thereafter, γ (τ) is slowly increased in
an adiabatic manner [6], such that all parameters can immediately follow the drift of
the system. An additional term for βl-adaptation occurs for non-vanishing γ (τ)-values
according to this new cost function (25):

∂ES−GFRLV Q
∂βl

=
∂EGFRLV Q

∂βl
+ γ (τ)

∂H

∂βl
(26)

with ∂H
∂βl

= − (log (βl) + 1). This term triggers the β-vector to become sparse. The
adaptation process is stopped if the EGFRLV Q-value or the classification error shows a
significant increase compared to the time τ0.

Obviously, this optimization scheme can also be applied to GFMLVQ yielding
Sparse GFMLVQ (S-GFMLVQ) with

ES−GFMLV Q = EGFMLV Q + γ (τ) ·H (β) (27)

as cost function.

4.2 Feature Sparsity

A different sparsity requirement concerns the contribution of data dimensions to the
classification decision. In GFRLVQ this feature selection can be controlled by an en-
tropy term

HF (λ) = −
∫
λ (t) ln (λ (t)) dt (28)

enforcing the sparsity in the relevance profile λ (t). According to the functional profile
model (8) with the basis functions Kl (t) we have

HF (λ) = −
∫ ( K∑

l=1

βlKl (t)

)
ln

(
K∑
l=1

βlKl (t)

)
dt (29)
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Considering the derivatives ∂HF (λ)
∂βj

, ∂HF (λ)
∂Θj

and ∂HF (λ)
∂σj

we get

∂HF (λ)

∂βj
= −

∫
Kj (t)

[
1 + ln

(
K∑
l=1

βlKl (t)

)]
dt , (30)

∂HF (λ)

∂Θj

= −
∫
βj
∂Kj (t)

∂Θj

[
1 + ln

(
K∑
l=1

βlKl (t)

)]
dt , (31)

and

∂HF (λ)

∂σj
= −

∫
βj
∂Kj (t)

∂σj

[
1 + ln

(
K∑
l=1

βlKl (t)

)]
dt , (32)

respectively.
Feature sparsity in the matrix version GMRLVQ can be enforced by the maximiza-

tion of the entropy of the diagonal elements of Λ in the matrix distance (4): Vanishing
diagonal elements of Λ imply by use of the decomposition Λ = ΩTΩ (5) that the re-
spective columns of Ω in the rewritten distance (6) can be neglected. Transferring this
idea to functional matrix relevance GFMLVQ (20) we write the entropy term in complete
analogy as

HF (Λ) = −
∫

Λ (τ, τ) ln (Λ (τ, τ)) dτ . (33)

with

Λ (τ, τ) =
K∑
l=1

K∑
m=1

βlβm ·
∫

Kl (τ, t) Km (τ, t) dt (34)

and Kl (τ, t) are the underlying two-dimensional basis functions of the functional model
(19). Triggering the feature sparseness is realized again by application of the deriva-
tives ∂HF (Λ)

∂βj
, ∂HF (Λ)

∂σ1,j
, ∂HF (Λ)

∂σ2,j
, ∂HF (Λ)

∂Θ1,j
, and ∂HF (Λ)

∂Θ2,j
in learning. For these we get

∂HF (Λ)

∂βj
= −

∫ (
2

K∑
l=1

βl ·
∫

Kl (τ, t) Kj (τ, t) dt

)
(35)

·

[
1 + ln

(
K∑
l=1

K∑
m=1

βlβm ·
∫

Kl (τ, t) Km (τ, t) dt

)]
dτ

and

∂HF (Λ)

∂ξj
= −

∫ (
2

K∑
l=1

βlβj ·
∫

Kl (τ, t)
∂Kj (τ, t)

∂ξj
dt

)
(36)

·

[
1 + ln

(
K∑
l=1

K∑
m=1

βlβm ·
∫

Kl (τ, t) Km (τ, t) dt

)]
dτ

where ξj stands for any of these variables σ1,j, σ2,j, Θ1,j, Θ2,j.
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5 Conclusion

In this paper we propose the functional relevance and matrix learning for generalized
learning vector quantization. Functional learning supposes that the data vectors are
representations of functions such that the relevance profile or the parameter matrix can
be written as a superposition of one- or two-dimensional basis functions, respectively.
These basis functions depend on only a few parameters to be adapted during learning
compared to the huge number of free parameters to be adjusted in usual relevance or
matrix learning. To obtain an optimal number of basis functions for the superposition
a sparsity constraint is suggested. There, sparsity is judged in terms of the entropy
of the respective sparsity model: structural sparsity prunes the superposition of the
basis functions wheras feature sparsity leads to the use of a reduced number of input
dimensions.

The approach is here exemplified for the weighted Euclidean distance and a bilinear
form also based on the Euclidean norm, for simplicity. Obviously, the Euclidean dis-
tance is not based on a functional norm. Yet, the transfer to real functional norms and
distances like Sobolev norms [17], the Lee-norm [8, 9], kernel based LVQ-approaches
[16] or divergence based similarity measures [15],[10], which carry the functional as-
pect inherently, is straightforward and topic of future investigations.

Obviously, the functional matrix approach can also be applied for matrices Λ of
limited rank, i.e. rectangular matrices. This leads to a functional version limited rank
matrix LVQ (LiRaMLVQ), which is proposed in [1].
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