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Universitätsstrasse 21-23, 33615 Bielefeld
(2) University of Applied Sciences Mittweida, Technikumplatz 17, 09648 Mittweida, Germany

Machine Learning Reports,Research group on Computational Intelligence,
http://www.uni-leipzig.de/∼compint/mlr/mlr.html



Table of contents:

New Challenges in Neural Computation NC2 2010
(B. Hammer, T. Villmann) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

A Vision for Reinforcement Learning and its Applications for Neural Computation
(S. Lange, M. Riedmiller) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

Challenges in Training Restricted Boltzmann Machines
(A. Fischer, C. Igel) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Mental Imagery in Artificial Agents
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The quite remarkable history of artificial neural networks is well-known: In a
nutshell, artificial neural networks were first proposed by McCulloch and Pitts
as universal information processing mechanism. In the beginning, training algo-
rithms were restricted to very simple architectures only, in essence single neurons.
Thus, with the formal investigation of the limitations of these simple architec-
tures in the famous book ’Perceptrons’ by Minsky and Papert, the interest in
neural networks rapidly decreased. Starting with the 80th, neural networks expe-
rienced a renaissance due to more complex architectures and training algorithms
becoming available, in particular Hopfield networks for associative learning and
optimization, self-organizing models mimicking phenomena of the human brain,
and the famous backpropagation algorithm for training arbitrary feedforward
networks. Nowadays, neural computation and biologically inspired data process-
ing systems constitute essential topics in artificial intelligence accompanied by
a well established theoretical foundation and numerous successful applications
in science and industry. Several scientific journals as well as conferences are
dedicated to this subject.

Research concerning neural networks can roughly be decomposed into two
main areas: neuroinformatics – the goal of which is to develop biologically in-
spired algorithms for efficient information processing and to apply these algo-
rithms to real life problems as occur in industry and every day life; and computa-
tional neuroscience – the goal of which is to develop biologically plausible models
which can help to understand biological neural systems. Scientific landmarks in
this latter area are set by the current Bernstein Network Computational Neu-
roscience established in Germany to focus research in this area, and the Blue
Brain Project which final goal is to reverse engineer the mammalian brain. These
combined efforts, among others, manifest the fact that Computational Neuro-
science currently constitutes a rapidly emerging field with quite a few challenges
being unsolved. The question of how information is encoded in the brain still
constitutes one of the key open problems in this area, for example.

The standpoint of neuroinformatics within computational intelligence is less
clear. Quite a few achievements have been reached in this area and, nowadays,
neural networks constitute a standard model within modern data processing
toolboxes available on the market. A well established theoretical foundation of
neural networks has been achieved in particular in the frame of computational
learning theory and Bayesian statistics, respectively. However, with respect to
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research, one possible point of view is to think about neural networks as just
another method of statistical data analysis. The specifics of neuroinformatics
and its fundamental specific open questions and challenges in comparison to
the field of general statistical data analysis are less clear. Overall, ’classical’
neuroinformatics can be seen as a well emerged field with a solid theory and
only a few remaining problems.

Modern information science is probably about to change this situation. We
observe an ever increasing complexity of data and learning tasks which is caused
by an increasing availability of electronic information in virtually all areas of
daily life. This is possible due to improved technology concerning sensors, data
storage, dedicated data formats, and the like. In consequence, machine learning
in general and neural networks in particular have to deal with more and more
complex scenarios such as occur, e.g., in modern robotics, biodata analysis, web
technologies, etc. While classical neural networks have been developed to solve
comparably narrow machine learning tasks such as inferring a function from
vector data, nowadays, neural networks are used in settings where no simple ob-
jective is given and the methods have to partially generate reasonable training
settings by themselves. Further, data sets are increasing rapidly with respect to
its size, heterogeneity, and complexity. Two prime examples of this situation are
formalized in two newly established priority programs of the German Science
Foundation: Scalable Visual Analytics, which deals with intelligent mechanisms
to help persons in the ill-posed domain of data visualization, and autonomous
learning, which refers to complex learning scenarios as occur in natural envi-
ronments. This poses new challenges towards the area of neuroinformatics such
as the necessity to deal with very large or streaming data, data settings where
the underlying distribution is not i.i.d., partially ill-posed domains, etc. Possi-
bly, even another renaissance of neural networks will occur within these new
challenges; certainly, at least a few novel and challenging issues will have to be
tackled within this frame.

In the workshop NC2, exemplary challenges and novel developments of neural
systems are covered. Eight high quality contributions shed some light on diverse
aspects which are currently at the frontiers of research in neural networks, in
particular learning in complex environments and dealing with complex inputs
in a biologically plausible manner. The paper ‘A vision for reinforcement learn-
ing and its implications for neural computation’ by S. Lange and M. Riedmiller
centers around reinforcement learning (RL) as one key technology to deal with
complex learning scenarios where only a reinforcement signal is given rather than
explicit teacher information. The authors focus on recent developments in RL
which carry the promise to turn RL technology from toy settings towards real-
istic scenarios, facing in particular the problem of complex state representations
and scalability of the techniques to realistic environments. Restricted Boltz-
mann machines offer one very promising technique to efficiently encode complex
signals to arrive iteratively at sparse representations of complex signals which
encode states of the environment, for example, with high biological plausibility.
Training, however, phases severe problems. The article ‘Challenges in training
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restricted Boltzmann machines’ by A. Fischer and C. Igel investigates possibili-
ties, to optimize the likelihood function in this setting using numerically stable
and fast optimization such as resilient propagation. The contribution ‘Mental
imagery in artificial agents’ by A. Kaiser, W. Schenk, and R. Möller deals with
the simulation of a phenomenon in artificial agents which occurs frequently in
natural agents in complex environments: the prediction of sensory experiences
caused by certain actions without actual sensory inflow. A biologically plausi-
ble adaptive architecture is proposed in the context of visual inputs caused by
robotics manipulations. In the article ‘Direct policy search: intrinsic vs. extrinsic
perturbations’ by V. Heidrich-Meisner and C. Igel, the authors deal with the area
of reinforcement learning in general, and they discuss possibilities to substitute
the common dynamic programming framework by evolutionary optimization in
case only few intermediate reward is available for the process.

F. Beuth, J. Wiltschut, and F. Hamker deal with the chicken and egg prob-
lem how to realize attention and how to recognize objects in images in their
contribution ‘Attentive stereoscopic object recognition’. They propose a neural
architecture which can solve this problem in a biologically plausible manner.
The next two contributions deal with challenges as arise when neural methods
are applied in the biomedical domain. The contribution ‘Clustering of hyper-
spectral image signatures using neural gas’ by U. Seiffert and F. Bollenbeck
centers around the analysis of hyperspectral images and its problems when data
are only partially labeled. As for hyperspectral images, genome wide association
studies face the problem of extremely high dimensional data. In the contribu-
tion ‘Interpretive risk assessment on GWA data with sparse linear regression’
by I. Brænne, K. Labusch, T. Martinetz, and A. Madany Mamlouk, single rele-
vant variables are identified using various methods with inherent generalization
including SVM and sparse linear regression. Finally, the contribution ‘Ensem-
ble methods for probability density estimation’ by M. Glodek, M. Schels, and
F. Schwenker aims at a central problem data analysis: density estimation. The
standard EM approach which cannot be used to reliably estimate the number of
modes for a Gaussian mixture is extended by ensemble techniques, such that a
better stability and robustness can be achieved for realistic settings.

Altogether, these contributions constitute promising steps into the direc-
tion of complex information processing with neural systems by providing new
paradigms, concepts, models, and benchmark scenarios.
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A Vision for Reinforcement Learning and its
Implications for Neural Compuation

Sascha Lange and Martin Riedmiller

Albert-Ludwigs-Universität Freiburg - Dept. of Computer Science - Germany

Abstract. New methods in reinforcement learning like policy gradients
and batch reinforcement learning as well as a better understanding of the
strengths and limits of particular combinations of reinforcement learning
and function approximation have allowed for a significant step forward,
when it comes to stable and efficient learning on real systems. Due to
this progress, old research questions could been answered and completely
new arise. With the goal of giving some insights into where the field of
reinforcement learning is heading, this paper briefly presents the history
of reinforcement learning, continues with a short (subjective) discussion
of the present state of the art and finally comes up with ideas for new
research directions. A special focus is put on the implications of these
developments to neural computation.

1 A Very Brief History of Reinforcement Learning

The early optimism surrounding reinforcement learning (RL) was severely tested,
as it became clear that the transition from learning in small discrete state spaces
towards solving real problems on real systems would not be as easy as expected
but would cause severe problems concerning the stability and complexity—even
in rather simple problem settings. Another drawback was the insight multi-
layer perceptrons and other popular function approximators do not guarantee
stable convergence with common reinforcement learning update rules [1, 2], but—
even worse—may lead to divergence in the general case. This was even a more
severe strike as researchers had quite high hopes for these techniques as they
had allowed for a number of impressive early successes in large and continuous
state spaces (see e.g. [3]).

In the following years the research efforts concentrated on finding stable
approximative versions of the known RL methods and on scaling them to con-
tinuous learning tasks on real systems. At the main focus were tasks from closed
loop control that still were of rather limited complexity. However, in the recent
past, there has been made significant progress. Thanks to new methods like pol-
icy gradients [4–6] and batch reinforcement learning [7–10] it’s now possible to
reliably solve many of these real-world problems directly by learning from in-
teracting with the real system [5, 11–15]. The number of necessary interactions
for learning good policies was reduced by orders from typically several million
interactions to a few thousands or hundreds.
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2 Once Again Recalibrating the Research Focus

This situation now allows, or even demands, the recalibration of the research
focus, shifting it towards problems that have already been on the agenda in
the early days of reinforcement learning, but somehow nearly fell into oblivion
during the time of more pressing, more fundamental research on RL’s stability
and scalability. Among these questions are:

– the question about how and where to explore the environment. For maximiz-
ing the learning results, while at the same time reducing the invested effort
in form of interactions, it’s necessary to actively control the exploration in
a goal-directed mannor.

– the question about the state and where its particular representation comes
from. The design of the state space often involves important insights into
the system and in many cases heavily influences the task’s complexity and
the final results.

– the question about how an agent could autonomously break down a given
task into several smaller sub-tasks, define valid sub-goals and learn to solve
them sequentially. This is one of the questions treated in hierarchical rein-
forcement learning—but a real break-through is still missing.

– the related but more philosophical question about the origins of reward
and intrinsic motivations of an agent. How can an agent act and learn self-
motivated?

3 A Chance for Rebuilding the Cognitive Agent

We strongly believe future systems have to address these questions in order to
achieve further performance enhancements, to allow the application to more com-
plex problems, and to allow an improved autonomy of (reinforcement) learning
agents. Hence, it seems to be the right time to think about more complex archi-
tectures of learning agents, building upon the basic building blocks of stable and
efficient RL methods, and introducing higher levels of modules for monitoring,
directing and controlling the process and progress of learning. The goal would be
to (re-)introduce reinforcement learning into a broader context within artificial
intelligence and the cognitive agent. In this respect, we do not expect much less
than a small revolution, at its end having symbolic methods and sub-symbolic
methods—to which we count reinforcement learning—no longer opposed to each
other, but working together hand-in-hand, solving different sub-tasks on differ-
ent levels of the architecture. We clearly see reinforcement learning and methods
from neural computation at the lower levels of such an architecture, having more
deliberative and perhaps symbolic methods at its higher levels. From the area of
neural computation, we expect important contributions in two different areas: 1.
within the “core” of reinforcement learning, the approximation of value functions
and the representation of policies when learning on continuous, real systems and
2. within the outlined cognitive architecture and its supporting modules.

We would like to briefly discuss three examples in the following:
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Multi-layer perceptrons for approximating value functions Even in the
batch approach to reinforcement learning multi-layer perceptrons and other
“non-averagers” [7] do not guarantee a stable learning process in the gen-
eral case [8]. Nevertheless, when using mulit-layer perceptrons, the batch
approach with its separation of dynamic programming and function approx-
imation and its synchronous updates of the approximated value function
offers a significant improvement over older “direct” (online) methods with
asynchronous updates. This and the benefit of using a global approximator
are some of the reasons for Neural Fitted Q-Iteration (NFQ) already having
scored several impressive successes on real systems, and for NFQ—besides
FQI [9] and LSPI [16]—presently becoming an accepted standard method
that people discuss, use and compare against [17–19]. New theoretical ap-
proaches [18] moreover promise a better understanding of the conditions and
circumstances where particular non-averagers like MLPs might be save to
use or better should be avoided.

Winner-take-all networks for adapting grids At the border of 1. and 2. is
an application of winner-take-all networks (WTA) to the adaptation of the
structure of grid approximators. All kinds of constant and interpolating grid
approximators are still widely applied in RL, due to their conceptual simplic-
ity and their provable stability within batch methods [8, 9]. WTA methods
allow the automatic adaptation of the structure of such grid approximators
to the distribution of the relevant data in the the state space that is actually
unknown before starting the learning process [20]. This automatic adaptation
is especially helpful, if the data is situated on a low-dimensional mannifold in
a high-dimensional state space [20]. At the same time those methods could
help bridge the gap towards higher-level modules of the cognitive agent ar-
chitecture. Methods like vector quantization and especially self-organizing
maps and neural gas could help detecting clusters and structure in the data
and thus could allow to build a basis for a transition to deliberation and
symbolic reasoning about the structure of the problem, for example in order
to control exploration or to formulate new hypothesis on valid sub-goals.

Deep auto-encoders for learning feature spaces One important thing for
a success of RL is to contruct a suitable state space that carries the necessary
information (has the markov property), but is not overly complex. When us-
ing basic online-RL methods, this usually had to be done before starting the
learning procedure, since changing the state representation afterwards had
roughly the same effect as changing the structure of the function approxima-
tor (moving a support or basis function): all information learned about the
value function so far was lost in the worst case [20]. But batch RL techniques
allow for an immediate recalculation of the value functions in the changed
state space and thus make “seamlessly” switching the state space during the
learning process possible, without increasing the task’s complexity in form of
necessary interactions with the system [20]. Hence, the agent can deliberate
over an appropriate state representation by itself and can adapt it during
the learning process as thought necessary. This possibility already has been
implemented in practice. The DFQ algorithm [21] uses deep auto-encoder
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neural networks [22, 23] for unsupervised learning of low-dimensional feature
spaces—these are used as basis for learning a value function—from high-
dimensional observations (images), as observed during learning to control
real systems based on visual data only [20].

One final thing to note is, from now on, all newly developed solutions have
to consider the needs of real systems. If we have learned one thing from the past,
it is that we can not develop fancy solutions for the discrete case and then hope
these will somehow scale to stochastic problems with continuous state and action
spaces. This already has failed once, even for the most simple algorithms, not
only for complexity reasons, but also for the fundamental difference of problems
when function approximation and stochasticity are involved. Thus, it’s now time
to once again rebuild the cognitive agent, but this time starting from the bot-
tom, building on practice-proven algorithms, first addressing the fundamental
questions and slowly moving towards the top.

4 Conclusion

There are many interesting challenges for neural methods in RL. We see many
opportunities for such methods directly at the heart of reinforcement learning as
well as in key areas of a more general, cognitive agent architecture. The newly
proposed techniques for training deep neural architectures already have led to
a notably increased interest in neural methods and are also of great importance
in the context of RL. Winner-take-all networks can help to adapt the structure
of function approximators to the distribution of the data in a very natural way
and may play a role in bridging the gap to symbolic and deliberative modules in
the higher levels of a cognitive agent architecture. Eventually, autonomous aerial
and ground vehicles and especially autonomous robots will find entrance into our
every-day live. In such systems that ultimately should be able to operate in our
environment and to interact with us autonomously, modules using reinforcement
learning and neural computation will almost certainly realize important aspects.
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Challenges in Training Restricted Boltzmann

Machines

Asja Fischer and Christian Igel⋆

Institut für Neuroinformatik
Ruhr-Universität Bochum, 44780 Bochum, Germany

asja.fischer@ini.rub.de,christian.igel@ini.rub.de

Abstract. Optimization based on k-step Contrastive Divergence (CD)
is promising for training Restricted Boltzmann Machines and has been
successfully applied in practice. However, CD-learning is based on a bi-
ased approximation of the log-likelihood-gradient and this bias can lead
to serious problems. Here, we review recent theoretical and empirical
studies revealing and analyzing this issue. Among other things, it has
been claimed that – despite of the bias – the signs of most components
of the CD update direction are equal to the corresponding signs of the
gradient of the log-likelihood. This suggests combining CD with opti-
mization algorithms just depending on the signs of the components of
the gradient of the objective function. However, we empirically show that
combining CD and Rprop does not solve divergence problems occurring
in CD learning.

Key words: Unsupervised Learning, Restricted Boltzmann Machines,
Contrastive Divergence, Gibbs Sampling

1 Introduction

Understanding and modeling how brains learn higher-level representations from
sensory input is one of the key challenges in computational neuroscience and
machine learning. Using multiple levels of more and more abstract representa-
tions is a characteristic property of the brain leading to the ability to abstract
and to generalize. This idea is picked up by the machine learning research field
of “deep learning”, which refers to learning layers of representations.

Layered generative models such as deep belief networks (DBNs) are promising
for learning such representations, and new algorithms that operate in a layer-wise
fashion make learning these models computationally tractable [4–8]. Restricted
Boltzmann Machines (RBMs) are the typical building blocks for DBN layers.
They are undirected graphical models (Markov random fields), and their struc-
ture is a bipartite graph connecting visible and hidden neurons. Training large
undirected graphical models by likelihood maximization in general involves av-
erages over an exponential number of terms, and obtaining unbiased estimates

⋆ This paper is based on [1–3].
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2 A. Fischer and C. Igel

of these averages by Markov chain Monte Carlo methods typically requires too
many sampling steps. However, recently it was shown that estimates obtained af-
ter running the chain for just a few steps can be sufficient for model training [4].
In particular, Contrastive Divergence (CD, [4]) learning has become a standard
way to train RBMs. [4–8]. The k-step CD learning is based on steepest-ascent
on an estimate of the log-likelihood gradient gained by k steps of Gibbs sam-
pling. The CD estimate is a biased approximation of the true gradient. There-
fore, CD-learning does not necessarily reach the maximum likelihood estimate
of the parameters. The bias of the approximation depends on the mixing rate
of the Markov chain, and mixing slows down with increasing absolute value of
the model parameters [4, 9, 7]. Hence, the bias increases with increasing param-
eter magnitude during RBM training. Recently it has been shown that this can
lead to divergence of the log-likelihood. This has also been observed for the
refined methods Persistent Contrastive Divergence (PCD, [10]) and Fast Per-

sistent Contrastive Divergence (FPCD, [11]) [1, 12, 3]. Nevertheless, Bengio and
Delalleau [7] found by comparing the log-likelihood gradient and the average of
CD-k in small RBMs (where both are tractable) that the fraction of parameter
updates for which the log-likelihood gradient and the average over CD-k have
different signs remains small. This raises the question whether optimization algo-
rithms which consider only the signs of the partial derivatives, such as Resilient
Backpropagation (Rprop, [13, 14]), could lead to better learning results. This is
empirically investigated in this paper. After briefly describing CD, PCD, and
FPCD leaning and their limitations, we describe our experiments, discuss the
results, and finally draw our conclusions.

2 RBMs

An RBM is an undirected graphical model [4, 15]. Its structure is a bipartite
graph consisting of one layer of m visible units V = (V1, . . . , Vm) representing
observable data and one layer of n hidden units H = (H1, . . . , Hn) capturing
dependencies between observed variables. It is parametrized by the connection
weights wij as well as the biases bj and ci of visible and hidden units, respectively
(i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}). Given these parameters, jointly denoted as
θ, the joint distribution of V and H under the model is

p(v,h) = e−E(v,h)/Z , (1)

where Z =
∑

v,h e−E(v,h) is a normalization constant and the energy E is given
by

E(v,h) = −

n
∑

i=1

m
∑

j=1

wijhivj −

m
∑

j=1

bjvj −

n
∑

i=1

cihi . (2)

The log-likelihood of the model parameters θ given one training example vl is

logL(θ|vl) = logP (V = vl) = log
∑

h

e−E(vl,h) − log
∑

v,h

e−E(v,h) . (3)
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Differentiating the above with respect to θ yields

∂

∂θ
L(θ|vl) = −

∑

h

p(h|vl)
∂E(vl,h)

∂θ
+

∑

v

p(v)
∑

h

p(h|v)
∂E(v,h)

∂θ
. (4)

Computing the first term on the right side of the equation is straightforward
because it factorizes. For example, for a weight wij it reduces to

−
∑

h

p(h|vl)
∂E(vl,h)

∂wij

= Ep(hi|vl)[hi]vlj , (5)

where vlj denotes the j-th component of vl. The computation of the second
term is intractable for regular sized RBMs because its complexity is exponential
in the size of the smallest layer. However, the expectation over p(v) can be
approximated by alternating Gibbs sampling [16, 17]. But since the sampling
chain needs to be long to get almost unbiased samples of the distribution modeled
by the RBM, the computational effort is still too large.

3 Training methods based on Gibbs sampling

The basic idea of the k-step Contrastive Divergence (CD-k) algorithm [4] is as
follows. Instead of running the Gibbs chain until a near-to-equilibrium distri-
bution is reached, the chain is run for only k steps starting from a training
example v

(0) producing the sample v
(k). Each step t consists of sampling h

(t)

from p(h|v(t)) and sampling v
(t+1) from p(v|h(t)) subsequently. The gradient

(4) with respect to θ of the log-likelihood for one training pattern v
(0) is then

approximated by

CDk(θ,v
(0)) = −

∑

h

p(h|v(0))
∂E(v(0),h)

∂θ
+

∑

h

p(h|v(k))
∂E(v(k),h)

∂θ
. (6)

Based on this basic idea of approximating the log-likelihood via Gibbs sam-
pling, refinements of vanilla CD learning have been proposed more recently [10,
11]. In the Persistent Contrastive Divergence (PCD, [10]) algorithm, v(k) in (6)
is sampled from a Markov chain defined by the RBM parameters that is inde-
pendent of v(0). This corresponds to standard CD learning without reinitializing
the visible units of the Markov chain with the current training sample. It is
assumed that the chain stays close to the stationary distribution if the learn-
ing rate is sufficiently small and thus the model changes only slightly between
parameter updates [18, 10]. In Fast Persistent Contrastive Divergence (FPCD,
[11]), a set of additional parameters is introduced, which are only used for Gibbs
sampling. These parameters are referred to as fast parameters and should lead
to higher mixing rates. When calculating the conditional distributions for Gibbs
sampling, the regular parameters are replaced by the sum of the regular and
the fast parameters. The update rule for the fast parameters is equal to that
of the regular parameters, but with an independent, large learning rate and a
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large weight-decay parameter. For details about PCD and FPCD we refer to the
original publications [10] and [11], respectively.

Desjardins et al. as well as Salakhutdinov [12, 19] showed that using Markov
Chain Monte Carlo algorithms based on tempered transitions yields better train-
ing results than Gibbs sampling. But up until now it is not clear if these algo-
rithms can compete with the Gibbs sampling based algorithms when they are
used in real world scenarios with limited computation time.

4 Limitations of the proposed learning algorithms

In the following, we discuss some theoretical properties of the proposed RBM
learning algorithms as well as selected empirical studies revealing problems when
using these methods for RBM training.

4.1 Theoretical considerations

Training RBMs using CD does not necessarily lead to a maximum likelihood
estimate of the model parameters. Examples of energy functions and Markov
chains for which CD-1 learning does not converge are given in [20]. Yuille [21]
specifies conditions under which CD learning is guaranteed to converge to the
maximum likelihood solution, which need not hold for RBM training in general.

Bengio and Delalleau [7] show that CD-k is an approximation of the true log-
likelihood gradient by finding an expansion of the gradient that considers the
k-th sample in the Gibbs chain and showing that CD-k is equal to a truncation of
this expansion. Furthermore, they prove that the residual term (i.e., the bias of
CD) converges to zero as k goes to infinity. Bengio and Delalleau [7] additionally
prove a bound for the bias of CD, which reflects the dependence on the magnitude
of the parameters and the value of k. However, this bound is very loose (it
approximates the number of configurations of the visible units, while the absolute
value of the bias is never larger than one.)

Fischer and Igel [2] recently derived a tighter upper bound based on general
results for the periodic Gibbs Sampler [22]. Its magnitude depends on k, on the
number of variables in the RBM, and on the maximum change in energy that can
be produced by changing a single variable. The latter reflects the dependence
on the absolute values of the RBM parameters. The bound emphasizes that the
magnitude of the bias is also affected by the distance in variation between the
modeled distribution and the starting distribution of the chain.

4.2 Empirical studies

Experiments comparing the quality of small RBMs trained based on the expec-
tation of CD-1 (to avoid sampling noise) and true likelihood maximization are
presented in [9] and [7]. Carreira-Perpiñán and Hinton [9] show that in general
CD learning does not lead to the maximum likelihood solutions. In their ex-
periments is reaches solutions close by. Bengio and Delalleau [7] show that the
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quality of CD-k as an approximation of the log-likelihood gradient decreases as
the norm of the parameters increases. Anyhow, the RBMs are still able to model
the considered simple target distributions. Additionally, they find that the bias
of CD-k also increases with increasing number of visible units, but that the frac-
tion of parameter updates for which the log-likelihood gradient and the average
over CD-k have different signs remains small.

However, there is empirical evidence that the bias of CD can also have serious
effects: Fischer and Igel [1] show that CD can even lead to a steady decrease of
the log-likelihood during learning. This is confirmed in [12, 3] also for PCD and
FPCD. The divergence is a serious problem in practice because there does not
exist any efficiently computable stopping criteria indicating the decrease of the
log-likelihood. The results of Fischer and Igel [3] indicate that the log-likelihood
seems to diverge especially if the target distribution is difficult to learn for an
RBM. Furthermore, they show that the decrease of the likelihood can not be
detected by an increase of the reconstruction error, which has been proposed
as a stopping criterion for CD learning. Weight-decay with a carefully chosen
weight-decay-parameter can prevent divergence.

5 Training RBMs with Resilient Backpropagation

In our experiments, we study the evolution of the log-likelihood during gradient-
based training of RBMs using the Resilient Backpropagation algorithm (Rprop)
based on CD-k. We first give a description of the Rprop algorithm, then briefly
describe our benchmark problems, give details of the experimental setup, and
finally describe and discuss the results of our experiments.

5.1 Resilient Backpropagation

The speed of steepest-ascent CD learning crucially depends on the learning rate
(see for example the empirical results in [3]). For large-scale problems, optimiza-
tion algorithms are needed that increase the likelihood in few iterations with-
out extensive hyperparameter tuning. However, as the likelihood is in general
intractable the choice of the gradient-based optimization algorithm is limited
to methods that do not need the absolute objective function value. Resilient
Backpropagation is such a method. It is an iterative algorithm with adaptive
individual step sizes [13]. It is frequently used for unconstrained optimization in
machine learning because it is fast; robust with respect to the choice of the in-
ternal (hyper-) parameters; has linear time and space complexity in the number
of parameters to be optimized; and is not very sensitive to numerical problems.
The Rprop algorithm considers only the signs of the partial derivatives of the
function to be optimized and not their values. Because experiments suggest that
the CD estimator has the correct sign most of the time [7], Rprop seems to be
promising for CD learning.

In each iteration g of Rprop, every parameter θ
(g)
i is updated according to

θ
(g+1)
i = θ

(g)
i + sign

(

[CDk(θ
(g))]i

)

·∆
(g)
i . (7)
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Prior to this update, the step size ∆
(g)
i is adapted based on changes of sign of

the (approximated) partial derivative [CDk(θ
(g))]i in consecutive iterations. If

the sign changes, indicating that a local minimum has been overstepped, then
the step size is multiplicatively decreased, otherwise, it is increased. The update
rule for the step size is given by:

∆
(g)
i =











min(η+∆
(g−1)
i , ∆max) if [CDk(θ

(g−1))]i[CDk(θ
(g))]i > 0

max(η−∆
(g−1)
i , ∆min) if [CDk(θ

(g−1))]i[CDk(θ
(g))]i < 0

∆
(g−1)
i else ,

(8)

where 0 < η− < 1 < η+ and the step size is bounded by ∆min and ∆max. The
hyperparameters η−, η+, ∆min and ∆max can be fixed to default values.

5.2 Benchmark problems

We consider four artificial benchmark problems taken from the literature. The
first two problems are described in [17, 23] and are also used in [3]. The other
two are taken from [7].

Labeled Shifter Ensemble. The 19 dimensional data set contains 768 samples,
3 of which shown in Figure 1. The samples are generated in the following way:
The states of the first 8 visible units are set uniformly at random. The states of
the following 8 units are cyclically shifted copies of the first 8. The shift can be
zero, one unit to the left, or one to the right and is indicated by the last three
units. The log-likelihood is 768 log 1

768 ≈ −5102.43 if the distribution of the data
set is modeled perfectly.

Fig. 1. Three sample patterns of the Shifter benchmark problem. The first input row
is shifted to the left, not shifted, and shifted to the right, respectively, as indicated by
the three label units.

16 Machine Learning Reports

hammer
Rectangle



Challenges in Training Restricted Boltzmann Machines 7

Bars and Stripes Ensemble. We consider a smaller variant of the Bars-and-
Stripes problem described in [23] with 16 instead of 25 visible units. Examples
of input patterns are shown in Fig. 2. Each pattern corresponds to a square of
4×4 units and is generated by first randomly choosing an orientation, vertical or
horizontal with equal probability, and then picking the state for all units of every
row or column uniformly at random. Since each of the two completely uniform
patterns can be generated in two ways, the lower bound of the log-likelihood is
−102.59.

Fig. 2. Four patterns of the (simplified) Bars-and-Stripes benchmark problem.

Diag. The Diagd-Problem is a d-dimensional data set containing d + 1 binary
vectors. In this study we focus on d = 6, which is the smallest dimension used
in the experiments of [7]. The Diag6 data set is given by:

(0, 0, 0, 0, 0, 0)

(1, 0, 0, 0, 0, 0)

(1, 1, 0, 0, 0, 0)

(1, 1, 1, 0, 0, 0)

(1, 1, 1, 1, 0, 0)

(1, 1, 1, 1, 1, 0)

(1, 1, 1, 1, 1, 1)

An upper bound for the log-likelihood is given by −13.62.

ID-Ball. The IDBalld data set consists of 2d⌊d−1
2 ⌋ binary vectors, which are

generated as described in [7]. Again, we focus only on d = 6, for which the

New Challenges in Neural Computation - 2010 17

hammer
Rectangle



8 A. Fischer and C. Igel

training set is given by:

(1, 0, 0, 0, 0, 0) (0, 1, 1, 1, 1, 1)

(1, 1, 0, 0, 0, 0) (0, 0, 1, 1, 1, 1)

(0, 1, 0, 0, 0, 0) (1, 0, 1, 1, 1, 1)

(0, 1, 1, 0, 0, 0) (1, 0, 0, 1, 1, 1)

(0, 0, 1, 0, 0, 0) (1, 1, 0, 1, 1, 1)

(0, 0, 1, 1, 0, 0) (1, 1, 0, 0, 1, 1)

(0, 0, 0, 1, 0, 0) (1, 1, 1, 0, 1, 1)

(0, 0, 0, 1, 1, 0) (1, 1, 1, 0, 0, 1)

(0, 0, 0, 0, 1, 0) (1, 1, 1, 1, 0, 1)

(0, 0, 0, 0, 1, 1) (1, 1, 1, 1, 0, 0)

(0, 0, 0, 0, 0, 1) (1, 1, 1, 1, 1, 0)

(1, 0, 0, 0, 0, 1) (0, 1, 1, 1, 1, 0)

As IDBall6 consists out of 24 vectors generated with equal probability the upper
bound for the log-likelihood is given by −76.27.

5.3 Experimental Setup

The RBMs were initialized with weights drawn uniformly from [−0.5, 0.5] and
zero biases. The numbers of hidden units were chosen to be equal to the number
of the visible units.

The models were trained with Rprop based on CD-1 or CD-100 on all four
benchmark problems. If not stated otherwise, the hyperparameters where set to
the default values η− = 0.5, η+ = 1.1, ∆min = 0.0 and ∆max = 10100.

To save computation time, the exact likelihood was calculated only every 10
iterations of the learning algorithm. All experiments were repeated 25 times.

5.4 Results

Figure 3 shows (in the top left plot) the evolution of the log-likelihood during
learning of the Shifter-problem with Rprop based on CD-1. Shown are the me-
dians over 25 trails with different parameter initializations. After an increase in
the first iterations the log-likelihood starts to decrease. The development of the
likelihood differs a lot depending on the parameter initialization. This can be
seen exemplarily in the top right plot of Fig. 3 depicting some single trials. When
using the CD-100 instead of the CD-1 approximation of the gradient a stagna-
tion of the log-likelihood on an unsatisfying level during Rprop based learning is
observed (see bottom plot of Fig. 3). This happens systematically in every trail
independent of the initialization of the parameters as indicated by the quartiles.

During training an RBM on the Bars-and-Stripes-problem the log-likelihood
stagnates when Rprop is based on CD-1 as well as on CD-100. In both set-
tings similar log-likelihood values are reached which are low compared to the
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Fig. 3. Top: The development of the log-likelihood during training an RBM on the
Shifter-problem with Rprop based on CD-1. The medians over 25 trails are shown in the
top left plot. Five single trails with different parameter initializations are exemplarily
shown on the right. Bottom: Training with Rprop based on CD-100. Shown are the
medians over 25 trails, error bars indicate quartiles, the dashed line indicates the upper
bound of the log-likelihood.

upper bound and to the maximum values reached when an RBM is trained with
steepest descent (see empirical analysis of [3]).

As shown in Fig. 5 and Fig. 6, the log-likelihood also stagnates when learning
the Diag- and IDBall-problem. Here we also observe similar learning curves if
the Rprop algorithm is based on CD-1 and CD-100.

The stagnation of the log-likelihood could indicate a frequently changing sign
of the CD-approximation during the learning process. A frequently changing sign
of the approximation causes the step size for the parameter updates (see (8)) to
get smaller and smaller and – if the step size is not bounded – to finally approach
zero. Thus it could be possible to avoid the stagnation by enlarging the minimal
possible step size ∆min. This idea is verified by the following results.

If the minimal step size ∆min is set to a value larger than zero and the
maximal step size ∆max is set to a value smaller than the default value, we can
observe big differences in the evolution of the log-likelihood during Rprop based
training. As shown in Fig. 7, high (relative to the upper bound) log-likelihood
values are reached during learning the Diag- and the IDBall-problem with Rprop
based on CD-1 if the hyperparameters are set to ∆min = 0.0001 or ∆min = 0.001,
respectively, and ∆max = 1. A nearly identical evolution of the log-likelihood can
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be observed (results not shown) if only the minimal step size value is enlarged
and ∆max is set to its default value.

When learning the Bars-and-Stripes-problem with a restriction of the step
size parameters (∆min = 0.0001 and ∆max = 1) the log-likelihood starts to
diverges (see top plots in Fig. 8). The experiments with the Shifter-problem
with restricted step size parameters lead to similar results as the experiments
with the parameters set to the default values (see bottom plots in Fig. 8).
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Fig. 4. Evolution of the log-likelihood during CD-learning of the Bars-and-Stripes-
problem based on Rprop. Training is based on CD-1 (shown left) or CD-100 (shown
right) respectively.

0 10000 20000 30000 40000 50000

−
25

−
20

−
15

iterations

lo
g
-
li
k
e
li
h
o
o
d

0 10000 20000 30000 40000 50000

−
25

−
20

−
15

iterations

lo
g
-
li
k
e
li
h
o
o
d

Fig. 5. Log-likelihood during learning of the Diag-problem based on CD-1(shown on
the left) or CD-100 (shown on the right).

5.5 Discussion

The experiments show that the success of Rprop based CD learning depends on
the data distribution to be learned and on the values of the hyperparameters
(∆min and∆max). If the step size is allowed to get arbitrary close to zero (∆min =
0.0), the training progress stagnated on an unsatisfying level for some target
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Fig. 6. Log-likelihood for Rprop based on k-step-CD applied to the IDBall -problem.
Left: Rprop based on CD-1. Right: Rprop based on CD-100.
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Fig. 7. Log-likelihood during training with Rprop with limited step size hyperpa-
rameters. On the left: Learning of the Diag-problem. The step size is limited by
∆min = 0.0001 and ∆max = 1. On the right: Learning of the IDBall -problem with
∆max = 1 and ∆min = 0.001 and ∆min = 0.0001 respectively.

distribution. With an appropriate ∆min, Rprop was able to learn good models
depending on the problem.

The reason for the stagnation could be convergence to a suboptimal local
maximum. However, experiments using the expectation of CD-1 (not shown) did
not suffer from the stagnation problem. As we see no reason why learning based
on the expectation of CD-1 should be less prone to getting stuck in undesired
local optima than learning based on the CD approximation, local maxima are
not likely to be the reason.

We believe that the reason is the fast reduction of the Rprop step size pa-
rameters ∆i due to changes in sign of the gradient components due to stochastic
effects and errors in the CD approximation.

If steepest-ascent can learn a distribution, this is also possible using Rprop,
but in our experiments this required ∆min > 0. When applying Rprop to Shifter
and Bars-and-Stripes, the log-likelihood diverged before a good model was learned
even if we constrained∆min and∆max. That is, if learning diverges using steepest-
ascent (as reported in [3]), it also diverged using Rprop. Thus, albeit it has been
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Fig. 8. Log-likelihood during training with Rprop with limited step size hyperparam-
eters (∆min = 0.0001 and ∆max = 1). Top: Results for the Shifter-problem. Bottom:
Results for the Bars-and-Stripes-problem. The medians over 25 trails are shown on the
left. Five single trails with different parameter initializations are exemplarily shown on
the right.

reported that the sign of the components of the CD update direction vector is
often right, learning based on these signs tends to diverge.

6 Conclusion

Combining multiple layers of Restricted Boltzmann Machines (RBMs) is a promis-
ing approach to learning abstract representations. Despite the recent progress
in the development of learning algorithms for RBMs, the problem of efficient,
robust RBM learning is far from being solved. While learning using k-step Con-
trastive Divergence (CD) or (Fast) Persistent CD has been applied successfully,
the CD is only a biased estimate of the desired update direction and thus CD
learning may not converge the maximum likelihood solution. The learning pro-
cess may even diverge in the sense that the model systematically gets worse.
This happens if the absolute values of the model parameters – the RBM weights
– get to large leading to a strong bias in the estimate of the log-likelihood gra-
dient. Although it has been argued that the signs of the gradient components
are estimated correctly most of the time, learning algorithms just considering
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these signs – and not the absolute values – do not solve the divergence problem.
Therefore, for training algorithms relying on Gibbs sampling based stochastic
approximations of the log-likelihood gradient, there is a need for robust mech-
anisms that control the weight growth in CD and related learning algorithms,
for example, reliable heuristics for choosing the weight decay parameters or suit-
able criteria for early-stopping. New learning methods for RBMs using Markov
Chain Monte Carlo algorithms based on tempered transitions are promising [19,
12], but their learning and scaling behavior needs to be further explored.
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1 Computer Engineering Group, Faculty of Technology, Bielefeld University
2 Center of Excellence Cognitive Interaction Technology (CITEC), Bielefeld

University

Abstract. We present a model architecture for a basic form of mental
imagery, based on an appearance based approach to view synthesis. This
model architecture is developed for an experimental study in which an
artificial agent learns how to associate the values of a set of posture
variables and the corresponding view of its robotic gripper. Our model
is fully adaptive and does not require any a priori information.

1 Introduction

Mental imagery is the process of generating internal sensory experiences and im-
pressions of motor activity without actual sensory inflow. Humans are obviously
capable of recalling sensory experiences even in a willful manner. These sensory
experiences may relate to changes in visual scenes caused by the execution of
covert motor commands (e.g. walking through an environment) or may just be
a recall of previously perceived sensations. Neuroimaging studies suggest that
cortical areas which are involved in the processing of perceived stimuli are also
active during mental imaging [4]. A similar finding suggests that motor areas
are used for executed as well as covert actions [3].

In this article we suggest an artificial neural architecture which enables an
agent to generate mental views of parts of itself based on the values of a set
of postural variables and motor commands. The agent might use these mental
images to identify itself (or parts of itself) in its current view. This form of “self-
awareness” becomes important when the agent starts interacting with objects
or with other agents: here, the self-aware agent is able to discriminate portions
of the visual input (e.g. pixels) that belong to the objects it interacts with from
portions that belong to its own body.

In the following, we will consider a stationary agent which consists of an
arm with an attached two-finger gripper and a stereo camera head. The mental
imagery is restricted to views of the gripper based on (a) the arm posture and
(b) the current gaze direction. Thus, we can model the generation of a mental
image as a mapping from parameter into image space — a process commonly
termed view synthesis in the literature [2].

The field of view synthesis can be divided into two main branches; image syn-
thesis methods are based on models of the scene whereas morphing approaches
use one or more images of the scene which are morphed into a new view. A
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special case of the latter is image warping which transforms one input image
based on a set of parameters [1].

Typically, image synthesis requires a precise geometrical model of the scene,
e.g. a CAD model. While such a model can be acquired for artificial applications,
it seems very unlikely that this form of representation is used in biological brains.
Appearance-based view synthesis [2] does not require an explicit model; the
model is rather “learned” directly from provided image data. The view (i.e. an
image) is parameterized by an appearance vector whose dimensionality is much
lower than the number of pixels in the original image. For our application, the
objective is now to establish a mapping from postural parameters onto the ap-
pearance vector.

Image warping [1] is a general term referring to a class of methods that
involve the mapping of pixel positions in one image plane onto another. Schenck
and Möller describe [8] a visual forward model which takes as input the current
view and predicts an image as it would appear after a given saccade, i.e. a change
in gaze direction. Thus, the synthesized view only contains information already
present in the input image but “warped” according to the new gaze direction.

In this article we present a method that combines image synthesis with image
warping. A robotic agent equipped with a stereo camera head and a serial ma-
nipulator with an attached two-finger gripper learns to associate a certain arm
posture and gaze direction with the corresponding view of its gripper. Here, the
image synthesis part — termed visual associative model — takes as inputs the
joint angles of the manipulator and returns the corresponding image of the grip-
per. These images always appear as if the gaze is directed towards the gripper. To
generate views of the gripper from arbitrary gaze directions, we employ a visual
forward model which is used to warp the image of the current view according to
a given saccade. The saccade is generated from the desired gaze direction and
the gaze direction that would fixate the gripper. Thus we furthermore require a
model — the kinesthetic associative model — which associates an arm posture
with a gaze direction such that the gripper is fixated.

2 Robotic Agent

The robotic agent used throughout this study resembles roughly the upper torso
of a human: it consists of a camera head with two cameras, each mounted on
a pan-tilt unit (PTU), and a 6-degrees-of-freedom serial manipulator with an
attached two-finger gripper. The cameras are mounted above the arm. The whole
set-up faces a table which serves in our experiments only as a background.

2.1 Camera Head

The camera head consists of two analog cameras which provide RGB images of
320 × 240 pixels. We denote the gaze direction by a vector ṽ = (pl, tl, pr, tr)

T ,
where pl, tl denote the left pan/tilt angles and pr, tr denote the right pan/tilt
angles, respectively. In the following, we will employ a vergence model [7] in
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which the right and left pan/tilt angles are coupled. The mapping from the
coupled parameters (p, t, vh, vv) onto the individual ones is given by the relation
[7]: pl/r = (p ± λh( 1

2vh + 1
2 ))/(1 + λh), tl/r = (t ± λvvv)/(1 + λv), where p, t

denote the coupled pan/tilt values and vh, vv denote the horizontal and vertical
vergence values, respectively (λh = 0.5, λv = 0.2).

The vergence model is biologically more plausible than controlling both PTUs
independently. Furthermore, additional depth information is implicitly encoded
in the horizontal vergence value: fixations in the near result in smaller horizontal
vergence values (i.e. the cameras are rotated towards each other), while fixations
in the distance result in greater values (i.e. the angle between the cameras axes
approaches 0◦).

2.2 Manipulator

The agent is furthermore equipped with a robot manipulator with six rotatory
degrees of freedom. The joint angles will be denoted by θ1, . . . , θ6. The manip-
ulator can be decoupled into arm (joints 1–3) and wrist (joints 4–6). Thus, its
inverse kinematics can be calculated in closed form. Note that this computation
is just a shortcut which is needed in order to collect a large sample of training
patterns.

Attached to the manipulator is a gripper with two fingers. The longitudinal
axis of the gripper is always kept parallel to the ground while it can take three
different orientations about the vertical axis, i.e. {0◦, 15◦, 30◦}.3

3 Kinesthetic Association

The kinesthetic associative model directs the agent’s gaze towards the center
of its gripper by associating an arm posture (i.e. a set of joint angles) with a
gaze direction (i.e. pan, tilt and vergence values). The purpose of this model is
two-fold: during the training of the visual associative model it is used to collect
training images of the gripper for different arm postures. In the application
phase, the corresponding arm posture is used to generate saccades which are
then used to drive the visual prediction (visual forward model).

The associative model is implemented as a 3-layer feed-forward neural net-
work [6] with 6 inputs (corresponding to the 6 joint angles), a hidden layer with
40 units and 4 outputs (corresponding to the pan, tilt and horizontal/vertical
vergence values). Linear activation functions were used for the output layer and
sigmoid functions (tanh) for the hidden layer. The training data was collected
by approaching points within a regular grid of end effector coordinates. The
cameras were controlled by a saccade controller [7] such that the gripper was
fixated for every grid point.

We chose an adaptive solution to this problem, although we are aware that
there exist simple engineering solutions which rely on computing the inverse kine-
matics of the camera head. However, we think that using an adaptive approach
here is more appropriate for a biologically oriented model like ours.

3 At an orientation of 0◦, the gripper is pointing away from the cameras.
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3.1 Saccade Control

A saccade controller [7] is a controller which directs the gaze towards a salient ob-
ject. In terms of control theory, the reference corresponds to both image centers,
the system input are the pan, tilt and vergence values and the measured output
is the centroid of the salient object in image coordinates (separately for both
images). Thus, the measured error is the deviation between the image centers
and the centroid in the left and right camera image.

We chose a simple P-type Controller for this purpose. The controller equation
is given by ∆v = Ge, where ∆v denotes the change in gaze direction (i.e. the
saccade), G denotes the gain matrix (see [7] for details), and e is the error
vector containing the deviations between the image center and the centroid of
the salient object in x and y direction for the left and right image, respectively.
Note that the image coordinates are scaled to be in the range [−1; 1]. In order
to avoid oscillations of the controller, the controller tolerates errors of 1 pixel in
each direction.

3.2 Training

For the training we defined a rectangular workspace of size 150mm× 120mm×
300mm that was sampled by a 7×6×15 regular grid. Thus, the distance between
adjacent grid positions is approximately 20mm in each direction. The whole
grid was sampled for each gripper orientation α ∈ {0◦, 15◦, 30◦} separately. The
six joint angles were calculated from the Cartesian coordinates using inverse
kinematics (IK).4 From the 8 theoretically possible IK solutions of the given
arm only those belonging to a specific family (i.e. elbow down) were selected.
Furthermore, a collision detector was used in order to avoid collisions of the
arm with itself or its environment. Thus, the actual number of approached grid
points deviates from the theoretical number (630) for the different orientations:
0◦ (563), 15◦ (483), 30◦ (355).

During the collection of the training patterns, the gripper held a salient target
that was fixated using the saccade controller; this was repeated for every grid
position. A training pattern is a pair (θ,v), where θ ∈ IR6 denotes the vector
of joint angles and v ∈ IR4 denotes the gaze direction. There are 1381 such
examples in total. The three-layer network was trained off-line using resilient
propagation (RProp) [5]. Furthermore, the total number of patterns was divided
into a training set (70%), and disjoint test and validation sets (both 15%). If
the error on the validation set did not decrease for 200 epochs, the training was
terminated (early stopping).

4 Visual Association

The visual associative model takes the joint angles (θ) as input and returns
the corresponding (fixated) view of the gripper. Image data is usually high-
dimensional (depending on the resolution of the images) which would require a

4 Note that using the regular grid and inverse kinematics for the collection of the
training examples is just a technical shortcut.
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Fig. 1. Model architecture for visual association.

λ1 = 22.35 λ2 = 7.15 λ3 = 5.04 λ4 = 3.19 λ5 = 1.77

λ6 = 0.95 λ7 = 0.71 λ8 = 0.54 λ9 = 0.50 λ10 = 0.43

Fig. 2. The 10 principal eigen-images and the corresponding eigenvalues. Note that
the values were scaled to be in the range [0; 1].

large associative network. For this reason, we propose a model that has a two-
stage architecture (see figure 1): the images are represented as low-dimensional
appearance vectors which are then associated with the corresponding arm pos-
tures. Seeking a low dimensional representation for the gripper images seems
reasonable, because it is most likely that they occupy a sub-space of relatively
low dimensionality within the full image space.

The association between the joint angles and the appearance vectors is per-
formed by a three-layer feed-forward network with linear output units and sig-
moid hidden units. During the training phase, the images are transformed into
appearance vectors which served as targets for the network training. During the
application phase, the images are reconstructed from the network output by ap-
plying the inverse transformation. Irrelevant information is discarded during this
transformation, which results in a small reconstruction error.

4.1 Eigen-Images

We use a principal component analysis (PCA) approach to extract the appear-
ance vectors from the images. Let an image be denoted by i ∈ IRM , where M is
the number of pixels, then its appearance vector is given by a = V T (i− ī). Here
V ∈ IRM×m is a projection matrix with orthonormal columns and with m�M ,
and ī is the mean image. Note that if V is chosen such that the elements of a
are mutually uncorrelated and the variance Var[ai] is maximized, then the ele-
ments of a are the principal components of i. Such a projection matrix can be
efficiently calculated by using a trick which is closely associated with eigenfaces
[9].
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Fig. 3. Example images from three different grid positions. Original images (top row),
PCA reconstruction (middle row), and output of the associative model (bottom row).

Let X = [̃i1, . . . ĩN ] denote the data matrix of all N images, where ĩk = ik− ī
denotes the k-th mean-centered image, then the projection can be calculated
by performing an eigen-decomposition XXT = UΛUT , and computing Ṽ =
XTU . Normalizing the columns of Ṽ yields the desired V .

The inverse transformation which is used to reconstruct an image from its
appearance vector is given by î = V a+ ī. Note that the reconstruction is only
approximately correct; a measure for the deviation between an original image
and its reconstruction is the reconstruction error Ereco = ‖î− i‖2.

4.2 Image Processing and Training

The training was conducted in analogous fashion to section 3.2. This time, the
gripper fingers were in an open position as it would be before grasping. For each
grid position, the inverse kinematics is used to calculate the corresponding joint
angles and the arm is moved into this position. The previously trained kinesthetic
associative model then generates a gaze direction such that both cameras fixate
the gripper. The PTUs are moved and the camera images are stored.5

The original 320×240 images were cropped to a small 45×35 region around
the gripper (which is roughly located in the image center). The gripper was then
separated from the background based on color information. The RGB values were
converted to gray scale values and inserted into new images of size 240× 240 by
adding a margin. These images were warped by a retinal mapping [8, 7]. Thus,
the resolution is higher in the central part of the image and lower in the periphery
(fovea effect).

The retinal images were cropped to 85× 69 pixels around the center. These
center crops were used for computing the appearance vectors as described in
section 4.1. Here we used a number of m = 10 eigen-images (see figure 2). The
average reconstruction error, i.e. the deviation between the original images and
their reconstructions, amounted to Ereco = 3.47.

5 For the results presented in this paper, only the left camera is used.
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Fig. 4. Example outputs of the visual forward model for three different saccades (A,
B, C) and two different inputs (A, B vs. C).

The visual associative network has a similar structure as the kinesthetic as-
sociative model (i.e. a 3-layer topology). We chose a relatively large hidden layer,
consisting of 100 sigmod units. A training pattern is a pair (θ,a), consisting of
an arm posture θ ∈ IR6 and the appearance vector of the corresponding gripper
view a ∈ IR10; the total number of such patterns was N = 1381. For the training
we used the RProp algorithm with early stopping.

Figure 3 shows the original views of the gripper (upper row) for 3 different
grid position. The artifacts (e.g. the white shadow) imposed by the reconstruc-
tion from the appearance vectors (middle row) are also present in the associated
views (bottom row). Furthermore, the reconstruction from the network (bottom
row) output does not differ noticeably from the PCA reconstruction (middle
row).

5 Visual Forward Model

The visual forward model [8] is a predictor for the visual consequences of a
saccade. It receives as input the retinal images computed from the current view
of the cameras and a motor command (i.e. a change in gaze direction). From
these inputs, the visual forward model predicts an image according to a given
change gaze direction, ∆v and the current view. A so-called validator model
indicates if a pixel can be faithfully predicted.

6 Results

We use the associated images of two example arm postures (see figure 3, 1st and
2nd column) to give a qualitative impression of the performance of the overall
model. Before the application of the visual forward model, the gripper is roughly
located in the center of the images. To transform the gaze direction towards the
gripper (generated by the kinesthetic associative model) into the desired gaze
direction, a saccade is computed and fed as input to the visual forward model.
The resulting output of the visual forward model is shown in figure 4. In figure
4 A and B the same input images (generated by the visual associative model)
were used, A shows the predictions of an upward tilt movement, B shows the
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prediction of the same tilt movement, combined with a right pan movement.
Figure 4 C uses a different input image; here we see the predicted results of
a upward tilt movement, combined with a left pan movement. Note that the
black regions at the image borders correspond to regions which were marked as
unpredictable by the validator model (which is part of the visual forward model).

7 Conclusion and Outlook

We presented a model architecture for the association between the joint angles
of a robot manipulator and corresponding views of its gripper. Furthermore,
we showed how the output of the associative model can be warped according
to an arbitrary gaze direction by a mechanism termed “visual forward model”.
The architecture is fully adaptive since it is based on artificial neural networks
and subspace methods from pattern recognition. We presented some examples
which suggest the association capabilities result in valid images. Nevertheless,
the quality of the generalization ability has to be analyzed quantitatively.

For the experiments in this study, we used several shortcuts, e.g. reduc-
ing the number of exploration trials by defining a regular grid of spatial posi-
tions, and the extensive use of off-line learning. These shortcuts are problematic
from a modelling perspective; in a more realistic setting, the agent would learn
its sensory-motor associations on-line while performing exploration movements.
This will be the subject of further research.
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Abstract. Reinforcement learning (RL) is a biological inspired learning
paradigm based on trial-and-error learning. A successful RL algorithm
has to balance exploration of new behavioral strategies and exploitation
of already obtained knowledge. In the initial learning phase exploration
is the dominant process. Exploration is realized by stochastic perturba-
tions, which can be applied at different levels. When considering direct
policy search in the space of neural network policies, exploration can be
applied on the synaptic level or on the level of neuronal activity. We
propose neuroevolution strategies (NeuroESs) for direct policy search in
RL. Learning using NeuroESs can be interpreted as modelling of extrin-
sic perturbations on the level of synaptic weights. In contrast, policy
gradient methods (PGMs) can be regarded as intrinsic perturbation of
neuronal activity. We compare these two approaches conceptually and
experimentally.

Key words: Evolution Strategies, Reinforcement Learning, Direct Pol-
icy Search, Covariance Matrix Adaptation, CMA-ES

1 Introduction

We propose neuroevolution strategies (NeuroESs) for direct policy search in
reinforcement learning (RL). The algorithm gives striking results on RL bench-
mark problems ([4]; [9, 10, 12]). It corresponds to trial-and-error learning based
on extrinsic dynamic perturbations of synaptic weights [8].

The perhaps most elaborate NeuroES is the covariance matrix adaptation
NeuroES (CMA-NeuroES), which relies on the covariance matrix evolution strat-
egy (CMA-ES, [7, 6, 17]). It is a variable-metric algorithm learning an appropri-
ate metric for efficient adaptation. By memorizing successful learning steps, the
CMA-NeuroES infers a learning direction from scalar reinforcement signals. We
compare the CMA-NeuroES to state-of-the-art RL algorithms relying on per-
turbations in the activity of neurons encoding actions. These learning strategies
rely on similar concepts (e.g., random perturbation, metric adaptation). They
differ in the levels on which these concepts are applied and in the amount of

⋆ This paper is based on [8, 13]
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information that needs to be estimated from interactions with the environment.
We have evaluated the different learning approaches on standard benchmark
problems taken from the machine learning literature, and the CMA-NeuroES
shows considerably better performance, especially in terms of robustness [9, 10].
While many related RL strategies, both in technical applications as well as in
neural models, are based on gradient estimation, NeuroESs are driven by rank-
ing policies. We argue that this decisive difference makes NeuroESs much more
robust against noise or uncertainty in the learning process. Uncertainty, which
may arise from various sources, is inherent in the general RL scenario, and thus,
we must be able to cope with it.

2 The CMA-(Neuro)ES for RL

Evolution strategies are random search methods [1]. They iteratively sample a set
of candidate solutions from a probability distribution over the search space (i.e.,
the space of policies), evaluate these potential solutions, and construct a new
probability distribution over the search space based on the gathered information.
In evolution strategies, this search distribution is parametrized by a set of µ

candidate solutions and by parameters of the variation operators that are used
to create new candidate solutions from these candidates. We first describe the
standard CMA-ES, and then explain the application to neural networks.

In each iteration k of the CMA-ES, the lth candidate policy with parameters

x
(k+1)
l ∈ R

n (l ∈ {1, . . . , λ}) is generated by multi-variate Gaussian mutation

and weighted global intermediate recombination:

x
(k+1)
l = m(k) + σ(k)z

(k)
l

The mutation z
(k)
l ∼ N (0, C(k)) is the realization of a normally distributed

random vector with zero mean and covariance matrix C(k). The recombination
is given by the weighted mean m(k) =

∑µ

l=1 wlx
(k)
l:λ , where x

(k)
l:λ denotes the lth

best individual among x
(k)
1 , . . . ,x

(k)
λ . This corresponds to rank-based selection,

in which the best µ of the λ offspring form the next parent population. A common
choice for the recombination weights is wl ∝ ln(µ + 1) − ln(l), ‖w‖1 = 1. The
quality of the individuals is determined by the function performance(x), which
corresponds to the evaluation of the policy with parameters x.

The CMA-ES is a variable-metric algorithm adapting both the n-dimensional
covariance matrix C(k) of the normal mutation distribution as well as the global

step size σ(k) ∈ R
+. The covariance matrix update has two parts, the rank-1

update considering the change of the population mean over time and the rank-µ
update considering the successful variations in the last generation. For example,
the rank-1 update is based on a low-pass filtered evolution path p(k) of successful
steps

p(k+1)
c ← c1 p(k)

c + c2
m(k+1) −m(k)

σ(k)
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and aims at changing C(k) to make steps in the promising direction p(k+1) more

likely by morphing the covariance towards
[

p
(k+1)
c

] [

p
(k+1)
c

]T

. For details of the

CMA-ES (the choice of the constants c1, c2 ∈ R
+, the rank-µ update, the update

of σ, etc.) we refer to the original articles by Hansen et al. [7, 6].

Neural networks (NNs) are flexible function approximators and a good choice
for modeling policies if the shape of the optimal policy is unknown. The NN
properties depend on both their particular structure and their weights. The
CMA-ES as a very robust state-of-art optimization method is very well suited
to perform the task of adapting the weights. The structure of the NN needs to be
defined a priori, the CMA-NeuroES then explores the policy space spanned by all
possible weight combinations. Applying the CMA-ES to weight optimization in
neural networks directly models extrinsic perturbations on the level of synaptic
weights. The experiments on the pole balancing task (see Table 1) illustrate that
extrinsic perturbations can be more successful –and in particular more robust–
than intrinsic perturbations (as implemented by RPG in Table 1).

Table 1. Mean number of episodes required for different RL algorithms to solve the
partially observable double pole balancing problem (i.e., pole and cart velocities are
not observed), using the standard performance function and using the damping perfor-
mance function, respectively, see [5]. The CMA-ES adapts standard recurrent neural
network representing policies. The CMA-NeuroES results are taken from the paper
by [12] and the other results were compiled by [4]. The abbreviation RWG stands
for Random Weight Guessing, and RPG for Recurrent Policy Gradients. The other
methods are evolutionary approaches, SANE stands for Symbiotic Adaptive Neuro-
Evolution, CNE for Conventional Neuroevolution, ESP for Enforced Sub-Population
(ESP), NEAT for NeuroEvolution of Augmenting Topologies, and CoSyNE for Coop-
erative Synapse Neuroevolution (CoSyNE) (see [4, 12], for references).

method reward function
standard damping

RWG 415,209 1,232,296

SANE 262,700 451,612

CNE 76,906 87,623

ESP 7,374 26,342

NEAT – 6,929

RPG (5,649) –

CoSyNE 1,249 3,416

CMA-ES 860 1,141
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Fig. 1. Performance of natural actor-critic (NAC) and CMA-ES on the single-pole
balancing task as described in [16]. The observed accumulated reward averaged over
20 trials is given as performance measure. Only linear policies are considered in this
case. We show CMA-ES and NAC results for the best respective hyper-parameter
configuration σ, σNAC, and αNAC. In the left plot, the start states are initialized form
the region x ∈ [−0.2, 0.2], ζ ∈ [−0.2, 0.2]. In the right plot, the starting region is
x ∈ [−2.0, 2.0], ζ ∈ [−0.6, 0.6]. For the first (easier) starting region both methods
perform comparatively. In the case of the larger staring region, the CMA-ES clearly
outperforms the NAC, because the rank-based approach is more robust against noise
induced by different starting positions. These results are taken from [9].

3 NeuroES and policy gradient methods for direct policy
search

Direct policy search may be one way biological systems solve RL problems [3, 2].
In contrast to temporal difference learning, this approach does not require the
prediction of future rewards.

RL is based on trial-and-error learning. Exploration in the space of neural
networks can be modelled by stochastic perturbations, which can be applied at
different levels: on the synaptic level or the level of neuronal activity. These
perturbations can be intrinsic or extrinsic (e.g., see [3]). The former specifies
that the neurons or synapses themselves are stochastic elements. The latter refers
to some external source of perturbation. We consider the following two cases:

– Intrinsic perturbation of neuronal activity is used by policy gradient methods
(PGMs). Policy gradient methods such as the natural actor-critic (NAC)
perform a gradient-ascent on a predefined class of stochastic policies. PGMs
explore the space of possible policies by stochastic neurons encoding actions
and estimate a gradient.

– Extrinsic perturbations on the level of synaptic weights can be modelled with
neuroevolution strategies (NeuroES). Extrinsic perturbations correspond to
mutations. NeuroES rely on ranking candidate policies.

It is interesting to compare CMA-ES for RL and policy gradient methods.
Both search directly in policy space, but ES for RL are actor-only methods while
PGMs often have actor-critic architectures. In contrast to the CMA-ES, PGMs
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require a differentiable structure on the search space and stochastic policies for
learning. Exploration of the search space is realized by random perturbations
in both ESs and PGMs. Evolutionary methods usually perturb a deterministic
policy by mutation and recombination, while in PGMs the random variations
are an inherent property of the stochastic policies. In ESs there is only one
initial stochastic variation per episode. In contrast, the stochastic policy intro-
duces perturbations in every time step of the episode. While the number n of
parameters of the policy determines the n-dimensional random variation in ES,
in PGMs the usually lower dimensionality of the action corresponds to the di-
mensionality of the random perturbations. In ESs the search is driven solely
by ranking policies and not by the absolute values of performance estimates or
even their gradients. The reduced number of random events and the rank-based
evaluation are decisive differences and we hypothesize that they allow ESs to be
more robust.

The adaptation of the covariance matrix in the CMA-ES is similar to learning
the (Fisher) metric in natural PGMs [14, 16, 15]. Arguably one of the most ele-
gant state-of-the-art natural PGMs is the episodic natural actor-critic algorithm
(NAC, [16, 15]).

These two concepts of exploration lead to behavioral differences that become
most apparent in noisy environments [10, 11]. Figure 1 shows the behavior of
CMA-ES and NAC in the single-pole balancing task with linear policies. Both
pole balancing benchmarks considered here illustrate that extrinsic perturbation
on the level of synaptic weights as employed by the CMA-ES can indeed be more
robust than intrinsic perturbations on the level of neuronal activity as employed
by PGMs.

4 Conclusion: Why CMA-(Neuro)ES for RL?

As a summary, we give seven reasons why we propose the CMA-NeuroES for
direct policy search. Employing the CMA-ES for RL

1. allows for direct search in policy space and does nor require learning of
state-value or state-action-value functions for optimizing policies,

2. is straightforward to apply and robust w.r.t. tuning of hyper-parameters
(e.g., compared to temporal difference learning algorithms or policy gradient
methods),

3. is based on ranking policies, which is less susceptible to noise (e.g., caused
by stochastic rewards and state transitions, random initialization, and noisy
state observations) compared to estimating a value function or a gradient
of a performance measure w.r.t. policy parameters (the overall number and
the distribution of roll-outs among policies in the CMA-ES can be adapted
as suggested by [8, 11]),

4. is a variable metric algorithm learning an appropriate metric (by means of
adapting the covariance matrix and thereby considering correlations between
parameters) for searching better policies,
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5. can be applied if the function approximators are non-differentiable, whereas
many other methods require a differentiable structure,

6. extracts a search direction, stored in the evolution path p
(k)
c , from the scalar

reward signals, and
7. efficiently optimizes weights of neural network policies, which corresponds to

an implementation of extrinsic perturbations on the level of synaptic weights.

Arguably, the main drawback of the CMA-ES for RL in its current form is
that the CMA-ES does not exploit intermediate rewards, just final Monte Carlo
returns. This currently restricts the applicability of the CMA-ES to episodic
tasks and may cause problems for tasks with long episodes.
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Abstract. Object recognition in general is still a challenging task to-
day. Problems arise for example from parallel segmentation and local-
ization or the problem to detect objects invariant of position, scale and
rotation. Humans can solve all these problems easily and thus neuro-
computational and psychological data could be used to develop similar
algorithms. In our model, attention reinforces the relevant features of the
object allowing to detect it in parallel. Human vision also uses stereo-
scopic views to extract depth of a scene. Here, we will demonstrate the
concept of attention for object recognition for stereo vision in a virtual
reality, which could be applied in the future to practical use in robots.

Keywords: Object Recognition, Attention, Stereo Vision, Learning

1 Introduction

Object recognition is the task to recognize and additionally localize a searched
object in an image or a scene. Many neuro-computational models, like Neocog-
nitron [5] and HMAX [15, 19] filter the image over different stages to reduce the
complexity of the filter operations. These systems are purely forward driven and
do not consider the concept of attention.

Object recognition combined with attention can solve the dilemma of parallel
segmentation and localization. We will first explain the concept of attention and
how it solves this problem. We use a stereoscopic edge and depth detection
model to achieve stereo object recognition. The object detectors are learned
unsupervised and use a neuro-computational model which capture the basic
principles of primate 3D perception. We will first focus on position invariant
recognition and then demonstrate the ability to discriminate different objects.
The model and the results are compared to neuro-computational findings.

1.1 Concept of Attention

Early concepts of visual attention define attention as to focus processing on a
spatially determined part of the image, namely the spotlight of attention. The
location of interest is typically determined from conspicuous or salient image
features forming the saliency map [8, 10].
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Fig. 1. The stimuli consist of 10 different 3D objects.

Recently, the “spotlight of attention” concept has been expanded to a feature-
based approach [6] in which attention emerges from interactions between differ-
ent brain areas. High level areas hold a template to specify the searched object
and this information is propagated backwards to lower level areas. The parallel
computation modifies the conspicuity of each descriptor in the system in such a
way that the value represents the accumulated evidence. We implement the con-
cept of attention as a modulating of the feed forward signals (called gain-control)
dependent on the feed back from higher cortical areas. To perceive an object,
a combination of several distributed visual features is required. Such binding
processes can be well described by concepts of visual attention, illustrated by
two continuous sub processes. The first one operates in parallel over all features
and increases the conspicuity of those that are relevant for the searched object,
independent of their location in the visual scene. The other subprocess is linked
to action plans, e.g. eye movement plans, and combines those fragments which
are consistent with the action plan, typically by their spatial location in the
visual scene.

Object Selection and Segmentation For recognizing a searched object in a
scene, the object must first be located and segmented, which however is only
possible if the object has been recognized as such. Attention can solve this
“Chicken-egg-problem” due to its parallel computation approach.[6]

2 Object Recognition System

2.1 Neuronal network architecture

We extend the concept of a population-based object representations [6] by learn-
able object representation based on local edge detectors. This allows to detect
objects depending on their shape or texture. Additionally, we demonstrate the
approach on stereoscopic images.

In our neuronal model (Fig. 2), we do not consider all the complexity of the
visual stream. Rather we simulate an earlier area (V1) and a high level area
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Fig. 2. Neuronal network of the stereoscopic object recognition model. The i and j
indices correspondent to the spatial x and y axis of the images. The index k refers to
different Gabor responses and l to different learned features in HVA.

(HVA) whose object selective cells can be mapped to area V2/V4/IT. As input
stimuli we use the left and right eye view of 10 different 3D objects (Fig. 1),
produced by a raytracer engine [1]. The objects are to some degree similar in
their edges and thus the difficulty of the problem is comparable to cluttered
scenes. The first area detects stereoscopic edges and disparities via an energy
model (see [11, 13, 14]) and is comparable to area V1. This particular filter bank
[17] uses 56 Gabors with 8 orientations (with a π

8 step size) and 7 different
phase disparity shifts (with π

4 step size). This area builds a representation of
the scene encoding edge informations, independent of the right or left view and
therefore enables stereo object recognition. Overlapping receptive fields serve as
input for the object selective cells of the HVA. We achieve the object selectivity
by learning the feed forward weights (V1→ HVA) with a biological motivated
learning algorithm and a trace rule (see 2.3). The attention signal stores the
features relevant for the current task. The Frontal Eye Field (FEF) consists of
two areas, the saliency map (called FEFvisual) and the target of the next eye
movement (called FEFmovement). One of the binding processes operates over all
locations in HVA and reinforces the features of the searched object. The other is
achieved by the loop over FEFvisual and FEFmovement and reinforces adjacent
locations. Both processes use competition to decrease the activity of irrelevant
features and location in HVA.
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2.2 Neuron model

We use a rate coded neuron model which describes the firing rate r of a cell as
its average spike frequency. Every cell represents a certain feature (V1: k, HVA:
l) at a certain location (i, j). In the following we will omit the location indices
for clarity. Consider one location in HVA, each cell in HVA gains excitation (as
a weighted sum) from cells of V1 within the receptive field (here a 14x14 patch)
and each cell is inhibited by all other HVA cells via Anti-Hebbian inhibition
(similar as in [23]).

τR
∂rl
∂t

=
∑
i

wkl · rInput

k −
∑

l′,l′ ̸=l

f (cl,l′ · rl′)− rl with: f(x) = dnl · log
(
1 + x

1− x

)
(1)

f(x) gives the non-linear processing. τR is the time constant of the cells. The
connection wk,l denotes the strength of the feed forward weight from input cell
k to the output cell l. Lateral inhibition is given by the connection weight cl,l′
and can differ across the cells due to the Anti-Hebbian learning.

2.3 Learning of the object descriptors

Changes in the connection strength between neurons in response to appropriate
stimulation are thought to be the physiological basis for learning and memory
formation [21]. In the visual system the connections between neurons (synapses)
are modified according to a simple principle of joint firing, the Hebbian law [7].
According to this law synapses are strengthened if the corresponding cells are
activated at the same time. Thus, over time cells “learn” to respond to and in
connection with specific other cells. In our model object recognition is achieved
by learning the connection weights (wV1-HVA

kl ) between V1 and HVA. Using a
general learning algorithm, that has been shown to capture the features of early
visual learning [23], cells from HVA tune themselves to specific features from the
set of presented stimuli.

It has been hypothesized that the ventral pathway uses temporal continuity
for the development of view-invariant representations of objects ([4, 16, 22]). This
temporal continuity can be applied using a trace learning rule. The idea is that
on the short time scale of stimuli presentation, the visual input is more likely to
originate from different views of the same object, rather than from a different
object. To combine stimuli that are presented in succession to one another,
activation of a pre-synaptic cell is combined with the post-synaptic activation of
the previous stimulus using the Hebbian principle. We simulate an appropriate
input presentation protocol and the responses of successive stimuli are combined
together to achieve a more invariant representation of an object.

During learning the connection weights wV1-HVA

k,l are changed over time ac-
cording the Hebbian principle:

τL
∂wkl

∂t
= [rHVA

l − r̃HVA]
+
(
(rV1

k − r̃V1)− αw [rHVA

l − r̃HVA]
+
wkl

)
(2)
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r̃ is the mean of the activation over the particular features
(
e.g., r̃ = 1

N

∑N
l=1 rl

)
and [x]+ = max{x, 0}. αw constrains the weights analogous to the Oja learn-
ing rule [12] and τL is the time constant for learning. The V1-HVA weights are
learned only at a single receptive field (a 14x14 patch of V1) and their val-
ues are shared with all other locations in the HVA (weight sharing approach).
The learning was performed on small images containing a single stimulus before
processing entire scenes (offline-learning).

Lateral connections between cells were learned by Anti-Hebbian learning.
The name Anti-Hebbian implies that this strategy is the opposite of the Hebbian
learning rule. Similar to the learning of the synaptic connection weights, where
the connection between two cells is increased when both fire simultaneously,
in the Anti-Hebbian case the inhibition between two cells is strengthened. The
more frequent two cells are activated at the same time, the stronger they inhibit
each other, increasing the competition among those two cells (l and l′):

τC
∂cl,l′

∂t
= rl′ · rl − αcrl′ · cl,l′ (3)

where τC is the learning rate of the Anti-Hebbian weights. Anti-Hebbian learning
leads to decorrelated responses and a sparse code of the cell population [3].

3 Results

We show the ability of object recognition independent of its position within
a scene containing also a distractor object. We measure the performance to
recognize all objects with a discriminating value.

3.1 Object recognition independent of its position

An object must be recognized independent of its position in the image, its rota-
tion or its relative size (for an overview see [19]). Position invariance is achieved
in the cortex by pooling over a certain spatial area, which is also part of our
model.

We now show an object location experiment:

1. We present an object alone in a scene without an attention signal (Fig. 3(a)).
The model selects the most conspicuous region (the object) and binds the
HVA activation to the working memory (which stores in our example the
attention signal).

2. We present a black screen to deplete all cell activities in the system.
3. We test the ability to select the target object. We present a cluttered scene

(Fig. 3(b)) (here for simplicity with only 10 features and 2 objects). The
attention signal encodes the features of the object and reinforces them in
HVA. By this, the system is able to locate the object again (spatial invariant
recognition).
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(a) (b)

Fig. 3. The figure shows the layer activities during the object location experiment.
Here the stereoscopic stimuli, the responses of the feature code (with 10 features) in
HVA, the attention signal (features on the y-axis) and both FEF areas are shown.
Normally, the x and y axis correspondent to the spatial x and y axis of the images.
a) The system memorizes the target object, the ’tetrahedron’, and stores the HVA
response as an attention signal for b). b) The attention signal reinforces the features
which represent the ’tetrahedron’ and the system detects the target object.

3.2 Object discrimination

To determine the similarity of two feature codes (r, s) the angle between those
two vectors is considered. The lower the value of dTM ∈ [0; 1] is the more the
two vectors show similar cell distributions.

dTM (r, s) = 1− ⟨r, s⟩
|r| |s|

with: dim (r) = dim (s) (4)

Our results show that regardless of the number of different objects and inde-
pendently of the number of cells (as long as there is at least one cell per object)
the model is capable to learn and discriminate all objects. It can be seen that
each object is learned by several cells (Fig. 4(a)) and thus an object is char-
acterized by a specific distributed feature code with nearly no overlap to other
objects.

An analysis of whether the model is able to discriminate among the objects
is shown in Figure 4(b) using the discrimination value (dTM ). Low values (in-
dicated by darker areas) give clue to similar feature codes which would indicate
that discrimination between those two objects is impaired. The results show
that all objects are very dissimilar in their features and thus are very easy to
discriminate. Only object 1 and object 7 show slightly overlapping population
codes (dTM = 0.68) but the objects can easily be discriminated (compare Figure
4(a)). Although some cells tend to code more than one object the results show
that all objects can be discriminated perfectly due to the specific distributed
code.
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(a) Object selectivity (b) Discrimination between objects

Fig. 4. a) For each object (x-axis) the average firing response (0 dark, 1 bright) of each
feature/cell (50 features on the y-axis) is plotted. The average firing response is calcu-
lated over all input stimuli that contain the same object. b) Using the discrimination
value dTM , the similarity of the average response (Fig. 4(a)) to an object is shown here
(bright = dissimilar).

4 Discussion

To summarize, attention driven object recognition can solve the problem of selec-
tion and segmentation. We had successfully combined stereo vision with object
recognition which requires to merge the two views of a scene. We have con-
structed a merged representation of the scene in low (V1) and high levels areas
(HVA). Compared with the perspective of computer vision, this can be seen as
a hybrid solution of two contrary approaches. One of them is to construct a
merged high level scene model from both images [2], the other one is to combine
both images at the level of pixels (resulting in the correspondence problem [18]),
which leads to a large number of local false matches.

Our learning algorithm captures the basics of human perception, but can
extend to cover complex cell dynamics like calcium traces [20]. We have shown
that our system models invariances of the visual cortex. We have focused on
spatial invariance and therefore we will have to extend the model and its learning
algorithm to scale and rotation invariance. Most neurons in higher areas have a
small rotation and scale invariance, but encode a single view to the object (called
view-tuned cells [9]). In further investigations we can compare the properties of
the learned cells in the HVA with the view-tuned cells.
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Abstract. This paper shows the utilization of the Neural Gas (NG) al-
gorithm to cluster hyperspectral image signatures in the context of crop
plant phenotyping. Based on nutrition experiments of different tobacco
lines (genotypes) it is shown that Neural Gas can unravel relevant and
valuable biological information from hyperspectral images of the plant
leaves. Neural Gas is able to demonstrate its beneficial properties in
terms of numerical robustness, computational speed as well as initializa-
tion and parameter tolerance again. Moreover, NG provides an excellent
basis for perspective implementations of more application specific dis-
similarity measures rather than using the standard Euclidean or simple
correlation based distance measures.

1 Introduction

Hyperspectral imaging provides high-dimensional pixel-wise signatures that are
extracted from an acquired image stack containing an absorption spectrum of
a scenery at a rather wide range of different wavelengths typically distributed
over many (≥ 100) equidistant bins. Since each (surface) material – as a mixture
of many different molecules – absorbs characteristic wavelengths (the reflected
light of all wavelengths is actually measured), this technique can generally be
used to detect different materials.

Artificial neural networks and machine learning based paradigms [5] have
generally proven their excellent abilities to process spectral and hyperspectral
data [14, 15]. Hyperspectral imaging itself is particularly interesting in those
cases where the human eye or standard imaging sensors are not able to recognize
material differences. Pioneering applications have been geology, remote sensing,
and forestry. The image acquisition was usually satellite or airplane based. More
recently, applications in agriculture and plant phenotyping can be found as well.

In both traditional plant breeding and green biotechnology it is necessary
to quantitatively assess the content of biologically relevant compounds, such
as metabolites, proteins, etc. Traditionally this is done by biochemical digested
analysis. Along with the increasing demand of high-throughput screening, these
wet lab techniques become more and more unfeasible due to their high tech-
nical and financial requirements and low throughput. In turn, imaging based
approaches provide a non-invasive and non-destructive way of data collection.
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This makes it much easier to gather data from plant samples during their de-
velopment or maturation. If the applications are extended towards agricultural
production (precision agriculture) a robust and easily manageable set-up is re-
quired [10, 7].

If for example biochemical data obtained by a suitable wet lab analysis about
relevant plant compounds is available, it can be used as labels for supervised
analyses. A typical scenario is to match various hyperspectral signatures to par-
ticular single compounds or groups of compounds. If the label data is quantita-
tive, instead of just containing class labels, even quantitative assessments, e.g.
regression models, are possible.

However, if no labeled data is available, or the more general question arises,
what plant properties are detectable and distinguishable at all by these meth-
ods, unsupervised approaches come into play. Here a typical scenario would be
to know what plant features dominate the obtained hyperspectral fingerprints.
Potential features in this context, spanning a multi-dimensional non-linear space,
could be:

– different lines (genotypes) of the plant samples in their phenotypic expres-
sion;

– different nutrition;
– positions of a particular leaf along the plant stem (corresponding to the age

of the leaf);
– positions (of a considered pixel) within one leaf.

In order to address this question, data was acquired from systematic nutrition
experiments. More details about the biological background as well as the data
acquisition and pre-processing can be found in [9]. The present paper focusses on
neural networks related aspects of the hyperspectral signature clustering using
Neural Gas (NG) [6].

2 NG Clustering: Set-up, Implementation, and Results

After the necessary pre-processing steps, such as image conversion, reflectance
normalization, continuum removal (see Fig. 1), a training data matrix of 536,517
samples (pixels) and 239 features (wavelengths) was available. This matrix con-
tains the spectral abundance (16 bit float value) of a particular pixel at a par-
ticular wavelength.

The NG algorithm was run with different parameter variations (number of
prototypes, initial learning coefficient, decay parameter, number of epochs) and
10-fold validation.

Since this data set did not fit into the computer’s main memory, special
precautions for an out-of-core training have been taken. This slightly slows down
the training, but is still much faster than to allow memory page swapping. Using
an off-the-shelf PC (Intel Core2 Quad CPU Q6660 @ 2.4 GHz, 8 GB RAM) one
single training epoch took about 30 minutes (10 prototypes, Euclidean distance).
A total number of 25 epochs turned out to be sufficient to obtain stable results.
So this sums up to about 12 hours overall training time.
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Fig. 1. Spectral intensity reflected by the used calibration normal (100%-reflection
type, polytetrafluoroethylene (PTFE) pad). The typical physical effect of decreased
reflected energy with increasing wavelengths can be clearly observed. The actual gradi-
ent of this curve depends on the specific characteristics of the measurement equipment,
such as sensor, lens, and illumination source. This curve is used to normalize all ac-
quired images of the scenery.

The obtained results generally turned out very stable in terms of parameter
variation and prototype initialization. As could be expected, the number of pro-
totypes is the most important training parameter. As usual, it functions as some
kind of zoom into the data. A number between 5 and 10 prototypes seemed to
be sensible (see Fig 2).

It also turned out that all further parameters and the prototype initialization
do not significantly influence the results. Besides the fast convergence (in the
light of the large data set), this robustness seems the most beneficial feature of
Neural Gas – not only in this application.

The obtained prototypes for a ten-cluster-setting are shown in Fig. 4. The
cluster membership of each pixel has been re-transferred into the original images
as shown in Fig. 5.

With the described method a number of biologically relevant results could
be obtained. In particular it can be demonstrated that concentration gradients
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Fig. 2. Left panel: Sample leaf at arbitrarily chosen wavelength as gray-scale intensity
image. The used broadband light source is located left of the leaf resulting in (realistic)
inhomogeneous illumination and shadow on the right hand edge. Right panel: A total of
5 clusters obtained by NG being re-transferred into the original image using a fixed color
code. The homogeneously clustered background and calibration pad can be observed.

of nutrients are quantitatively detectable depending on the intra-leaf position
as well as the leaf position along the plant stem. Either nutrient concentrations
correspond, besides the general nutrition and health level of the plant in terms
of an offset, to the age/maturation grade of a tissue, leaf and thus finally of the
whole plant. This offers novel perspectives in several related application fields,
such as precision/high-throughput phenotyping and precision agriculture.

More specific results are to be expected by using supervised approaches.
These require labeled data. This, in turn, typically leads to extended biochemical
analyses. Extensive work into that direction is currently under way.

3 Perspectives of Application-specific Metrics

In the previous section a more or less standard Neural Gas based clustering
framework was described. The results are already very promising.

However, a closer look at Fig. 2 and all further acquired hyperspectral image
data lets the question arise, whether the clustering is affected by inhomoge-
neous illumination and unwanted reflections on the leaf surface. Whereas basic
– physically non-avoidable – spectral illumination artifacts, for instance caused
by inhomogeneous spectral energy density of the broadband light source (indoor
imaging) or spectral absorptions of the sunlight by the earth’s atmosphere (out-
door imaging) and wavelength-depending sensitivity of the sensor/optics, can be
corrected by continuous entrainment of a calibration pad within the field-of-view,
local illumination distortions are not covered by this normalization. These local
illumination distortions typically arise because the artificial light is not perfectly
diffuse (it comes just from one side) and/or the leaf is not plain and are typically
leading to reflections and shadowing (as shown in Fig. 2). By using advanced
equipment and special constructions on the image acquisition stage, such as for
example a circular light source centered around the optical axis, these effects
may be limited but not completely avoided.
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This issue is addressed by a number of publications [16, 11]. Often these
problems are considered as simple offset and tackled by correlation based pre-
processing or correlation based dissimilarity measures within the clustering al-
gorithm [2, 4].

At this point another advantageous property of prototype-based approaches
in general and of Neural Gas in particular comes into play. Here, a ’non-standard’
dissimilarity measure can be implemented easily. This offers an elegant way to
incorporate application-specific knowledge directly into the clustering.

In prototype-based approaches, such as Neural Gas, the clustering algorithm
needs to compare the currently processed input vector (X) with several prototype
(weight) vectors (Wi, i = 1 . . . n with n being the number of prototypes). This
distance or dissimilarity measure needs to be not necessarily in Euclidean space.

A possible first approach is to perform a Wavelet decomposition / trans-
formation combined with a standard measure as shown in Fig. 6. Although a
numerical cluster validation measure is not directly applicable, a visual inspec-
tion clearly shows a much better preserved leaf-specific tissue structure compared
to the stand-alone Euclidean measure shown in Fig. 2.

Another possible way is to consider the individual spectral signatures (both
the currently processed input and the prototypes) as densities, that are positive
functions (patterns), not necessarily normalized but finite measures [12]. In gen-
eral, a pairwise directed distance D between these densities is called a metric, if
the following three conditions hold:

1. D(X‖W) ≥ 0 (positive definiteness),
2. D(X‖W) = D(W‖X) (symmetry),
3. D(X‖Z) ≤ D(X‖W) + D(W‖Z) (triangle inequality).

However, if only condition 1 is satisfied by a particular distance measure, it
is not a metric but it is referred to as a divergence. Assuming that spectra are
positive functions, which is typically the case, divergences could be applied as
dissimilarity measures to compare different spectral signatures. Common diver-
gences are for example Kullback-Leibler, Hellinger, or Jensen-Shannon.

As mentioned before, the concept of divergences is on no account restricted to
the Euclidean space. A more general approach is to consider an abstract space
where common divergences, such as Kullback-Leibler-, Csiszár-Morimoto-, or
Bregman-divergence can be generalized towards Alpha-, Beta-, and Gamma-
divergences. The fundamental properties of the underlying divergences remain
present. Particularly the Gamma-divergence seems to be very robust in terms
of outliers [3]. Moreover, novel divergences offering tailored properties can be
developed [1].

The properties of divergences are typically controlled by parameters. This
tuning can be done in an elegant way by integration of divergences as dissim-
ilarity measures or cost functions into machine learning approaches. In return,
these machine learning approaches benefit from an extended choice of of avail-
able dissimilarity measures and cost functions. As mentioned before, prototype-
and vector-quantization-based paradigms are particularly suitable [13, 8].
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4 Summary and Outlook

The utilization of ’non-standard’ dissimilarity measures and cost functions paves
the way for extended features of clustering and classification/regression tools.
Moreover, there is even a chance to develop application-specific distance mea-
sures that respect relevant properties of the underlying data and application,
respectively. On the other hand, there is a strong demand for application-specific
distance measures in the field of analysis of hyperspectral image signatures in
general as well as hyperspectral close-range plant leaf images in particular.

This paper presented a work-in-progress framework of Neural Gas clustering,
as representative of the class of prototype-based cluster algorithms, applied to
crop plant phenotyping by means of hyperspectral imaging. The biological data
was taken from a series of nutrition experiments.

In principle, three physical phenomena in terms of hyperspectral image ac-
quisition need to be addressed within this framework:

1. Inhomogeneous exposure,
2. Inhomogeneous spectral energy distribution,
3. Inhomogeneous absorption patterns.

IN

ED CR

FE

CL

Fig. 3. Concept of integrating required individual hyperspectral data processing mod-
ules into a compact mathematical frame. Left panel: Sequence of separate processing
modules Image Normalization (IN), Envelope Design (ED), Continuum Removal (CR),
Feature Extraction (FE), and Clustering (CL) that are necessary to process hyperspec-
tral image data and obtain suitable data clusters. These modules can be integrated
into a self-contained system that is predicated on machine learning based clustering
equipped with application specific dissimilarity measures (gray bounding box). Right
panel: Pictographic illustration of the three major processing levels that address phys-
ical phenomena of inhomogeneous exposure, spectral energy distribution, and absorp-
tion patterns.
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These are currently met by a sequence of individual processing modules that
are designed heuristically (in terms of clustering / classification) or are at least
very application-specific. The derived concept of integrating these modules into a
compact mathematical frame as summarized in Fig. 3 is highly desirable. Along
with the introduced concept of density-based divergence measures we see strong
perspectives for both the development of an adapted mathematical theory and
challenging applications in hyperspectral imaging at close-range level.
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Fig. 4. Result of the Neural Gas training: normalized weight vectors of 10 neural pro-
totypes, sorted according to their similarity (top to bottom), representing the centers
of the 10 clusters. These prototypes also represent characteristic hyperspectral finger-
prints formed from the data set during network training (abscissa shows the wavelength
in nm). Figure borrowed from [9].
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Fig. 5. Some sample images of the underlying nutrition experiment. The color code
of each pixel indicates its membership of a particular cluster according to Fig. 4. The
identifier of each subfigure contains the genotype (e.g. NIC1015, SNN) in separate
rows, the ammonium nitrate (NH4NO3) nutrition treatment 10 mM (left figure half)
vs. 5 mM (right figure half), and the position of the leaf along the plant stem (1 to
4 shown here). The background and some metal clips to fix the leaves on the image
acquisition stage can be clearly seen in black. Green clusters generally indicate healthy
parts of the leaf with a gradient from high content of ammonium nitrate mainly located
in the leaf veins (dark green) to lower content (light green) in the leaf marrow. Yellow
up to orange clusters are mainly located near the leaf edges and indicate a rather low
content of ammonium nitrate due to beginning senescence. The blank subfigure in the
bottom row is due to a highly degraded leaf at this particular position of this plant
which could not be measured.

Fig. 6. Advanced dissimilarity measure: A Wavelet decomposition has been combined
with standard metrics, Euclidean, correlation, and cosine (from left to right), in a
ten-cluster-setting. It can be observed that leaf-specific tissue structures are better
clustered than in Fig. 2.
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Abstract. Genome-wide association (GWA) studies provide large amounts
of high-dimensional data. GWA studies aim to identify variables, i.e., sin-
gle nucleotide polymorphisms (SNP) that increase the risk for a given
phenotype and have been successful in identifying susceptibility loci for
several complex diseases. A remaining challenge is however to predict
the individual risk based on the genetic pattern. Counting the number of
unfavorable alleles is a standard approach to estimate the risk of a disease.
However this approach limits the risk prediction by only allowing for
a subset of predefined SNPs. Recent studies that apply SVM-learning
have been successful in improving the risk prediction for Type I and II
diabetes. However, a drawback of the SVM is the poor interpretability of
the classifier. The aim is thus to classify based on only a small number of
SNPs in order to also allow for a genetic interpretability of the resulting
classifier. In this work we propose an algorithm that can do exactly this.
We use an approximation method for sparse linear regression problems
that has been recently proposed and can be applied to large data sets
in order to search for the best sparse risk predicting pattern among the
complete set of SNPs.

1 Introduction

There are three general aims of genome-wide association (GWA) studies: iden-
tifying genetic loci or patterns associated with common complex multifactorial
diseases; understanding the complex genetic mechanisms underlying the dis-
ease; and predicting the individual risk of the disease based on the genetic
patterns. In the past decade, GWA studies have been successfully employed to
identify genetic loci (SNPs) associated to common complex diseases such as
diabetes [13], myocardial infarction [11, 4], and Crohn’s disease [10]. However,
so far these findings have only limited impact on risk assessment and clinical
treatment [6, 5]. A reason for the lack of feasible risk prediction by means of
genetic variants can be explained by the fact that a disease effect may only come
about through the interaction of multiple loci. Studies that focus on single locus
effects alone are thus not likely to reveal the more complex genetic mechanisms
underlying multifactorial traits [13, 12, 7]. To understand the underlying genet-
ics of a disease, it might be feasible to identify sparse patterns that influence the
risk. Such patterns can be helpful not only to assess the risk, but also to detect
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possible genetic interactions. However, it is not straightforward to identify
multiple SNPs that together increase the risk. Testing all possible combinations
is not possible due to the typically enormous amount of SNPs in a GWA study.

The standard method for computing a genotype score (GS) that is used in
order to predict the individual risk, is to count the number of unfavorable alleles
(those associated to the disease) [3, 2, 1]. However, the drawback of this approach
is rather obvious: if we only account for SNPs that are directly associated to the
disease we will not allow for interactions between SNPs without an association.
Validated susceptibility loci only explain a small proportion of the genetic risk
and thus by only accounting for these it is not likely to gain a significant increase
in risk prediction [6, 13]. Thus, a major improvement in risk prediction can only
be achieved by training a multivariate classifier taking all SNPs into account.
Since we expect the SNPs to have different influence on the risk, we need to
apply weights to the SNPs in the classifier which again is not straightforward.

A classical tool for classification accounting for all features is the support
vector machine (SVM) [15, 16]. The advantage of the SVM is that it is applicable
to very large datasets and has already been applied successfully on GWA
data [13, 17, 18]. However, the disadvantage of the SVM when it comes to GWA
data is that the learned classifier is based on all SNPs, which makes it difficult
to interpret the resulting classifier in a biological context. Thus, since we aim to
classify based only on a small number of SNPs, we need to apply an appropriate
SNP selection in advance and train the SVM only on these. A standard approach
is to select the SNPs based on single significance values (p-values). However,
this leads to the same issues as described for the GS approach except that a
weighting of the SNPs is done by the SVM. Thus, if we aim to predict the risk
of an individual as well as understanding the complex genetic mechanisms
underlying the disease, the SVM might not be the appropriate choice.

In this work, we propose a novel method for GWA analysis that searches for
a sparse risk predictor on the complete data. Predicting the phenotype from the
genotype is approached in the framework of sparse linear regression, i.e., our
method determines a set of weights that generate the phenotype as a sparse
linear combination of the genotype.

2 Data & Methods

2.1 Data

We simulated case/control datasets using the PLINK software [8, 9] with the
simulate option. We simulated a dataset of 5000 cases and 5000 controls. 100
SNPs of a total of 10100 SNPs where associated to the disease phenotype. Com-
mon complex diseases have typically low effect size [6], hence we simulated
the effect size i.e. odds ratio (OR) of 1.3 and 1.6 for heterozygous and a mul-
tiplicative risk of 2.6 and 3.2 respectively for the homozygous. As previously
described most of the identified genetic variants have only limited impact on
risk assessment and clinical treatment. This missing heritability might be caused
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by the fact that the main contribution result from variants with low minor allele
frequency (MAF) and such variants are difficult to detect [6]. Thus, we simu-
lated datasets with MAFs ranging from 0.05 to 0.1 and 0.1 to 0.2. Varying the
described parameters we gain a total of 4 different datasets as shown in Table
2.1.

MAFmin MAFmax OR

dataset type 1 0.05 0.1 1.3
dataset type 2 0.1 0.2 1.3
dataset type 3 0.05 0.1 1.6
dataset type 4 0.1 0.2 1.6

Table 1. Simulated datasets obtained with the PLINK software.

We obtain a genotype matrix G with G = (g1, ..., gL)T ,gi ∈ Rd where L is the
number of individuals (10000) and d the number of SNPs (10100). Furthermore,
we have phenotype labels p = (p1, .., pL), p ∈ RL, pi ∈ {−1, 1}. For the cases
pi = 1 holds whereas for the controls we have pi = −1. We divided the dataset
into two sets of equal size, one set for training and the other one for testing.

2.2 Genotype Score

A genotype score (GS) is calculated on the basis of the number of risk alleles
(those associated with the disease phenotype) that are carried by each individual
for a predefined subset of SNPs S. The subset S is selected according to their p-
values estimated with the Chi-square statistics. The number of selected SNPs, i.e.
|S| = k, is varied from 1 to 20. For the genotype data Gij ∈ {0, 1, 2} holds. The
encoding is performed such that Gij corresponds to the number of risk alleles
that are carried by individual i at SNP location j. The homozygous genotype
for the risk allele is coded with 2, heterozygous with 1 and homozygous for
the non risk allele with 0. Hence, the GS for an individual i of the test set is
computed by

Ri = ∑
j∈S

Gij . (1)

2.3 Support Vector Machine

A support vector machine (SVM) determines the hyperplane that separates
two given classes with maximum margin [19]. It has been applied to a broad
range of classification problems and is among the methods that are used as
benchmark in many cases. In order to measure the classification performance
that is obtained using the set of SNPs S ( selected as for the GS approach), we
train a Gaussian-kernel SVM on the genotype data of the selected SNPs of the
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training set. The hyper-parameters, i.e., kernel width and softness of the margin
are adjusted by 10-fold cross-validation on the training set.

2.4 Sparse Linear Regression

In contrast to the GS and SVM approaches, in the sparse linear regression (SLR)
approach the set of selected SNPs is not obtained from the p-values of the chi-
square statistics but the selection of a predefined number of SNPs is performed
automatically by the method. We consider the following optimization problem

wSP = arg min
w
‖p− Gw‖ subject to‖w‖0 = k . (2)

We are looking for a weight vector w that approximates the phenotype vector
p as a linear combination of the SNPs G where the number of non-zero entries
of the weight vector is equal to k1. It has been shown that (2) is a NP-hard
combinatorial problem. A number of approximation methods such as Opti-
mized Orthogonal Matching Pursuit (OOMP) [20] or Basis Pursuit [21] have
been proposed that provide close to optimal solutions in benign cases [22].
The bag of pursuits method (BOP) can also be applied to this optimization
problem. It is derived from the OOMP and performs a tree-like search that
employs a set of optimized orthogonal matching pursuits [14]. The larger the
number of pursuits used in the search is, the closer BOP approximates wSP. In
this work the number of pursuits was set to 100. In contrast to BP, it does not
lead to a quadratic optimization problem which might become computational
very demanding since nowadays very large genotype data is available (≈ 104

individuals, ≈ 106 SNPs). Let wBOP be the approximation of wSP that has been
determined using the BOP method on the training data. The decision value of
a given test individual gi is obtained as di = wT

BOPgi. Again, the number of
selected SNPs, i.e., k, is varied from 1 to 20.

3 Results

We trained and tested the GS, SVM, and SLR with varying numbers of selected
SNPs. We evaluated the performance of the three algorithms by means of the
receiver operator characteristic (ROC) obtained on the test set. The area under
this curve (AUC) is a commonly used approach to evaluate the performance of
a binary classifier. We generated a total of 5 random datasets for each choice
of the simulation parameters, i.e., odds ratio (OR) and minor allele frequency
(MAF) as described in section 2.1. Then, for a varying number of selected SNPs,
i.e., k = 1, . . . , 20, we evaluated the classification performance of the three
approaches by means of their mean AUC for each of the data types respectively.

1 ‖w‖0 is the number of non-zeros in w
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Fig. 1. OR 1.3, left: MAF 0.05-0.1, right: MAF 0.1-0.2

3.1 Dataset 1 and 2: Odds Ratio 1.3

We first compared the three algorithms on datasets with an OR of 1.3. In order
to explore the effects of a higher OR on the performance of the algorithms, we
then tested the three approaches on datasets with an OR of 1.6.

MAF: 0.05-0.1: As shown in Figure 1(left) the SLR approach clearly outperforms
the traditional genotype score and the SVM for small numbers of selected SNPs.
The performance of all three approaches improves with increasing numbers
of selected SNPs and is almost the same for large numbers of selected SNPs.
The performance of the GS and the SVM is very similar due to the selection
of the SNPs based on the p-values that is performed for these methods. The
SVM only marginally improves the performance for larger numbers of SNPs
compared to the GS approach. In particular for small numbers of selected SNPs
almost the same performance as for the GS is obtained.
MAF: 0.1-0.2: Figure 1(right) shows the performance of the methods on datasets
with a MAF between 0.1 and 0.2. The results are qualitatively the same. However,
if the number of selected SNPs is very large, the SVM and GS achieve better
results than the SLR method.

3.2 Dataset 3 and 4: Odds Ratio 1.6

The performance of all three approaches on datasets with an OR of 1.6 improves
compared to datasets having an OR of 1.3. This is not surprising since a higher
OR implies that each single significant SNP is a stronger classifier.
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MAF: 0.05-0.1: As for the results that were obtained from datasets with an
OR of 1.3, the performance of the SLR method is best for small amounts of
SNPs (see Figure 2,left). However, in contrast to the previous results, the GS
and SVM approaches close up to the SLR and even become slightly better for
larger numbers of SNPs.
MAF:0.1-0.2: Compared to the results on the dataset with a MAF of 0.05 -0.1,
the performance only improves marginally as shown in Figure 2(right). In
contrast to the results that were obtained on datasets with an OR of 1.3 the SLR
method is not beaten by the two other approaches but rather equally good for
large numbers of SNPs.
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Fig. 2. OR 1.6, left: MAF 0.05-0.1, right: MAF 0.1-0.2

4 Conclusion

The aim of GWA studies is not only to perform risk predictions based on
the genetic patterns but also to identify a small set of susceptibility loci in
order to understand the genetic mechanisms underlying the disease. The set of
susceptibility loci should be as small as possible in order to enable an analysis
of the biological mechanisms that correspond to the loci that have been selected.
The standard genotype score (GS) that counts the number of unfavorable alleles
limits the risk prediction to be based only on SNPs associated to the disease,
i.e., that are significant according to their p-value. Since we do not expect that
a small number of SNPs that have been selected according to their p-values
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can explain more than a small proportion of the genetic risk this approach is
not sufficient. The risk prediction can be greatly improved by employing more
powerful methods such as SVM-learning. However, for better interpretability of
the classifier to understand the genetic mechanisms of the disease, we want to
classify using only a small number of SNPs. Therefore, we again have to select
SNPs on the basis of prior knowledge. In this work we ranked the SNPs by the
p-values and trained the SVM on the best ranked SNPs which is a standard
approach in GWA data analysis but often leads to weak performance if the
number of selected SNPs is small.

In this paper, we approached the selection problem in the framework of
sparse linear regression (SLR). The advantage of the SLR approach is that it
does not need any a priori assumptions and thus does not have any limitations
due to a preselection step. We applied the bag of pursuits method to the SLR
problem which is possible even on huge data sets. We compared the three
methods GS, SVM and SLR on GWA data that has been simulated using the
PLINK software. If the set of selected SNPs is small, the SLR approach clearly
outperforms SVM and classical GS approaches. Even though the performance
of the other methods comes close to the performance of SLR if the number of
SNPs is large enough, the presented results suggest that SLR should be the
method of choice, in particular if the aim is not only to assess the risk of a
disease but also to better understand the genetic mechanisms underlying the
disease.

Acknowledgments. This work was supported by the Graduate School for Computing
in Medicine and Life Sciences funded by Germany’s Excellence Initiative [DFG GSC
235/1]

References

1. Sekar Kathiresan, Olle Melander, Dragi Anevski, Candace Guiducci, et al. Polymor-
phisms Associated with Cholesterol and Risk of Cardiovascular Events. N Engl J Med,
358(12):1240–1249, 2008.

2. Jianhua Zhao, Jonathan P. Bradfield, Mingyao Li, Kai Wang, et al. The role of obesity-
associated loci identified in genome wide association studies in the determination of
pediatric BMI. Obesity (Silver Spring, Md.), 17(12):2254–2257, December 2009. PMID:
19478790 PMCID: 2860782.

3. Jianhua Zhao, Mingyao Li, Jonathan P Bradfield, Haitao Zhang, et al. The role of
height-associated loci identified in genome wide association studies in the determina-
tion of pediatric stature. 11:96–96. PMID: 20546612 PMCID: 2894790.

4. Jeanette Erdmann, Anika Großhennig, Peter S. Braund, Inke R. König, et al. New
susceptibility locus for coronary artery disease on chromosome 3q22.3. Nat Genet,
41(3):280–282, Mar 2009.

5. John P.A. Ioannidis. Prediction of Cardiovascular Disease Outcomes and Established
Cardiovascular Risk Factors by Genome-Wide Association Markers. Circ Cardiovasc
Genet, 2(1):7–15, February 2009.

6. Teri A. Manolio, Francis S. Collins, Nancy J. Cox, David B. Goldstein, et al. Finding
the missing heritability of complex diseases. Nature, 461(7265):747–753, October 2009.

New Challenges in Neural Computation - 2010 67



7. J. H. Moore. The ubiquitous nature of epistasis in determining susceptibility to
common human diseases. Human heredity, 56(1-3):73–82, 2003.

8. Shaun Purcell, Benjamin Neale, Kathe Todd-Brown, Lori Thomas, et al. PLINK: a tool
set for whole-genome association and population-based linkage analyses. American
Journal of Human Genetics, 81(3):559–575, September 2007. PMID: 17701901.

9. Shaun Purcell. http://pngu.mgh.harvard.edu/purcell/plink/
10. J. V. Raelson, R. D. Little, A. Ruether, H. Fournier, B. Paquin, P. Van Eerdewegh, W. E.

Bradley, et al. Genome-wide association study for Crohn’s disease in the Quebec
Founder Population identifies multiple validated disease loci. Proc Natl Acad Sci U S
A, 104(37):14747–14752, 2007.

11. Nilesh J. Samani, Jeanette Erdmann, Alistair S. Hall, , Christian Hengstenberg,
et al. Genomewide Association Analysis of Coronary Artery Disease. N Engl J Med,
357(5):443–453, 2007.

12. Naomi R Wray, Michael E Goddard, and Peter M Visscher. Prediction of individ-
ual genetic risk of complex disease. Current Opinion in Genetics and Development,
18(73):257–263, 2008.

13. Zhi Wei, Kai Wang, Hui-Qi Q. Qu, Haitao Zhang, et al. From disease association to
risk assessment: an optimistic view from genome-wide association studies on type 1

diabetes. PLoS genetics, 5(10):e1000678+, October 2009.
14. Kai Labusch and Thomas Martinetz. Learning Sparse Codes for Image Recon-

struction. In Michel Verleysen, editor, Proceedings of the 18th European Symposium on
Artificial Neural Networks, pages 241–246. d-side, 2010.
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Abstract. Estimating of probability density functions is one of the most
essential techniques in machine learning and pattern recognition. In par-
ticular the Gaussian mixture model (GMM) is often used for a parametric
representation of complex densities. Most of the parameters of a GMM
can be adjusted using the expectation maximization (EM) algorithm.
The amount of mixtures and the form of the covariance matrix how-
ever cannot be derived by the EM algorithm and therefore need to be
chosen by a model selection method, which in general searches the pa-
rameter space. The presented work aims on the extension of the existing
EM algorithm in order to increase the robustness and accuracy of den-
sity estimation. The basic ideas rely on the utilization of an ensemble of
GMM. This can be related to model averaging: while the standard model
selection method determines the best performing GMM, the ensemble
approach uses a subset of best GMM which are subsequently combined
such that the precision and stability of the estimated density is improved.
The studies in this paper yield to first promising results which will be
presented along with a detailed description of the complete approach.

1 Introduction

Estimating density is a frequent task in pattern recognition and part of many
complex algorithms like hidden Markov models or Bayesian inference in general.
The estimation of continuous densities can be achieved using non-parametric
methods (e. g. by using kernel density estimators or nearest neighbour methods)
or parametric methods. Within the class of parametric methods, the Gaussian
mixture model (GMM) has been proven to be a good representation of com-
plex densities and therefore is broadly used in conjunction with the expectation
maximization (EM) algorithm which was first exhaustively studied by Dempster
et al. [3]. The combination of a model averaging method, namely bagging, in
conjunction with a GMM estimated by the EM algorithm, was first investigated
by Ormoneit et al. in [4, 2]. One limitation of the study of Ormoneit is that the
number of mixtures components remains the same over all models averaged. A
related idea of ensemble creation using GMM have been proposed by Shinozaki
et al. in which a modification of the EM algorithm has been proposed [6]. Due to
the fusion of information between the expectation and maximization steps, the
number of mixtures components is as well fixed. The presented work suggests to
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combine a set of GMM having different properties chosen with regard to gain
a high diversity among each other. In addition to bagging, different number of
mixture components as well as changing restrictions to the covariance matrix
are proposed. To the authors knowledge a study on GMM ensembles following
the same approach to the one presented has not yet been conducted.

In Section 2 probability density functions and the EM algorithm are reviewed
and the ensemble algorithm is introduced. Section 3 presents the experiments
performed. Finally Section 4 summarizes the work of this study and gives an
outlook to future work.

2 Estimating the density by an ensemble of GMM

Within this section the basic concept of probability density and the approxi-
mation using the EM algorithm are recapitulated. Later on the ensemble GMM
algorithm is proposed and discussed along with a demonstrating example.

2.1 Density estimation using GMM

A probability density function p(x) is defined over a continuous variable x and
describes the probability that x lies within the interval a ≤ x ≤ b. The prob-
ability is therefore defined as p(a ≤ x ≤ b) =

∫ b

a
p(x) dx. It must hold the

properties to be non-negative and to integrate up to one over the whole space
of x. The density estimation aims on deriving the probability p(x) based on a
finite number of observations x1, . . . ,xN . It needs to be pointed out, that the
problem itself is ill-posed for there are infinitely many probability distributions
that could have give rise to the observed data [1].
The Gaussian mixture model (GMM) belongs to the class of parametric rep-
resentations because the GMM restricts the form of the density by a set of
parameters. It is defined to be a linear superposition of Gaussians in the form

p(x) =
K∑

k=1

πkN (x|µk,Σk).

Each of the K Gaussians N are indexed by k and expressed by the mean vector
µk and its corresponding covariance matrix Σk. The weights of the Gaussians
{πk} are defined to be within the interval of [0, 1] and to sum up to one. The
presented work will focus on the GMM and therefore give a short introduction
to the EM algorithm which is broadly used to estimate µk, Σk and {πk}. The
EM algorithm governs its name by the expectation and the maximization step
which correspond to the second and third item of the following algorithm:

1. Initialize the means µk, the covariance matrices Σk and the weights πk in
an appropriate manner using for example K-means clustering or random
values. Furthermore, evaluate the initial value of the log likelihood.
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2. Determine the conditional probability for each mixture component k to be
responsible for the observation xn by

P (k|xn) =
πkN (xn|µk,Σk)∑K
j=1 πjN (xn|µj ,Σj)

.

3. Calculate the new adapted parameters for the current responsibilities for
each mixture component:

µk
new =

1
Nk

N∑
n=1

P (k|xn)xn

Σk
new =

1
Nk

N∑
n=1

P (k|xn)(xn − µnew
k )(xn − µnew

k )T

πnew
k =

Nk

N

where Nk =
∑N

n=1 P (k|xn).
4. Update the log likelihood

ln p({xn}|{µk}, {Σk}, {πk}) =
N∑

n=1

ln {
K∑

k=1

πkN (xn|µk,Σk)}

and check for stopping criterions. If no stopping criterions are met return to
step 2.

The EM algorithm suffers from the appearance of singularities which may occur,
if one mixture component gets responsible for solely one observation point. This
circumstance leads to an infinitesimal variance and a likelihood going to infinity.
These singularities can be avoided by resetting the corresponding Gaussian using
an heuristic or using a regularization term. Although the EM algorithm is ca-
pable to estimate the parameters {πk}, {µk} and {Σk} some model parameters
like the number of mixtures K or potential restrictions to the covariance matrix
(e.g. spherical or diagonal) need to be defined by experts. A common approach to
determine these parameters is model selection in which different configurations
are explored and the best fitting model is selected at the end. This approach
has the obvious drawback that most of the models are rejected although they
potentially render a good approximation of the underlying density.

2.2 Constructing an ensemble of GMM

For GMM ensembles it will be convenient to apply a variety of GMM having a
high diversity. Different GMM need to focus on different parts of the data set
such that they complement one another when they are combined. This can be
achieved using subsets of the trainings data, random initialization of weights,
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mean and covariance, different numbers of mixture components and different
restrictions to the covariance matrix.

The input of the ensemble algorithm is a set of observations x1, . . . ,xN and a
list L of GMM configurations. Furthermore, a number M representing how many
GMM shall be used for the final combination of the ensemble and parameters for
bagging (subset size and number of subsets to be created) may be passed. The
list L contains the models to be evaluated and may have repeated entries of the
same configuration. The elements are tuples of the number of mixture compo-
nents K, the restriction of the covariance matrix (e. g. diagonal, spherical) and
the initialization method for the EM algorithm. Utilizing random initialization
of the GMM parameters may inject the diversity of the models. Once the algo-
rithm has trained each GMM of the list, the best M GMM with respect to the
likelihood are chosen and combined using a pointwise mean or a median. The
averaging of GMM retains some properties of the individual GMM such that
the resulting probability density will have only positive values and the integral
over the whole space of x will still integrate to one. Averaging using weights
may also be performed by evaluating the likelihood of the different GMM. It
is also considerable, that singularities occurring due to the EM algorithm can
be compensated by utilizing an alternative to averaging, e. g. median. While the
median is robuster to outliers in the ensemble, it is only useful in case only the
mode of the density is required in the subsequent processing due to the property
of integrating up to one and being differentiable will no longer hold.
Depending on the quantity M the ensemble GMM may have a notedly increased
complexity. In order to circumvent this complexity, it may also be convenient to
approximate the ensemble GMM by a regression method for instance a neural
network. The trainings data for the regression can easily be generated by the
ensemble GMM itself.

Fig. 1: Example of estimating the density of an exponential decay. The left plot shows
the probability density (solid line) from which the data samples are derived (x-marks at
the bottom of the plot). The data samples are used to estimate two Gaussian mixture
models with two and three mixture components illustrated on the right-hand plot by
the two dashed lines. While both models give a good approximation of the density, the
average performs slightly better (The original function is indicated in the right plot by
the dotted line).
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The advantages of using ensemble GMM are demonstrated in Figure 1 with
the help of a simple example. The density shown on the left-hand side of the
figure is given by an exponential decay (λ = 1). The x-marks on the bottom
of the same plot are the 250 data samples generated from the distribution used
to train the GMM plotted on the right-hand side of the figure. A GMM hav-
ing two mixture components and another one having three mixture components
are illustrated on the corresponding plot by two dashed curves. The solid line
corresponds to the average of both GMM. In order to compare the accuracies
of the three densities, the integral of the absolute difference to the original den-
sity are taken over the interval [0, 5]. The GMM having two and three mixture
components achieved an error of 0.29 and 0.22 respectively. The average of both
functions obtained an error of 0.19 and therefore performs better. In order to
gain more insight in the performance of the proposed approach, the next section
will present and discuss experiments which have been conducted.

3 Experiments

This section presents two different studies conducted to investigate the benefits
of ensemble GMM. The first study is a typical classification task which is based
on the data set described and used by Ormoneit et al. [5]. It will support the ar-
gument that ensemble GMM gives an improved representation of the underlying
density. The second study aims at the comparison of the classical approach and
ensemble GMM with respect to its robustness. Both experiments have been con-
ducted using artificial data and will be explained in detail within the following
two subsection.

3.1 Ensemble GMM Classification Performance

In order to compare the ensemble GMM to the other extensions of the EM-
algorithms, an artificial classification problem which was used by Ormoneit et al.
is studied [4]. Ormoneit et al. proposed two data sets which can be generated
using the algorithm described in the corresponding article. The first artificial
problem utilizes 200 data points per class in a two-dimensional space which are
equally divided into training and test data set. GMM bagging has been per-
formed by Ormoneit et al. using 20 mixture components which are trained with
50 replications and resampling by drawing 70% subsamples from the original
data set without replacement. Furthermore, two model penalization approaches
have been evaluated which favor covariance matrix with a certain scale. The
second artificial problem utilizes 400 data points per class in a ten-dimensional
space which are as well equally divided into training and test data set. It dif-
fers from the first artificial problem in using a smaller offset which results in a
larger overlap between the two classes. The same algorithms used in the first
artificial problem have also been evaluated on the higher-dimensional data set.
Unfortunately, the EM-algorithm used in this study was unable to estimate valid
GMM without singularities in the second artificial example although only a much
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smaller number of mixture component have been utilized. This might be related
to the small training data set and the high dimensionality used. Hence, only
a comparison using the first artificial problem can be rendered. The ensemble
GMM was evaluated in two modi: using all configurations and using only the
10 best GMM according to the likelihood. The estimated numbers of mixture
components have ranged from 5 to 15 with 2 replications and resampling by
drawing 90% subsamples from the original data set without replacement. The
results are averaged over 20 simulations and are solely based on the test data
set. The classification performs is shown in Table 1 along with the variance over
the 20 simulations. The accuracy achieved by Ormoneit et al. could be improved

Method Artificial problem I

Max. Likelihood† 79.03%(2.6)

Simple averaging† 80.43%(2)

Subset averaging† 80.73%(1.8)

Bagging† 81.2%(1.4)

Penalized likelihood† 82.28%(1.4)

Bayesian† 82.7%(1.3)
Ensemble 84.27%(0.4)

Ensemble (M = 10) 84.17%(0.5)

Table 1: Comparsion to the first artificial data set which Ormoneit et al. proposed.
Results marked by a dagger (†) indicate the best performance achieved within the
study by Ormoneit et al. for the respective method. The method Ensemble combined
all 20 GMM, while Ensemble (M = 10) combined only the ten best GMM.

by 1.5% while averaging fewer GMM than Ormoneit et al. required. The ensem-
ble GMM utilizing only 10 GMM with the highest likelihood does not perform
better than the complete ensemble GMM.

3.2 Ensemble GMM Performance depending on Density
Complexity

It can be assumed that a classical GMM performs optimal if the underlying
density consists out of a superposition of Gaussians distributions. This means
as well that more complex densities which for instance have a super Gaussian
or sub Gaussian shape cannot be properly represented by a GMM (e.g. the Stu-
dent’s t-distribution which is composed out of an infinite number of Gaussian
distributions). In order to study GMM and ensemble GMM different types of
densities ranging sub Gaussian to almost Gaussian shape are evaluated. Three
beta distribution with hyperparameters a = b = 1, a = b = 2 and a = b = 10
have been estimated by classical GMM and ensemble GMM, see Figure 2. The
beta distribution converges to a Gaussian distribution the higher the hyperpa-
rameters a and b are chosen.
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Fig. 2: Beta distribution used to study the accuracy and robustness of the classical and
the ensemble GMM. The beta distribution takes the form of a uniform distribution in
case the two parameters are set to a = b = 1 (left plot). Parameters set to a = b = 2
result in a concave shape with a rough change on the boundary of its support (middle
plot). A shape close to a Gaussian distribution is obtained setting the parameters to
a = b = 10 (right plot).

Beside the distribution to be estimated, a meaningful error rate shall as well
be used to derive as much information from the study as possible. Therefore,
the well-known bias-variance decomposition of the squared loss function with
respect to models has been considered. The loss function is given by

E(L) =
∑
n∈N

{y(xn)− h(xn)}2

where the assumption has been made, that no noise is contained within the
target function h(·). To get an impression of the uncertainty associated with
one estimate, the average over one certain model M is introduced into the loss
function by adding and substracting EM[y(x;M)]:

{y(x)− h(x)}2 = {y(x;M)− EM[y(x;M)] + EM[y(x;M)]− h(x)}2

= {y(x;M)− EM[y(x;M)]}2 + {EM[y(x;M)]− h(x)}2

2 · {y(x;M)− EM[y(x;M)]}{EM[y(x;M)]− h(x)}

Once the term has been expanded, the expectation of this expression is taken
with the respect toM. As a consequence the cross-term vanishes and we obtain

EM[{y(x)−h(x)}2] = {EM[y(x;M)]−h(x)}2 +EM[{y(x;M)−EM[y(x;M)]}2].

The first term, called the squared bias, represents the extent to which the average
prediction differs from the desired density function. The second term which is
called variance measures the extent to which the solution for individual models
vary around their average [1].

As already mentioned this study compares the classical (single) GMM with
ensemble GMM. For both 16 models have been evaluated for each beta distri-
bution. In case of the classical GMM the models have only different number
of mixture components, namely ranging from 1 to 16. For the ensemble GMM
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an increasing complexity have been chosen. The amount of mixture compo-
nents always ranging from one to the index of the current model, such that the
ensembles {{1}, {1, 2}, {1, 2, 3}, . . . , {1 . . . 16}} are evaluated. The studied data
distributions will clearly favor a simple GMM with a number of mixtures close to
one. Furthermore it can be assumed that the classical GMM will perform notedly
worse the more mixtures are used while the ensemble GMM will show a robuster
behaviour with less variance. The error rates are shown in Figure 3 and based
on equidistant data samples generated within the interval [−0.5, 1.5] with a step
size of 10−3. For each value the model has been estimated 20 times to derive
the squared bias and the variance. The results of the classical application of the
GMM is illustrated in Figure 3a. Figure 3b shows the associated results for the
ensemble GMM. The squared bias (dashed curve), which represents the average
prediction difference from the desired density function, appears to be very sta-
ble for the different models. The variance (dotted curve) however has a notedly
higher contribution to the overall test error (solid line) for the classical GMM
and is steadily increasing. Note that the plots showing the Beta distributions
with a = b = 10 have different scales on the y-axis.

Like expected both models favor small number of mixtures components. Con-
sidering that the best performing number was not evident, the ensemble GMM
achieved for all three beta distribution very robust results, which was intended
to be shown.

4 Conclusion

Within this paper the extension of density estimation using ensemble GMM
has been studied. The ensemble GMM combines a set of GMM being as di-
verse as possible such that they complement each other. A classical approach
is bagging which subdivides the training data set into subsets, such that dif-
ferent models are obtained which are subsequently averaged. Ensemble GMM
generalizes this approach by utilizing different number of mixture components
and restriction to the covariance matrix. A first study demonstrated the perfor-
mance achievement within a classification task. The ensemble GMM obtained
better accuracies than the competing approaches. The second study proved that
the robustness of ensemble GMM clearly outperforms comparable single GMM.
Future work will aim on further studying the ensemble GMM approach and the
extension of existing algorithms like HMM to improve their performance.
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(a) Classical GMM. Number of mixture
components are given on the x-axis.

(b) Ensemble GMM with increasing
complexity. Number of mixture compo-
nents are ranging from one to the given
value on the x-axis.

Fig. 3: Bias-variance decomposition for classical and ensemble GMM. Squared bias
shown in dashed curves, variance shown in dotted curves and the sum of squared bias
and variance (test error) shown in solid curves.
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Universitätsstrasse 21-23, 33615 Bielefeld, Germany
• http://www.uni-bielefeld.de/

▽ Copyright & Licence
Copyright of the articles remains to the authors.

▽ Acknowledgments
We would like to thank the reviewers for their time and patience.

Machine Learning Reports,Research group on Computational Intelligence,
http://www.uni-leipzig.de/∼compint/mlr/mlr.html


	mlr_report_04_2010_intro
	nc2
	ki2010nc2_intro
	nn_0
	nn_1_LanRie
	nn_1_LZ
	nn_2_FisIge
	nn_3_KaiSchMoe
	nn_4_HeiIge
	nn_4_HZ
	nn_5_BeuWilHam
	nn_6_SeiBol
	nn_6_SZ
	nn_7_BraLabMarMad
	nn_8_GloSchSch
	nn_1_LanRie

	mlr_report_04_2010_concl



