
In: Proceedings der 27. Konferenz zur Elektronischen Sprachsignalverarbeitung, pp. 152-157, PREPRINT
March 26–28, 2013, Bielefeld, Germany

TEXTGRIDTOOLS: A TEXTGRID
PROCESSING AND ANALYSIS TOOLKIT FOR PYTHON

Hendrik Buschmeier, Marcin Włodarczak

Bielefeld University
{hbuschme, mwlodarczak}@uni-bielefeld.de

Abstract: In this paper we present TEXTGRIDTOOLS, a free Python package for
processing, querying and manipulating Praat’s TextGrid files. TEXTGRIDTOOLS

improves on many deficiencies of Praat’s embedded scripting language by provid-
ing a clean data model for TextGrid objects and their attributes, and offering func-
tionality for common annotation-related tasks, for instance calculation of inter-
annotator agreement measures. Owing to seamless integration with other Python
tools, such as data analysis libraries and interactive interpreters, users gain access
to a versatile and powerful computing environment without the need of repeated
format conversions.

1 Introduction

Praat [1] has become a de-facto standard tool for phonetic analysis, transcription of speech,
and classification of speech events. To this end, it provides an intuitive point-and-click user
interface for selecting intervals or points in audio data and for labelling these with arbitrary
text, which is then displayed time-aligned alongside the waveform. Praat supports annotation on
multiple independent tiers, allowing for application of multidimensional annotation schemata,
annotations with different degrees of granularity, or transcriptions of individual participants in
a dialogue recording.

Much of Praat’s usefulness comes from its programmability via a simple embedded scripting
language, ‘Praat script,’ which provides full access to Praat’s functions and data structures, and
can greatly help to automatise tedious and time consuming tasks. However, in spite of its many
virtues and its ease of use, Praat script lacks basic features of modern programming languages,
such as return statements in functions, iterators, or even basic data structures such as lists or
hash tables. Additionally, not being a general-purpose language, it falls short of functionality
which is not directly tied to Praat itself, such as plotting or statistical analysis.

These limitations are particularly evident when Praat script is used to manipulate Praat’s
native annotation objects, stored in plain text ‘TextGrid’ files. Such tasks often do not require
any of Praat’s advanced audio analysis features but would greatly benefit from access to spe-
cialised text processing tools and simple integration with external data analysis libraries. Faced
with lack of such functionality, Praat users wishing to carry out more complex analyses on
their annotations are forced to first export their data into some intermediate format, such as
comma-separated files, before importing them into a data analysis framework of their choice.

To overcome these shortcomings, we have developed ‘TEXTGRIDTOOLS,’ a Python package
offering functions to parse, manipulate and query Praat annotations. TEXTGRIDTOOLS imple-
ments all of TextGrid-related objects, such as interval and point tiers, as native Python classes
and offers a clean API for accessing their attributes. Additional functions are available for per-
forming more complex operations, such as calculation of inter-annotator agreement measures
between several annotation tiers.

1 0..n

1 0..n

1 0..n1 1..n
TextGrid AnnotationTier

IntervalTier

PointTier

Interval

Point

Figure 1 - Class diagram of TEXTGRIDTOOLS’ data structures. TextGrid consists of an ordered list
of Tiers, each of which consists of an ordered list of Annotations. Concrete tiers are either of type
IntervalTier or PointTier, holding annotations of concrete types Interval or Point, respectively.

Coupled with Python’s expressive syntax, TEXTGRIDTOOLS allows for more compact and
human-readable program code than that of Praat script. Additionally, with access to a fully-
fledged programming language, users are able to carry out their analyses in one step, without
Praat script serving as a mere exporting tool. Using TEXTGRIDTOOLS annotations can be ac-
cessed directly from a Python program and processed using one of Python’s many data analysis
libraries (e.g., NumPy, SciPy, Matplotlib, RPy or pandas, cf. [4]).

TEXTGRIDTOOLS are released under the GNU General Public Licence v3.0, and hosted on
GitHub1, enabling users to contribute their changes and extend the existing functionality.

2 Data model

Praat natively stores labels and annotations in ‘TextGrid’ objects. A TextGrid object holds in-
formation about its tiers and their ordering. Each tier has a name, a type (i.e., whether it is an
‘interval tier’, or a ‘point tier’), and stores the labelled annotations (i.e., intervals or points).
TextGrid objects are saved in plain text ‘TextGrid’ files.

The data structures of TEXTGRIDTOOLS mirror the structure of Praat’s TextGrid objects.
The Python classes IntervalTier and PointTier implement Praat’s tiers types. These hold ordered
lists of objects of the class Interval or Point respectively. Multiple tiers are grouped in objects of
the class TextGrid. Shared structure and functionality between IntervalTier and PointTier as well
as Interval and Point are inherited from parent classes Tier and Annotation. See Figure 1 for the
class diagram of TEXTGRIDTOOLS.

TEXTGRIDTOOLS’ data structures are lean, relying mostly on Python’s build-in data struc-
tures. An Annotation object consist of a start and an end time (their left and right boundary) and
a variable for storing a text label. In a Point object, start and end times are by definition equal.
A Tier object consists essentially of a list of Annotation objects, ordered by their time values.
Consequently, adding a new annotation to a tier using the method add annotation inserts it
at the correct position within the list (or fails with an exception if the required space is already
occupied by an existing annotation). TextGrid objects also maintain a simple list of Tiers.

1https://github.com/hbuschme/TextGridTools/

3 Using TEXTGRIDTOOLS

In our experience, TEXTGRIDTOOLS has three main use cases. Firstly, it can be used for load-
ing existing TextGrid files into Python. Manually annotated speech data is then available in
native Python objects and can be used for data analysis, agreement calculation, or training and
evaluation of machine learning algorithms. Secondly, annotations can be created in Python and
saved as TextGrid files. This is useful for automating simple – but tedious – annotation tasks
in order to reduce the amount of human annotators’ work. It is also useful for incorporating
data streams that are not compatible with Praat (i.e., non-audio data). Human annotators can
then build on these automatically generated annotations for harder annotation tasks. The third
use case consists in manipulating TextGrid files. Examples include extracting information from
a TextGrid file (tier names, number of intervals, etc.), concatenating or merging two or more
TextGrid files or correcting segmentations in a TextGrid file by shifting all boundaries by a
specified amount of time.

Below we outline some of the functionality used in common TextGrid processing tasks, and
briefly discuss ways of incorporating TEXTGRIDTOOLS into a Python-based scientific comput-
ing environment.

3.1 Searching and querying

Praat provides a number of basic functions for querying TextGrids and their tiers, mainly in the
time domain, such as retrieving time stamps and durations of annotations. Additional functions
exist for extracting labels of intervals and points and for counting the number of occurrences of
a given label in a tier. However, some of these operations are fairly cumbersome. For instance,
an interval label can be queried using an interval index but not a time stamp. The latter requires
a separate call to function Get interval at time..., which returns an interval index
given a time stamp argument. Similarly, tiers can only be accessed by their indices but not
by their names. While a function Get tier name... exists, finding a tier with a specified
name requires iterating over all tiers in a TextGrid.

TEXTGRIDTOOLS solves many of these problems, while at the same time extending Praat’s
native functionality. For example, TEXTGRIDTOOLS allows direct access to a tier of a TextGrid
object:
import tgt # Loading TextGridTools

Read a TextGrid file
tg = tgt.read_textgrid(’32-V-NC-B.TextGrid’)

Access specific tiers by name
ipu_tier = tg.get_tier_by_name(’IPU-speaker’)
feedback_tier = tg.get_tier_by_name(’FB-listener’)

Within each tier, annotations can be accessed directly by specifying a time stamp (in Inter-
valTiers annotations can be searched by left or right boundary, or an arbitrary time value falling
anywhere within an interval). Additionally, both Point and Interval objects lying the closest to
some time stamp (but not necessarily coinciding with it) can be located. Given two time stamps,
all annotations lying between them are returned:
Get all annotations from the first minute
fb_1st_minute = feedback_tier.get_annotations_between_timepoints(0,60)

Since Tier objects are implemented as Python iterators, their elements can also be accessed
similar to elements in a list using indexing and slicing. Additionally, interval and point labels

can be filtered by a specified string or a regular expression. It is thus easy to get a list of all
annotations in a tier whose text labels match a certain pattern:
Get all annotations with a text label ’p2’ or ’P2’
fb_p2 = feedback_tier.get_annotations_with_regex(r’[pP]2’)

The get nearest annotation method is an example of the level of granularity which
TEXTGRIDTOOLS allows. In its simplest form the method searches for an annotation with a
non-empty label whose boundary lies the closest to the specified time stamp. In more complex
cases, however, the search can be limited to start or end boundaries, to the right or left-hand
context, or to annotations with labels matching a specific regular expression whose boundaries
do not overlap with the input time stamp. For example:
Find the interval with a non-empty label whose boundary
lies the closest to the right or to the left of 21.43 s
feedback_tier.get_nearest_annotation(21.43)

Find the interval whose end time lies the closest
to the left of 21.43 s with a text label ’P1’ or ’P1A’
feedback_tier.get_nearest_annotation(21.43, regex=r’P1A*’,

direction=’left’, boundary=’end’)

As above but exclude the interval actually coincinding with 21.43 s
feedback_tier.get_nearest_annotation(21.43, regex=r’P1A*’, direction=’left’,

boundary=’end’, exclude_overlapeed=True)

The tgt.util module provides high-level functions operating on multiple Tiers or whole
TextGrid objects. As an example, overlaps between intervals matching a specified regular ex-
pression in two IntervalTiers can be conveniently calculated:
Overlaps between non-empty (the default) intervals in the first two tiers.
ovlp_fb = tgt.util.get_overlapping_intervals(ipu_tier, feedback_tier)

Overlaps between empty intervals in the first two tiers.
silences = tgt.util.get_overlapping_intervals(ipu_tier, feedback_tier,

regex=’ˆ\s*$’, label=’sil’)

Further high-level functions exist for merging and concatenating TextGrid objects, as well
as for shifting all timestamps in a Tier by the specified amount of time. Otherwise, modifying
TextGrids, for instance batch replacement of annotations’ text labels, can be largely accom-
plished by means of native Python methods – such as looping – in combination with the basic
methods provided by TEXTGRIDTOOLS’ classes.

3.2 Calculating inter-annotator agreement

Since Praat is frequently used as an audio transcription tool, a common task which is at present
not supported by Praat itself is calculating inter-rater or inter-annotator agreement measures.
TEXTGRIDTOOLS fills this gap by providing three of the most popular measures: Cohen’s
kappa [2], Scott’s pi [6] and Fleiss’s kappa [3]. The maximum misalignment between the com-
pared annotations as well as their labels can be set to custom values.

An example of calculating all three agreement measures is presented in the code listing
below.
Cohen’s kappa for the first two tiers
cohen_kappa = tgt.agreement.agreement(tg.tiers[:2], method=’cohen-kappa’)

Scott’s pi for the first two tiers with the maximum
allowed time stamp mismatch of 10 ms

scott_pi = tgt.agreement.agreement(tg.tiers[:2], method=’scott-pi’,
precision=0.01)

Fleiss’s kappa for annotations with non-empty labels in the first
three tiers which do not end with a question mark.
fleiss_kappa = tgt.agreement.agreement(tg.tiers[:3], method=’fleiss-kappa’,

regex=r’[ˆ?\s]\s*$’)

Since both Cohen’s kappa and Scott’s pi are only defined for two annotators, if more than
two tiers are passed to these functions, pairwise agreement scores are calculated. Addition of
further agreement measures is planned.

3.3 Writing TextGrid objects to disk

As expected, TEXTGRIDTOOLS provides means to write TextGrid objects into Praat’s native
TextGrid file format (both the long and the short flavours are supported). Furthermore, TEXT-
GRIDTOOLS is currently able to export TextGrid objects as files in ELAN’s [7] XML-based EAF
format and, using Python’s standard csv module, as tables in comma-separated form (CSV).

Writing a TextGrid object to a file is done in the following way:
Writing the textgrid as a short TextGrid file
tgt.write_to_file(tg, ’output.TextGrid’, format=’short’)

Writing the textgrid as an ELAN file, omitting all empty intervals
as well as point tiers
tgt.write_to_file(tg, ’output.eaf’, format=’eaf’,

include_empty_intervals=False, include_point_tiers=False)

3.4 Integrating TEXTGRIDTOOLS into a Python-based data analysis environment

One of the goals behind TEXTGRIDTOOLS has been integration of tools used in processing an-
notations produced with Praat. It is, therefore, desirable that data analysis and visualisation also
be done with the same tools. In recent years a wide range of data analysis libraries have evolved
and matured in the Python ecosystem [4]. They include, among others, tools for data analysis
(pandas), numerical (NumPy) and scientific (SciPy) computing, data visualisation (Matplotlib),
statistical modelling (Statsmodels) and natural language processing (NLTK). Interfaces to other
data analysis tools (e.g. RPy) also exist. Coupled with an interactive shell such as IPython [5],
which provides a web-based interface and in-line plotting capabilities, Python can serve as an
extremely powerful integrated data analysis environment.

As a pure Python package, TEXTGRIDTOOLS can be easily integrated into that environment.
A particularly convenient workflow consist of reading TextGrid files into an interactive web-
based IPython notebook, extracting the relevant data with TEXTGRIDTOOLS, converting the
output to a pandas DataFrame object (a Python analogue of R’s data.frame) and carrying out all
further analyses using the libraries mentioned above.

4 Conclusions

TEXTGRIDTOOLS offers new ways of working with TextGrid files, freeing users from the lim-
itations of Praat’s scripting language and multiple format conversions necessitated by an amal-
gam of incompatible processing and analysis toolkits. By integrating TEXTGRIDTOOLS with
other Python-based libraries, data analysis becomes more flexible and transparent, resulting in
less time spent writing and debugging code.

TEXTGRIDTOOLS is free software and can be extended collaboratively by the community
at large. We are convinced that a single powerful library provides a much better solution to
annotation-processing problems than a myriad of Praat scripts floating aimlessly around the
Internet.

Acknowledgements — This research is supported by the Deutsche Forschungsgemeinschaft
(DFG) in the Center of Excellence EXC 277 in ‘Cognitive Interaction Technology’ (CITEC)
and by the BMBF-funded ‘Professorinnenprogramm’ FKZ 01FP09105A.

References

[1] P. Boersma and D. Weenink. Praat: Doing phonetics by computer. Computer program,
2013. http://www.praat.org/.

[2] J. Cohen. A coefficient of agreement for nominal scales. Educational and Psychological
Measurement, 20:37–46, 1960.

[3] J. L. Fleiss. Measuring nominal scale agreement among many raters. Psychological Bul-
letin, 76:378–382, 1971.

[4] W. McKinney. Python for Data Analysis: Agile Tools for Real World Data. O’Reilly,
Sebastopol, CA, 2012.

[5] F. Pérez and B. E. Granger. IPython: A system for interactive scientific computing. Com-
puting in Science and Engineering, 9:21–29, 2007.

[6] W. A. Scott. Reliability of content analysis: The case of nominal scale coding. Public
Opinion Quarterly, 19:321–325, 1955.

[7] P. Wittenburg, H. Brugman, A. Russel, A. Klassmann, and H. Sloetjes. ELAN: A profes-
sional framework for multimodality research. In Proceedings of the 5th International Con-
ference on Language Resources and Evaluation (LREC), pages 1556–1559, Genoa, Italy,
2006.

