
Proceedings of SIGDIAL 2010: the 11th Annual Meeting of the Special Interest Group in Discourse and Dialogue, pages 51–54,
University of Tokyo, September 24-25, 2010. c©2010 Association for Computational Linguistics

Middleware for Incremental Processing in Conversational Agents

David Schlangen∗, Timo Baumann∗, Hendrik Buschmeier†, Okko Buß∗

Stefan Kopp†, Gabriel Skantze‡, Ramin Yaghoubzadeh†

∗University of Potsdam †Bielefeld University ‡KTH, Stockholm
Germany Germany Sweden

david.schlangen@uni-potsdam.de

Abstract

We describe work done at three sites on
designing conversational agents capable of
incremental processing. We focus on the
‘middleware’ layer in these systems, which
takes care of passing around and maintain-
ing incremental information between the
modules of such agents. All implementa-
tions are based on the abstract model of
incremental dialogue processing proposed
by Schlangen and Skantze (2009), and the
paper shows what different instantiations
of the model can look like given specific
requirements and application areas.

1 Introduction
Schlangen and Skantze (2009) recently proposed
an abstract model of incremental dialogue process-
ing. While this model introduces useful concepts
(briefly reviewed in the next section), it does not
talk about how to actually implement such sys-
tems. We report here work done at three different
sites on setting up conversational agents capable
of incremental processing, inspired by the abstract
model. More specifically, we discuss what may
be called the ‘middleware’ layer in such systems,
which takes care of passing around and maintaining
incremental information between the modules of
such agents. The three approaches illustrate a range
of choices available in the implementation of such
a middle layer. We will make our software avail-
able as development kits in the hope of fostering
further research on incremental systems.1

In the next section, we briefly review the abstract
model. We then describe the implementations cre-
ated at Uni Bielefeld (BF), KTH Stockholm (KTH)
and Uni Potsdam (UP). We close with a brief dis-
cussion of similarities and differences, and an out-
look on further work.

1Links to the three packages described here can be found
at http://purl.org/net/Middlewares-SIGdial2010.

2 The IU-Model of Incremental Processing
Schlangen and Skantze (2009) model incremental
systems as consisting of a network of processing
modules. Each module has a left buffer, a proces-
sor, and a right buffer, where the normal mode of
processing is to take input from the left buffer, pro-
cess it, and provide output in the right buffer, from
where it goes to the next module’s left buffer. (Top-
down, expectation-based processing would work
in the opposite direction.) Modules exchange incre-
mental units (IUs), which are the smallest ‘chunks’
of information that can trigger connected modules
into action. IUs typically are part of larger units;
e.g., individual words as parts of an utterance, or
frame elements as part of the representation of an
utterance meaning. This relation of being part of
the same larger unit is recorded through same level
links; the information that was used in creating a
given IU is linked to it via grounded in links. Mod-
ules have to be able to react to three basic situa-
tions: that IUs are added to a buffer, which triggers
processing; that IUs that were erroneously hypothe-
sised by an earlier module are revoked, which may
trigger a revision of a module’s own output; and
that modules signal that they commit to an IU, that
is, won’t revoke it anymore (or, respectively, expect
it to not be revoked anymore).

Implementations of this model then have to re-
alise the actual details of this information flow, and
must make available the basic module operations.

3 Sociable Agents Architecture
BF’s implementation is based on the ‘D-Bus’ mes-
sage bus system (Pennington et al., 2007), which
is used for remote procedure calls and the bi-
directional synchronisation of IUs, either locally
between processes or over the network. The bus sys-
tem provides proxies, which make the interface of
a local object accessible remotely without copying
data, thus ensuring that any access is guaranteed to
yield up-to-date information. D-Bus bindings exist
for most major programming languages, allowing

51



for interoperability across various systems.
IUs exist as objects implementing a D-Bus in-

terface, and are made available to other modules
by publishing them on the bus. Modules are ob-
jects comprising a main thread and right and left
buffers for holding own IUs and foreign IU proxies,
respectively. Modules can co-exist in one process
as threads or occupy one process each—even dis-
tributed across a network.

A dedicated Relay D-Bus object on the network
is responsible for module administration and up-
date notifications. At connection time, modules
register with the relay, providing a list of IU cat-
egories and/or module names they are interested
in. Category interests create loose functional links
while module interests produce more static ones.
Whenever a module chooses to publish informa-
tion, it places a new IU in its right buffer, while
removal of an IU from the right buffer corresponds
to retraction. The relay is notified of such changes
and in turn invokes a notification callback in all
interested modules synchronising their left buffers
by immediately and transparently creating or re-
moving proxies of those IUs.

IUs consist of the fields described in the abstract
model, and an additional category field which the
relay can use to identify the set of interested mod-
ules to notify. They furthermore feature an optional
custom lifetime, on the expiration of which they
are automatically retracted.

Incremental changes to IUs are simply realised
by changing their attributes: regardless of their lo-
cation in either a right or left buffer, the same setter
functions apply (e.g., set payload). These generate
relay-transported update messages which commu-
nicate the ID of the changed IU. Received update
messages concerning self-owned and remotely-
owned objects are discerned automatically to allow
for special treatment of own IUs. The complete
process is illustrated in Figure 1.

Current state and discussion. Our support for
bi-directional IU editing is an extension to the con-
cepts of the general model. It allows higher-level
modules with a better knowledge of context to re-
vise uncertain information offered by lower levels.
Information can flow both ways, bottom-up and
top-down, thus allowing for diagnostic and causal
networks linked through category interests.

Coming from the field of embodied conversa-
tional agents, and being especially interested in
modelling human-like communication, for exam-

A B

C

IU
IU proxy
Write access

Relay

Data access
Update notification

RBuf LBuf

Interest sets

Figure 1: Data access on the IU proxies is transparently dele-
gated over the D-Bus; module A has published an IU. B and C
are registered in the corresponding interest set, thus receiving
a proxy of this IU in their left buffer. When B changes the IU,
A and C receive update notifications.

ple for on-line production of listener backchannel
feedback, we constantly have to take incremen-
tally changing uncertain input into account. Using
the presented framework consistently as a network
communication layer, we are currently modelling
an entire cognitive architecture for virtual agents,
based on the principle of incremental processing.

The decision for D-Bus as the transportation
layer has enabled us to quickly develop ver-
sions for Python, C++ and Java, and produced
straightforward-to-use libraries for the creation of
IU-exchanging modules: the simplest fully-fledged
module might only consist of a periodically in-
voked main loop callback function and any subset
of the four handlers for IU events (added, removed,
updated, committed).

4 Inpro Toolkit
The InproTK developed at UP offers flexibility on
how tightly or loosely modules are coupled in a
system. It provides mechanisms for sending IU up-
dates between processes via a messaging protocol
(we have used OAA [Cheyer and Martin, 2001], but
other communication layers could also be used) as
well as for using shared memory within one (Java)
process. InproTK follows an event-based model,
where modules create events, for which other mod-
ules can register as Listeners. Module networks are
configured via a system configuration file which
specifies which modules listen to which.

Modules push information to their right, hence
the interface for inter-module communication is
called PushBuffer. (At the moment, InproTK only
implements left-to-right IU flow.) The PushBuffer

interface defines a hypothesis-change method
which a module will call for all its listening mod-
ules. A hypothesis change is (redundantly) charac-
terised by passing both the complete current buffer
state (a list of IUs) as well as the delta between

52



the previous and the current state, leaving listen-
ing modules a choice of how to implement their
internal update.

Modules can be fully event-driven, only trig-
gered into action by being notified of a hypothesis
change, or they can run persistently, in order to cre-
ate endogenous events like time-outs. Event-driven
modules can run concurrently in separate threads or
can be called sequentially by a push buffer (which
may seem to run counter the spirit of incremental
processing, but can be advantageous for very quick
computations for which the overhead of creating
threads should be avoided).

IUs are typed objects, where the base class IU

specifies the links (same-level, grounded-in) that
allow to create the IU network and handles the
assignment of unique IDs. The payload and addi-
tional properties of an IU are specified for the IU’s
type. A design principle here is to make all relevant
information available, while avoiding replication.
For instance, an IU holding a bit of semantic rep-
resentation can query which interval of input data
it is based on, where this information is retrieved
from the appropriate IUs by automatically follow-
ing the grounded-in links. IU networks ground out
in BaseData, which contains user-side input such
as speech from the microphone, derived ASR fea-
ture vectors, camera feeds from a webcam, derived
gaze information, etc., in several streams that can
be accessed based on their timing information.

Besides IU communication as described in the
abstract model, the toolkit also provides a separate
communication track along which signals, which
are any kind of information that is not seen as incre-
mental hypotheses about a larger whole but as infor-
mation about a single current event, can be passed
between modules. This communication track also
follows the observer/listener model, where proces-
sors define interfaces that listeners can implement.

Finally, InproTK also comes with an extensive
set of monitoring and profiling modules which can
be linked into the module network at any point and
allow to stream data to disk or to visualise it online
through a viewing tool (ANON 2009), as well as
different ways to simulate input (e.g., typed or read
from a file) for bulk testing.

Current state and discussion. InproTK is cur-
rently used in our development of an incremental
multimodal conversational system. It is usable in its
current state, but still evolves. We have built and in-
tegrated modules for various tasks (post-processing

of ASR output, symbolic and statistical natural lan-
guage understanding [ANON 2009a,b,c]). The con-
figuration system and the availability of monitoring
and visualisation tools enables us to quickly test
different setups and compare different implementa-
tions of the same tasks.

5 Jindigo
Jindigo is a Java-based framework for implement-
ing and experimenting with incremental dialogue
systems currently being developed at KTH. In
Jindigo, all modules run as separate threads within
a single Java process (although the modules them-
selves may of course communicate with external
processes). Similarly to InproTK, IUs are mod-
elled as typed objects. The modules in the system
are also typed objects, but buffers are not. Instead,
a buffer can be regarded as a set of IUs that are
connected by (typed) same-level links. Since all
modules have access to the same memory space,
they can follow the same-level links to examine
(and possibly alter) the buffer. Update messages
between modules are relayed based on a system
specification that defines which types of update
messages from a specific module go where. Since
the modules run asynchronously, update messages
do not directly invoke methods in other modules,
but are put on the input queues of the receiving
modules. The update messages are then processed
by each module in their own thread.

Jindigo implements a model for updating buffers
that is slightly different than the two previous ap-
proaches. In this approach, IUs are connected by
predecessor links, which gives each IU (words,
widest spanning phrases from the parser, commu-
nicative acts, etc), a position in a (chronologically)
ordered stream. Positional information is reified by
super-imposing a network of position nodes over
the IU network, with the IUs being associated with
edges in that network. These positional nodes then
give us names for certain update stages, and so
revisions can be efficiently encoded by reference
to these nodes. An example can make this clearer.
Figure 2 shows five update steps in the right buffer
of an incremental ASR module. By reference to po-
sitional nodes, we can communicate easily (a) what
the newest committed IU is (indicated in the figure
as a shaded node) and (b) what the newest non-
revoked or active IU is (i.e., the ‘right edge’ (RE);
indicated in the figure as a node with a dashed line).
So, the change between the state at time t1 and t2
is signalled by RE taking on a different value. This

53



Figure 2: The right buffer of an ASR module, and update
messages at different time-steps.

value (w3) has not been seen before, and so the
consuming module can infer that the network has
been extended; it can find out which IUs have been
added by going back from the new RE to the last
previously seen position (in this case, w2). At t3, a
retraction of a hypothesis is signalled by a return to
a previous state, w2. All consuming modules have
to do now is to return to an internal state linked
to this previous input state. Commitment is repre-
sented similarly through a pointer to the rightmost
committed node; in the figure, that is for example
w5 at t5.

Since information about whether an IU has been
revoked or committed is not stored in the IU it-
self, all IUs can (if desirable) be defined as im-
mutable objects. This way, the pitfalls of having
asynchronous processes altering and accessing the
state of the IUs may be avoided (while, however,
more new IUs have to be created, as compared to
altering old ones). Note also that this model sup-
ports parallel hypotheses as well, in which case the
positional network would turn into a lattice.

The framework supports different types of up-
date messages and buffers. For example, a parser
may incrementally send NPs to a reference reso-
lution (RR) module that has access to a domain
model, in order to prune the chart. Thus, informa-
tion may go both left-to-right and right-to-left. In
the buffer between these modules, the order be-
tween the NPs that are to be annotated is not im-
portant and there is no point in revoking such IUs
(since they do not affect the RR module’s state).

Current state and discussion. Jindigo uses con-
cepts from (Skantze, 2007), but has been rebuilt
from ground up to support incrementality. A range
of modules for ASR, semantic interpretation, TTS,
monitoring, etc., have been implemented within
the framework, allowing us to do experiments
with complete systems interacting with users. We
are currently using the framework to implement a

model of incremental speech production.

6 Discussion
The three implementations of the abstract IU model
presented above show that concrete requirements
and application areas result in different design de-
cisions and focal points.

While BF’s approach is loosely coupled and han-
dles exchange of IUs via shared objects and a me-
diating module, KTH’s implementation is rather
closely coupled and publishes IUs through a single
buffer that lies in shared memory. UP’s approach
is somewhat in between: it abstracts away from the
transportation layer and enables message passing-
based communication as well as shared memory
transparently through one interface.

The differences in the underlying module com-
munication infrastructure affect the way incremen-
tal IU updates are handled in the systems. In BF’s
framework modules holding an IU in one of their
buffers just get notified when one of the IU’s fields
changed. Conversely, KTH’s IUs are immutable
and new information always results in new IUs
being published and a change to the graph repre-
sentation of the buffer—but this allows an efficient
coupling of module states and cheap revoke op-
erations. Again, UP’s implementation lies in the
middle. Here both the whole new state and the delta
between the old and new buffer is communicated,
which leads to flexibility in how consumers can be
implemented, but also potentially to some commu-
nication overhead.

In future work, we will explore if further gener-
alisations can be extracted from the different im-
plementations presented here. For now, we hope
that the reference architectures presented here can
already be an inspiration for further work on incre-
mental conversational systems.
References
Adam Cheyer and David Martin. 2001. The open

agent architecture. Journal of Autonomous Agents
and Multi-Agent Systems, 4(1):143–148, March.

H. Pennington, A. Carlsson, and A. Larsson. 2007.
D-Bus Specification Version 0.12. http://dbus.free-
desktop.org/doc/dbus-specification.html.

David Schlangen and Gabriel Skantze. 2009. A Gen-
eral, Abstract Model of Incremental Dialogue Pro-
cessing. In Proceedings of EACL 2009, Athens,
Greece.

Gabriel Skantze. 2007. Error Handling in Spoken Dia-
logue Systems. Ph.D. thesis, KTH, Stockholm, Swe-
den, November.

54


