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1. Abstract 

In this paper we describe the design principles, 

implementation choices and general challenges we 

encountered in the creation of a data management 

infrastructure for recording data streams from test 

vehicles, robots and other platforms. The trigger for this 

data management infrastructure project was twofold: 

First from the proper setup of new test cars equipped with 

many sensors, delivering high bandwidth data recordings 

and second from achieving organized storage of such 

recordings for the development and testing of intelligent 

systems operating on the data. After the clearly stated 

demand of such a data management system from different 

divisions of our company, we, step by step, conceived it as 

a very general data management platform targeting 

different projects with different recording formats and 

platforms. Recording data from different projects have 

systematic commonalities, for instance most use time 

series of data, often from similar type sensors with similar 

information. However considerable differences exist with 

respect to data organization in recording sessions, stream 

formatting or coverage of specific situation/event or 

environment conditions. Our data management 

infrastructure targets to support different needs in the 

data management work-flow. Facilitating recordings 

visualization, search, inspection, annotation of 

events/entities present in the data and offline access is 

among our main targets. 

Our approach is first to centralize storage of recordings, 

avoiding proliferation of copies of them in our network. 

We give GUI and programmatic access allowing both 

tool-based-manual-annotation processes as well as 

automated processes using AI/deep-learning methods. 

Subsequently we support extraction of events or 

meta-information from recordings, storing them in a 

database.. Our infrastructure enables then an efficient 

search over extracted information for exporting relevant 

recording segments, used for the creation of automotive or 

robotics intelligent systems. 

 

2. Introduction 

In the last decades the automotive domain progressively 

focused its attention towards electronics and computer based 

functionality. The trend here started with usage of custom 
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electronic control units (ECU) supplying new functionality in 

vehicles and, slowly, moved towards adoption of more 

general purpose computers-based systems. In this move 

functionality implemented in cars broaden their spectrum, 

allowing inclusion of intelligent and robotics systems. At the 

time of custom electronic control units the functionality 

implemented were simple and making use of few and limited 

sensors (with data ranging around few kilobytes per second). 

The introduction of intelligent and robotic systems required 

complex functionality, treating many more sensors with 

higher data transfer (typically several megabytes per second 

or more).. Moreover, intelligent and robotic systems are 

recently adopting AI techniques such as deep neural networks 

that also require a large amount data for training. Such 

paradigm shift in research, development, and testing of 

intelligent systems requires handling of sensory data streams  

in the big-data domain. For this reasons the data acquisition 

and sensor recordings phase cannot be simply managed 

together with the development of vehicle functionality. This 

two packages reached a level of complexity that naturally lead 

to having a data management package, as an own 

project/concept and a vehicle functionality package as 

separate project/concept. In this perspective we decided to 

start a project with the target of designing and creating a data 

management infrastructure that supports the handling of 

big-data sensory data recordings, used in other projects 

targeting the creation of intelligent and robotics systems. In 

this paper we will review the process and address the 

challenges we encountered in reaching a first release of this 

data management infrastructure. 

 

3. Working with Data 

An important challenge in the development of intelligent 

systems which makes use of several large sensor data streams  

involves the organization of the data streams into an 

accessible format in terms of data size, data structure and 

packaging. Managing several sensors in real-time requires 

computer configurations with enough bandwidth, a suitable 

data grabbing software system and performant computer 

hardware and storage. We are considering here a system using 

multiple sources of data, each at different frequency, with 

different data structures and different sizes (in term of 

transmitted bytes of information). In the development of 

intelligent systems, such data can be sourced in different 

ways: 

 

 As on-line data, feeding data, from sensors, in real-time 

to a running development/test system; 

 As off-line data, by recording sensors data in real-time 

into a storage and, in a second phase, using it in the 

development/test systems with a play back functionality; 

 Synthesized sensory data, through generation by virtual 

environment, feeding it to development/test system. 

In some cases on-line data is mandatory when real-time and 

interaction is important for the development/test of a system. 

However several operations becomes difficult to realize: 

reproducing particular sequence of sensory data; starting and 

stopping the system in different cycles, performing test and 

then stopping and fixing a malfunction in place or running in 

step by step mode. A solution to most of the previous 

limitation is the usage of off-line data, where data is recorded 

in a first phase, and then played back to the system. The 

issues here are: recordings may require large storage; there is 

no possibility of real-time interaction; changes in sensory data 

format may invalidate existing recordings. An optimal 

solution could be to use a simulation environment from which 

sensors can be simulated creating synthetic data streams. If 

simulators can provide the required sensor quality, here the 

advantages of on-line and off-line can be covered. However, 

issues here may reside in achieving a sufficient simulation 

quality and in the complexity of the simulated scenario with 

its static, dynamic elements and interaction between them. 

In this paper we analyze the choice of using off-line data, 

describing a data management system we have created for 

handling large recordings. 

As a running example, along this paper, we will consider a 

car-related project where we implement intelligent systems 

such as advanced driver assistant systems (ADAS) or 

autonomous driving (AD). The car is equipped with the 

following sensors: 

 

 10 cameras (monochrome and color cameras); 

 6 radar sensors; 

 6 laser sensors; 

 a GPS sensor; 

 IMU unit; 

 Several CAN network streams from the car. 

 

Thirty independent data streams are recorded at a rate of 

approximately  200Mb per second. Challenges here are: 

 

 Computing Infrastructure: Setting up a computing 

infrastructure able to receive all streams in real-time (via 

USB, Ethernet, CAN, ...); 

 Sensor Synchronization: Implementing synchronization 

protocol for labeling each packet/frame of information 

sent from sensors to recording system; 

 Recording System: Creating recording software system 

able to receive and store several streams in parallel; 
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 Data Transfer: Organizing the process for transferring 

data from recording platform to office network; 

 Play-back System: Creating a system able to replay 

recorded data as at recording time. 

 

4. State of Art 

In the analysis of existing data management systems 

supporting management of sensory recordings one of the most 

used platforms in the automotive domain we found belongs to 

the ASAM (Association for Standardization of Automation 

and Measuring Systems) standardization consortium [ASAM]. 

This consortium, composed of about 30 different companies 

(OEMs, Suppliers, Software Vendors) mostly from Europe 

and USA, targets the definition of standards for measurement 

data in automotive. The main standard is ODS (Open Data 

Service) modeling a unified representation of measurement 

data (automotive data streams) for standardized server 

storages (see Figure 1). One of the aims is the possibility of 

exchanging data within or between different companies 

[ODS]. 

 

 

Figure 1: ASAM ODS architecture 

In order to promote the adoption of their proposed standard, 

the consortium published part of the specification and several 

tools as open source. At the time of our investigation ODS 

was available with a server solution, a configurable graphical 

user interface and several modules for handling recordings 

[OPENMDM]. However it was implemented for low 

bandwidth data series which did not match our big-data 

requirement. In the later years, since big-data usage 

proliferated among automotive companies, such requirements 

have been taken in account by the consortium. Another data 

management system, which has been created in relation to a 

study [CAMP2012] of driving safety, is InSight SHRP2 NDS 

(Strategic Highway Research Program on Natural Driving 

Study) carried on by several USA universities and 

transportation institutions [SHRP]. The purpose of the study is 

to analyze how driver behavior is affected by driving context 

(driver, vehicle, roadway and environmental factors). For that 

objective drivers were invited to install a set of sensors 

(camera, GPS) with a recording system on their car. Data was 

collected in a central database and made available through a 

web interface [INSIGHT]. In this way universities could get 

access to data, visualize, annotate and search for particular 

segments on which performing data analysis. A very similar 

initiative which led to another data management system is 

carried on by CEESAR, a non-profit organization focused on 

road safety. They have created the system named SALSA 

related to the UDRIVE [ROB2014][UDRIVE] consortium 

(European Naturalistic Driving Study) which cover similar 

workflows as InSight. These two systems are not targeting the 

distribution of the data management system itself; instead 

they offer access of recorded data to 3rd parties. These 

systems are customized around the data of the respective 

projects and are not meant to be hosted and populated with 

data by 3rd parties. Nevertheless they represent a good proof 

of concept on what we are targeting. 

One more European initiative which is targeting the 

realization of a data management system (see Figure 2) with a 

major focus on the annotations is the Cloud LSVA [CLSVA]; 

a Cloud based Large Scale Video Annotation platform. This 

European project, created in the scope of the innovation 

program Horizon 2020, consider the full process from 

real-time vehicle sensor acquisition, transmission of data 

streams to a cloud server, annotation process, indexing and 

search on recordings.  The target of this European project is 

the creation of a set of standards for representing sensory data 

and meta-information, together with the creation of a cloud 

service that can store, visualize and allow annotation of 

recordings coming from different companies. This project 

shares many of our requirements except for the choice of a 

direct car-to-cloud data transmission, where, instead, we 

target for copy of full recording sessions to central company 

file servers. 

 

 

Figure 2: Cloud LSVA targets overview 

A commercial solution which is actually designed to handle 

recordings in a more general way is the DSSC (Distributed 

Storage and Simulation Cluster)[XCUBEPD], from XCube 
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[XCUBE]. DSSC is a distributed storage (even 

geographically) and computation system based on the 

principle of keeping data to closest accessible nodes from 

where it has been produced. For computations over data, 

programs are distributed along nodes (hosting a set of virtual 

machines) containing targeted data. This principle of code 

mobility [FUGG1998] through the usage of virtual machine is 

particularly suited for data management systems handling 

big-data (as in our case). Although this approach is suitable  

when using standard computer configurations, it presents a 

challenge for our applications since our programs may depend 

on different specific libraries or hardware configurations. 

Moreover the architecture of the DSSC uses a strong 

encapsulation of data and programs which make development 

and test of user applications cumbersome (see Figure 3). 

 

 

Figure 3: DSSC Node architecture 

Generally, one of the most important functionalities of such 

data management systems is related to the possibility of 

searching in recordings relevant events or objects, and then 

using search results for extracting recording segments as 

verification or test data for developing intelligent systems. 

Such search functions are based on a process (executed when 

a recording is imported in the system) able to collect 

searchable information from recordings, particularly, 

annotated/labeled data streams.  

Recent breakthroughs in machine learning and computer 

vision have tremendously accelerated progress in image 

recognition, localization, motion planning, and decision 

making. In particular, deep neural networks have been shown 

to learn representations which are generically useful across a 

variety of visual domains where large-scale datasets with 

semantically relevant labels are necessary. For automated 

driving in particular, carefully crafted datasets with ground 

truth labels at very large scale are important in learning a 

mapping from an image to meaningful affordance indicators 

such as relative position, orientation, and velocity of the 

ego-vehicle with surrounding traffic participants. 

Availability of a large-scale semantically labeled data-sets has 

been limited in part because the process is time-consuming 

and expensive. Although these factors have slowed the 

development of new large-scale collections, the research 

community has nevertheless continued their investment 

toward creation of various datasets such as ImageNet 

[DENG2009], the NYU-DepthV2 [SILBER2012], the 

PASCAL-Context Dataset [MOTTA2014], and Microsoft 

COCO [LIN2014]. These datasets have certainly accelerated 

progress in semantic segmentation of indoor scenes as well as 

recognition of common objects. However, they are not 

suitable for more specific tasks such as those involved in 

automated driving. 

In the automotive domain, popular semantic segmentation 

benchmark datasets include CAMVID [BROS2009] and more 

recently, Cityscapes [CORD2016], a dataset introduced as 

training samples for pixel-level and instance-level semantic 

labeling. Cityscapes is comprised of 5000 images containing 

pixel-based labels and 20,000 images containing coarse labels 

collected from different cities in Europe. Although this dataset 

exceeds previous attempts in terms of dataset size, annotation 

richness, scene variability, and complexity, the algorithms 

trained on this dataset do not generalize well to data tested on 

different traffic scene domains including variations in seasons, 

lighting, weather, traffic conditions, scene structure, sensor 

characteristics, etc. 

The cost of scaling this type of labeling adequately would 

require a prohibitive economic investment in order to capture 

sufficient number of images with the required variability 

across a variety of tasks and visual domains. To address this 

issue, promising alternatives have been proposed that utilize 

synthetic imagery that simulate real urban scenes in a vast 

variety of conditions and produce the appropriate annotations 

[ROS2016]. In particular, the SYNTHIA dataset was 

generated with the purpose of aiding semantic segmentation 

and related scene understanding problems in the context of 

driving scenarios. SYNTHIA consists of a collection of 

photo-realistic frames rendered from a virtual city and comes 

with precise pixel-level semantic annotations for 13 classes. It 

has been shown that inclusion of SYNTHIA in combination 

with publicly available real-world urban dataset during the 

training stage significantly improves performance on the 

semantic segmentation tasks. 

In lieu of manual annotation, researchers are exploring 

methods to automatically generate large-scale semantically 

labeled data-sets. Their approach can create 2D labels for 

large video datasets from street scenes, resulting in automatic 

or semi-automatic processes for generating semantic and 

instance image annotations. 

 

5. Motivation 

Introduction of a data management system started in relation 

with the development of experimental vehicles  equipped 

with several sensors to research  intelligent systems in 



5 

 

 

Title of the article 

ADAS/AD domain. The experimental vehicles are equipped 

with several high definition cameras and LiDAR sensors, 

producing much higher volume of data  than our previous 

vehicles.., In addition, our past experience in managing 

recordings by copying data in multiple locations on our 

network was no longer feasible.  A managed and streamlined 

handling, storage, and sharing of data storage across our 

global newtwork was  necessary.     In the initial design of 

our data management system, the majorrequirements that we 

identified included: 

 

 A system capable of handling big-data recordings 

(several hundreds of Gb per recording). 

 Ability to support single and multiple regions.  . 

 System and data accessible through  a graphical user 

interface, command line,  and programmatically. 

 Ability to treat video, , point cloud,  and time series 

data. 

 Support and management of different recording formats 

produced from different platforms such as vehicles, 

robots, etc. . 

 Data streams must be time-synchronized to enable 

development of algorithms that require sensor fusion.  

 Manual and automatic annotation of events and objects 

classes with a structured taxonomy must be supported. . 

 All annotations must be indexed and searchable at  each 

site or collectively to allow sharing between sites.  

 Recordings can be exported in full or in segments. 

 

In our previous experience on managing recordings used for 

our intelligent systems we left much freedom to each project 

in deciding where recordings should be stored, how they 

should be organized, and how to visualize and access data. 

That organization worked well as long as recordings were 

small, interaction with other projects was minimal and not 

much reuse of recordings over time necessary. However as 

soon as the sizes of recordings grows or reuse within/between 

projects raises, such freedom becomes an obstacle. For 

instance, since we had no particular policy on where 

recordings should be stored, we found that usual practice was 

to keep several copies of recordings stored in different 

locations of our network. That was leading to a large number 

of copies of recording, which maybe have been used only one 

time and never again. Moreover, another emerging issue has 

been a proliferation of recordings with much different 

organization, both in structure and formats. Recordings 

structure and data formats could differ in terms of: 

 

 Recording organization structure: how files and 

directories are used to organize/distribute recording 

information; 

 Modularity: some recordings are based on a single main 

file (containing all sensor streams), others use single file 

per sensor stream or different files, each for a sensor 

frame/packet; 

 Time synchronization: some recordings relay on 

implicit time synchronization, others encode 

synchronization information in file names, in index files 

or along with sensor data; 

 Stream format: some streams are recorded in human 

readable format (e.g. ASCII, json) others use binary 

encoding requiring specific libraries for access. 

 

With so much variability it is not possible to target for a single 

common recording format. Particularly because recording 

formats are, in some cases, linked to the actual streaming 

performance of recording platforms. For instance, in a vehicle  

platform setup (sensor-network-computer) for a video camera 

sensor it is not possible to store data by creating single image 

files (either compressed or raw) for each camera frame due to 

file system overhead in creating files at that frequency, 

leading to many frame-drops. While, instead, storing all 

frames in a raw format on a single file leads to no frame-drops. 

With such types of constraints, we had to consider creating a 

data management infrastructure that would allow original 

recordings to be stored in different formats. 

In deciding on the architecture of the data management 

infrastructure we had to consider several requirements. For 

instance: 

 

 Infrastructure should suit needs of different divisions in 

different locations; 

 Each division should have a fast access to recordings; 

 A division would work mostly on local recordings, 

however sharing recordings should be possible; 

 Each division, and sometimes each project, may have a 

different recording format; 

 A mostly consistent data management workflow across 

all divisions/projects. 

 

Another consequence of providing freedom for data 

management projects  resulted in different teams to create 

specialized data management tools for  each specific activity. 

t. Such tools were highly customized for a specific project 

instance and generally provided functionality for browsing 

and annotating recordings together with the possibility to 

play-back recordings.  . That structure   created the 

following challenges: 

 

 Managing recording copies: difficult for users to 
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manage recordings distributed along network storage 

(keeping track of obsolete recordings, differences, 

relevance, ...); 

 Usage of recordings: Usually only a portion of each 

recording actually used for the development/test of the 

target system; 

 Data access: It was often necessary to have a fast access 

of recordings (in terms of play-back). 

 

6. Approach 

 The main constituents of the data management system 

include:   

Recording structure 

  The organization of the recording structure plays a crucial 

role in the resulting performance we can achieve for accessing, 

operating and sharing the recordings. . Project members often 

keep sets of recordings in their local computers, feeding them 

to their target systems during implementation and testing.  

Our solution is to organize the recording structure into 

directories according to the types of information as follows:  

 

 .../Recording Name/ 

o On-line streams/: here we store all streams as 

recorded from the recording platform. The term 

"on-line" means that streams are the only one 

available to an application running in the car for a live 

execution. Once created, this directory is locked 

against writing; 

o Off-line streams/: here all streams generated 

a-posteriori from the on-line streams or even from 

other off-line streams. Those streams can be generated 

by programs (post-processing, automatic annotation, 

recognition algorithm) or generated by humans 

(manual annotations); 

o Information streams/: all streams that helps to 

abstract from original recording data, it contains 

meta-data files describing each streams available in 

the on-line and off-line directories as well as 

calibration, or platform information; 

o Preview streams/: sub-sampled representation of all 

streams in a simple visualizable format. This function 

provides  quick recordings preview  by the 

graphical interface to  quickly visualize  recording 

contents; 

o Searchable information/: here we store streams of 

tags. Tags are descriptive entities with attached 

properties which can be stored in database and 

searched via queries. Examples of  a tag in the 

context of a vehicle platform can be driving speed, 

GPS location at a given time or the presence of a 

pedestrian in the image  for a time-period. 

With this structure, each recording is fully contained in a 

directory, organized with the listed sections/sub-directories. 

The choice of this organization has the purpose of separating 

original information coming from recording phase (On-line 

streams), from data subsequently added 

(describing/augmenting recoding data). This recording 

structure is applied around the original recording data at 

import time and stored in a central recording storage. 

Central storage architecture Our storage solution considers 

a  geographically distributed central storage for each  

division.. This gives possibility of having fast access for local 

users (local division), keeping the possibility to share 

recordings by sending copies of recordings to other divisions 

when necessary. This solution gives the possibility to use 

different storage solutions between divisions, depending on 

specific needs in each location. Some divisions need a basic 

NFS access to the recording and data integrity management. 

In such case the central recording storage uses CEPH [CEPH] 

architecture with replication of data and CephFS access.  In 

other divisions, several computational process on large 

recordings are required. In that case, the central storage can be 

based on the Hadoop [HADOOP] architecture where a cluster 

of computers handles parallel access on the same recordings 

through Map-Reduce processes. 

Recording's import process 

In order to create a systematic  storage process for new 

recordings, we defined a recording import procedure. Each 

new recording is encapsulated in the previously described 

recording structure from which the computation of the 

different off-line streams based can be done. This import 

process source data from the original recording, therefore, 

depending on the recording format and platform, a different 

data access functions is used. For that reason, the import 

process is based on a set of plugins, each able to treat different 

recording or stream formats. 

Visualization of recordings 

Our user studies showed that users  often need visual 

inspection of recordings to evaluate the quality of recordings 

or finding particular recorded events/conditions. Several 

information may need to be visualized together with a 

recording, such as: : date and description of the recording, 

location and play-back of video or other streams. For such 

functionality we have designed a set of meta-data files where 

storing recordings meta-information. Together with this, at 

import time, we create a set of preview files for most of 

recording's streams. Such information can be browsed in a 

direct way form file system or via a web-based graphical user 

interface, giving easy access to all available recording present 
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in the storage. 

Annotation and labeling tools 

In the development process of intelligent systems, data 

annotation is a crucial step. Here ground truth information or, 

higher level representation of recorded data can be created 

(off-line streams). For this reason, we designed a set of 

manual and automatic annotation tools together with allowing 

the possibility to use 3rd party tools in that phase. Our web 

graphical interface includes manual annotation tools, allowing 

users direct creation of annotation in recordings. However, 

manual annotation is an expensive process, error prone and 

requiring validation and quality management. Therefore,  we 

are also developing automatic annotation sub-systems of 

different types. In the context of traffic scenes , it is very 

import to have annotations algorithms that dynamically 

capture the 3D representation of the world providing the 

possibility to generate accurate labels for higher order 

semantic descriptors such as 3D position, orientation, and 

velocity of traffic participants. These higher order descriptors 

are not easily attainable from manual annotation of images. 

We work here on a novel machine learning framework based 

on LIDAR-camera fusion to automatically assign 

semantically meaningful tags to an image to accelerate 

construction of benchmark datasets relevant for ADAS/AD. In 

our approach we take as input synchronized image and point 

cloud data streams, and produces semantic annotations in 

image and point clouds, including a semantically segmented 

image, as well as 3D dynamic reconstruction of street scenes, 

traffic participants, and their velocity profiles (see Figure 4). 

 

Figure 4: Example of scene annotation 

Tag extraction & Indexing process 

Given that recordings may contains hours of recorded data 

and a huge number of events or annotations, a direct search of 

information by direct access of file-streams is 

computationally too expensive. We batch-post-process all 

searchable information (like meta-data, annotations, labels) 

transforming them in tag streams. Such streams represent 

information in textual format with time stamps, suitable to be 

stored in a database. Tags do not have a predefined structure,  

therefore we store them in NoSQL database, flexibly 

modeling the different relations tags have, together with 

gaining a fast access to them. In the database we additionally 

create structures that group tags according to time-stamp (in 

some case with also duration). This structure allows a more 

performant search when looking for recordings-segments 

where particular events or annotation are valid. 

Recording search 

By storing tags in a database we are able to have a preformat 

search, finding segments of recordings on which a particular 

condition is  met. On top of the database, we have created a 

simplified query syntax, which, at execution is then translated 

into the specific query language. Together with this we have 

in the database specific structures storing statistics on the used 

tag-values and types. This allows users to know in advance 

what can actually be searched in recordings.  

In the analysis of search requirement,  we identified three 

major types: search for existence (e.g. finding recordings 

where a car pass by a crossing or drives in rainy conditions), 

search for values (e.g. the speed of the car is higher than a 

value or the car is in a particular GPS area) and search for 

complex conditions (e.g. the car is overtaken by a truck on the 

left lane or the car is slowing down due to a faster car passing 

by). Where the first two types of search can be built with our 

query language, the third type of search requires access to 

recording streams and additional interpretation of events and 

recording context. We currently have the first two types of 

search; the third has not been yet addressed in our work. 

Search results 

Search results coming from the execution of a search query 

produces a list of recordings segments (with start and end 

time) matching the query. Search results can be used in 

different ways. They can be used to visualize the segments 

found for a manual inspection; can be saved into a file and 

used programmatically in a target system for accessing the 

recording segments directly (via central recording storage); or 

they can be used with exporting functions to create copies of 

found segments. This last case allow users to get copies of 

recording results in local machines, playing them back in the 

target system with high performance. 

 

7. The EMI System 

Design and development of our data management system 

(Experiment Management Infrastructure, EMI), has been done 

in a cooperation project between divisions in Europe and 

United States.. Both divisions shared requirement for handling 

vehicle recordings with large number of sensors and store 

them in a centralized way. 
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In Figure 5 the list of steps and tools supported in our recording 

management workflow. 

 

 

Figure 5: EMI workflow steps 

Workflow starts with a recording session (raw data acquired 

from a recording platform i.e. a car, robot ...) which gets 

copied from the platform to a local storage in the company 

network. The first activity is a preprocessing of the recording 

data, cleaning it and cutting unnecessary parts. General 

information describing the purpose of the recording is added 

as metadata in this phase. The next steps include importing, 

reshaping recording structure into uniform organization, 

adding streams computed on the basis of original streams and 

creating previews. At this stage manual or automatic 

annotations can be generated. Subsequently, , tags are 

extracted from all streams and imported into the searchable 

database. 

At this stage, users can directly access recordings in full 

length or use search query to find segments matching a given 

condition. Search results (interval list file), can be used to 

access recording segments directly or export them as 

sub-recordings, copying them to user's local computers. In 

Figure 6 some example of search queries. 

 

 
Figure 6: Example of EMI search query 

From the architecture point of view, we target a data 

management system with a fast data access for each division. 

That requirement leads to a design architecture that supports a 

central data management system per division with a 

distributed architecture (each division having a server 

instance). This architecture allows high performance access to 

local recordings (see EMI Back-End in Figure 7) with a central 

access view of recordings through the web interface (see 

EMI-UI in Figure 7). Here, each server, can have a set of local 

choices in order to handle specific recording formats, different 

access to recordings (CEEPH, Hadoop ...), faster search with 

local indexes or specific project annotation services. 

 

 
Figure 7: Overall EMI architecture 

In order to investigate performances of our system, we have 

executed several tests with recordings of different duration. 

On average 1 hour of recording correspond to a size of 680 

Gbytes for 20 sensor streams.  Figure 8 illustrates some 

example of execution timing. 

 

 

Figure 8: Example of execution time for EMI functionality 

 

8. Conclusions 

In this paper we introduced the needs and challenges AI 

scientists are confronted with when dealing with systems and 

multi-sensor platforms producing with large training data for 

learning algorithms. We described a solution we designed and 

created to store, share and use such type of big-data sets in a 

multi-site organization structure where no a-priory constraints 

can be set on recording formats. Presence of several 

international projects targeting to solve similar problems 

shows that such experience can be valuable for AI 

communities. The next steps are focused on improvement and 

finalization of parts of the web-based user interface and 

several low level functionalities operating on streams for 

annotation and tag generations. We are in a first deployment 

phase, integrating user’s feedback in further development 

planning.



9 

 

 

Title of the article 

References  ◇  

[ASAM] ASAM WIKI, access 2017, https://wiki.asam.net 

[BROS2009] G. J Brostow, J. Fauqueur, R. Cipolla, “Pattern 

Recognition Letters, Semantic object classes in video: A 

high-definition ground truth database”, Vol 30, No. 2, pp. 

88-97, 2009 

[CAMP2012] K. L. Campbell, "The SHRP 2 Naturalistic 

Driving Study", TR News 282, September-October 2012, 

https://insight.shrp2nds.us/documents/shrp2_background.p

df 

[CEPH] CEPH, access 2017, http://ceph.com 

[CLSVA] Cloud LSVA - Large Scale Video Annotation, 

access 2017, http://cloud-lsva.eu 

[CORD2016] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. 

Enzweiler, R. Benenson, U. Franke, S. Roth, B. Schiele, 

“The Cityscapes Dataset for Semantic Urban Scene 

Understanding”, In proceedings of IEEE Computer Vision 

and Pattern Recognition (CVPR), 2016 

[DENG2009] J. Deng, W. Dong, R. Socher, L.J. Li, K. Li, L. 

Fei-Fei, “A large-scale hierarchical image database”，In 

proceedings of IEEE Computer Vision and Pattern 

Recognition (CVPR), 2009 

[FUGG1998] A. Fuggetta, G. P. Picco, and G. Vigna, 

"Understanding code mobility", IEEE Transactions on 

software engineering 24.5: 342-361, 1998 

[HADOOP] Apache Hadoop, access 2017, 

http://hadoop.apache.org 

[INSIGHT] InSight Data Access Website - SHRP2 

Naturalistic Driving Study, access 2017, 

https://insight.shrp2nds.us 

[LIN2014] T.Y. Lin, M. Maire, S. Belongie, J. Hays, P. 

Perona, D. Ramanan, P. Dollar, C. L. Zitnick, “Microsoft 

COCO: Common objects in context”, In proceedings of 

European Conference on Computer Vision (ECCV), 2014 

[MOTTA2014] R. Mottaghi, X. Chen, X. Liu, N.G. Cho, S.W. 

Lee, S. Fidler, R. Urtasun, A. Yuille, “The Role of Context 

for Object Detection and Semantic Segmentation in the 

Wild”, In proceedings of Computer Vision and Pattern 

Recognition (CVPR), 2014 

[ODS] ASAM ODS Base Model, access 2017 

http://www.highqsoft.de/download/ao_base.htm 

[OPENMDM] OpenMDM toolkit, 2017, 

https://www.openmdm.org/about-openmdm/asam-ods 

[ROB2014] E. Rob, et al. "UDRIVE: the European 

naturalistic driving study", In proceedings of Transport 

Research Arena. IFSTTAR, 2014 

[ROS2016] G. Ros, L. Sellart, D. Vazquez, A. M. Lopez, “The 

SYNTHIA Dataset: A Large Collection of Synthetic Images 

for Semantic Segmentation of Urban Scenes”, In 

proceedings of IEEE Computer Vision and Pattern 

Recognition (CVPR), 2016 

[SHRP] Strategic Highway Research Program (SHRP) 2 - 

Revised Safety Research Plan, access 2017, 

http://onlinepubs.trb.org/onlinepubs/shrp2/RevisedSafetyR

esearchPlanMarch2012.pdf 

[SILBER2012] N. Silberman, D. Hoiem, P. Kohli, R. Fergus, 

“Indoor segmentation and support inference from rgbd 

images” ， In proceedings of European Conference on 

Computer Vision (ECCV), 2012 

[UDRIVE] UDRIVE - European Naturalistic Driving Study, 

access 2017, http://www.udrive.eu 

[XCUBE] XCube, access 2017, http://www.x3-c.com 

[XCUBEPD] XCube Product Description, 2017, access 2017, 

http://www.x3-c.com/wp-content/uploads/2017/02/XCube-Pr

oducts-Description_Jan2017.pdf 

 

 

Authors '  Prof i le   

Antonello Ceravola（Non Member） 

He studied Computer Science at the University 

of Pisa, Italy. He worked in the field of IT 

software for five years dealing with multimedia 

systems, large scale software infrastructure for 

telecommunication systems, multi-tier 

applications and workflow engine for process 

management systems. From 2001 he joined 

Honda Research Institute Europe, Germany, currently Principal 

Scientist. His research interest includes software components, 

middleware, large-scale systems and integration environments. 

 

Frank Joublin（Non Member） 

He received a European Ph.D. degree in 

neurosciences from the University of Rouen 

(France), in 1993. From 1994 to 1998 he was 

postdoctoral research fellow at the Institute für 

Neuroinformatik, university of Bochum, 

Germany. From 1998 to 2001 he was customer 

project manager at Philips Speech Processing 

Aachen. Since 2001, he is principal scientist at the Honda Research 

Institute Europe, Germany. His research interests include 

developmental robotics, semantic acquisition and data mining. 

 

Heiko Wersing（Non Member） 

Heiko Wersing received the Diploma in 

Physics in 1996 and a Ph.D. in science in 2000 

from Bielefeld University, Germany. In 2000 

he joined the Honda R&D Europe GmbH in 

Offenbach, and is now working as a chief 

scientist at the Honda Research Institute 

Europe GmbH, Offenbach Germany. In 2017 

he was awarded an honorary professorship at Bielefeld University, 

Germany. His research interests are incremental & online learning, 

personalization, adaptive HMI, and computer vision. 

 

Stephan Hasler（Non Member） 

Stephan Hasler received a PhD degree in 

Engineering from the University of Bielefeld 

(Germany) in 2010. He is currently Senior 

Scientist at the Honda Research Institute 

Europe, Germany. His research interests 

include models for visual perception, lifelong 

learning, and human-machine interaction. 

 

Yi-Ting Chen（Non Member） 

Yi-Ting Chen received a PhD degree in 

Electrical and Computer Engineering from 

Purdue University with emphasis in imaging 

system and its image quality analysis. After 

graduation, He moved to University of 

California at Merced and visited Google to 

work on computer vision researches and 

projects. He is currently research scientist at Honda Research Institute 

USA, where he is working on computer vision and machine learning. 

Specifically, he is working on 3D dynamic scene understanding for 

different applications in automated driving. 

 

Behzad Dariush（Non Member） 

Behzad Dariush received a PhD degree in 

Electrical Engineering from The Ohio State 

University with emphasis in robotics and 

control systems.    He is currently Chief 

Scientist at Honda Research Institute USA, 

where he is managing the Knowledge 

Discovery group to support automated driving 

and robotics projects in global Honda. His past research activity 

includes humanoid robotics, wearable-technologies, and human 

motion analysis. 

https://wiki.asam.net/
https://insight.shrp2nds.us/documents/shrp2_background.pdf
https://insight.shrp2nds.us/documents/shrp2_background.pdf
http://ceph.com/
http://cloud-lsva.eu/
http://hadoop.apache.org/
https://insight.shrp2nds.us/
http://www.highqsoft.de/download/ao_base.htm
https://www.openmdm.org/about-openmdm/asam-ods
http://onlinepubs.trb.org/onlinepubs/shrp2/RevisedSafetyResearchPlanMarch2012.pdf
http://onlinepubs.trb.org/onlinepubs/shrp2/RevisedSafetyResearchPlanMarch2012.pdf
http://www.udrive.eu/
http://www.x3-c.com/
http://www.x3-c.com/wp-content/uploads/2017/02/XCube-Products-Description_Jan2017.pdf
http://www.x3-c.com/wp-content/uploads/2017/02/XCube-Products-Description_Jan2017.pdf

