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Abstract

We address the problem of fast figure-ground segmentation of single objects from
cluttered backgrounds to improve object learning and recognition. For the segmen-
tation, we use an initial foreground hypothesis to train a classifier for figure and
ground on topographically ordered feature maps with Generalized Learning Vector
Quantization. We investigate the contribution of several adaptive metrics to en-
able generalization to the main object parts and derive a foreground classification,
which yields an improved bottom-up hypothesis. We show that metrics adaptation is
a powerful enrichment, where generalizing the Euclidean metrics towards local ma-
trices of relevance-factors leads to a higher classification accuracy and considerable
robustness on partially inconsistent supervised information. Additionally, we verify
our results in an online learning scenario and show that figure-ground segregation
using this adaptive metrics enables a considerably higher recognition performance
on segmented object views.
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1 Introduction

For research in human-machine interaction, the learning of visual representa-
tions under general environmental conditions becomes increasingly important.
The main goal is to reach a symbolic level for a compact and unambiguous
description of the visual data. Therefore the segregation of objects from their
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surrounding background is fundamental for object learning and recognition.
The problem for segmentation is to group similar parts of the scene to each
other. As the notion of similar is not clearly defined, this problem can be
addressed in several ways and by the usage of different information sources.
Possible criteria for similarity are the homogeneity of regions, coherent motion
or semantic properties. In the following we will give an overview of current
state of the art methods for segregating an object from the surrounding back-
ground.

In general, most models represent the image data by a stack of topographically
ordered feature-maps (e.g. color, texture and edge detections) with one feature
for every pixel position. The problem of figure-ground segregation then reduces
to the problem of assigning the corresponding feature representatives to figure
or ground. In the following, we will separate the segmentation approaches
into three categories: object-specific models that use learnt knowledge about
particular objects in a top-down fashion, bottom-up models that generate a
segmentation entirely based on the feature similarities for each new image,
and hypothesis-driven models that use a prior coarse hypothesis on figure and
ground to obtain a precise segmentation of an object.

A prominent example for object-specific models are the parts-based approaches
[1,2,3,4], whose goal is to model an object class/category by a set of typical
image patches obtained by a learning algorithm. Such a representation can be
used to detect corresponding patches in the target images to find/recognize
the objects, as well as to segment them from the background. Therefore these
methods can be assigned to the class of top-down models. The concept of parts
can also be generalized to more complex structures [5]. The general problems
of these methods are the high computational load in the learning phase, as
well as the necessity of a database to acquire the representation. For interac-
tive scenarios where real-time and online processing are significant constraints
these models are currently not appropriate.

The bottom-up segmentation models avoid referencing to a particular object
specific representation. With the Normalized Cuts Method [6] the whole image
is modeled by an interaction matrix, representing all pairwise feature similar-
ities. The goal is to partition a graph defined by the interaction matrix into
two regions with strong self-similarities but only weak connections to the other
region. The Competitive Layer Model has been designed as a dynamic model
of Gestalt-based feature binding and segmentation [7] using similar pairwise
feature similarities. The data-driven learning of these similarity functions has
been considered by Weng et al. [8]. But such approaches solve complex opti-
mization problems resulting in computationally demanding models, which are
also not appropriate for online learning.

Hypothesis-driven approaches model the feature distribution of figure and
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ground and combine them with constraints on the derived foreground regions.
Additionally, e.g. the similarity information of neighboring pixels can be used
to derive consistent segments respecting the homogeneities and discontinuities
in the image. For example, Rother et al. [9] propose to model foreground and
background by Gaussian Mixture Models (GMM) and use the Min-Cut al-
gorithm to optimize the partition of the image into two regions with respect
to the model affinity and discontinuities in the image. As the basic Grab-
Cut [9] model is sensitive to high contrast edges in cluttered background, Sun
et al. [10] suppress this effect with information from the known and static
background. Similar to GMM, Weiler et al. [11] uses histograms for the re-
gion description integrated into a Level-Set energy functional with an included
smoothness term (e.g. penalizing the length of the contour) to derive compact
foreground segmentations. The methods of Rother et al. and Weiler et al.
[9,11] rely on the necessity of sufficient image statistics to model the feature
distributions and high color gradients across figure-ground boundaries to align
the segmentation with the object contour. In [12], the clusters in the color-
space of the image are modeled with prototypical feature combinations. This
concept is generalized to arbitrary feature-maps, for example to derive com-
pact regions in the image space by a direct integration of the pixel position as
additional features [13]. The latter two approaches [13,12] select the supposed
foreground clusters to derive a segmentation. For this selection the concept of
a segmentation hypothesis is needed.

The hypothesis-driven methods do not need an object specific training be-
forehand, but an initial guess which parts of the image are related to figure
and ground to obtain the segmentation. This initial guess can be derived
from foreground detection [10], user interaction [9], depth information [13] or
saliency [12]. It is a common problem that the obtained hypothesis has a noisy
character, caused by fundamental problems (e.g. the ill-posed task of depth
estimation from 2D data). Therefore the main problem is to generalize to rele-
vant object regions from such imprecise hypotheses. One approach is to obtain
a model classifying foreground and background based on the pixel-wise feature
information from the hypothesis. An appropriate learning model can then gen-
eralize over inconsistent training data and yields a segmentation that is better
than the initial guess (that is, refines the hypothesis). This concept can be
transferred to other application domains as well, like audio segmentation.

The segmentation obtained by such hypothesis-driven models can be combined
with a high level object representation used for learning and recognition of the
segmented object views. In the context of online learning of objects a biolog-
ically inspired view-based approach on the basis of hierarchically organized
processing was proposed recently [14]. Using this model as part of an active
stereo vision system (see Sec. 2), object learning and recognition takes place
on the highest level of multiple layers from simple to complex feature detectors
(Fig. 1). That is, during the interaction with the user, this method is capable
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Figure 1. Overview on the architecture for object learning and recognition [14].
In the first stage, color and position are used as features together with the initial
hypothesis to obtain the object segmentation with a Learning Vector Quantization
approach. In the second stage, the rightmost layer of a feature hierarchy is used as
object representation for learning and recognition.

of learning the object representation on the basis of high dimensional shape
features. For this architecture it was shown that the performance of the object
classifier improves considerably with better segregation from the background
[13].

Following the general architecture shown in Fig. 1, we propose a hypothesis-
driven method to segment objects for object learning that is capable of running
with sufficient speed and can handle changing and cluttered backgrounds. We
assume that an initial hypothesis from depth estimation is given, which covers
the image region of the presented object. Then our method for object segmen-
tation uses prototypical feature representatives to model figure and ground.
Because extracting 3D information from 2D images in general is an ill-posed
problem, the resulting hypothesis is characterized by a partially inconsistent
overlap with the outline/region of the object (see Fig. 2). We use this infor-
mation as a supervised label for the image features to train a classifier for fig-
ure and ground with Generalized Learning Vector Quantization (GLVQ [15]).
The goal is to generalize to the main object parts and to derive a foreground
classification, which improves the initial hypothesis. In prototype-based rep-
resentations, the clustering and classification of image regions on the basis of
similarity crucially depends on the underlying metrics. For GLVQ several ex-
tensions of the Euclidean metrics are available [16,17], which offer additional
feature and prototype-specific weighting factors, taking into account the dis-
criminative power of features and correlations between them. These so-called
relevance-factors and the LVQ-network weights (prototypes) are adapted on-
line by means of gradient descent. By comparing the adaptive metrics and
investigating the robustness to the noisy supervised information, we show that
manipulating the metrics given a prototypical feature representation is capable
of achieving a large gain in hypothesis refinement. Transferring these insights
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Figure 2. Overview on the scenario for object learning and recognition. To determine
an initial hypothesis that defines which parts of the view correspond to the object
itself, the motion and depth information is used for attending and selecting the
object during interaction. For this, the concept of peripersonal space [14] is used,
which defines the behaviorally relevant parts of the visual scene as the region in
front of the system. The highlighted region in the middle image consists of all scene
elements within a specified depth interval.

to the application domain of figure-ground segregation, we show that the in-
troduction of prototype-specific matrices of relevance-factors is leading to an
improved segmentation quality enhancing object learning and recognition. In
contrast to other prototype-based approaches [13,12], this method offers the
advantage to automatically determine those feature dimensions most relevant
for the object segmentation. Additionally, it relaxes a priori assumptions on
object position and segment selection.

The paper is organized as follows. First we present our current scenario and
concept for object segmentation. After a short description of four adaptive
metrics extensions for GLVQ, we compare them with respect to foreground
classification performance on multidimensional feature vectors, in particular
with noisy training data. Finally we evaluate the impact of metrics adaptation
on the prototype-based representations on real world data for object recogni-
tion and compare the proposed segmentation method to another algorithm on
a benchmark dataset.

2 Method

Our current scenario for object learning consists of a user presenting objects
to a stereo-camera system. For unconstrained interaction, the pan-tilt stereo-
camera head is controlled by an attention system for object localization and
tracking. The behaviorally relevant parts of the scene for learning and recog-
nition are defined by the concept of peripersonal space (Fig. 2). According
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to this concept, the depth estimation of the region in front of the system is
analyzed with a blob-detection within a specified depth interval (in this work
50cm-80cm). The most salient blob is tracked by the system and centered in
view by setting the gaze direction. This assures invariance to the location of
the object in the scene (translation invariance). From the blob-detection a
square region of interest (ROI) is defined based on a distance estimate and
normalized to a size of I × I pixels, where we use I = 144. This assures,
that the same object which is presented in different distances to the learning
systems is processed with nearly the same size (size invariance). To improve
the learning and recognition of the objects, the goal is to segment the object
from the RGB image of the ROI while the depth-information (respectively
the binarization) is used as initial hypothesis H (upper right and lower right
image of Fig. 2). Object learning is then based on the segmented object views
(compare Fig. 1).

2.1 Problem description

Extracting 3D information from 2D images in general is an ill-posed prob-
lem and results in coarse approximations of the object outline/region by the
depth estimation. Therefore, generalizing to the relevant object parts from this
hypothesis and discarding the background is complicated. This is caused by
partially overlapping feature-clusters due to the noisy hypothesis, as well as by
similar colors in regions of figure and ground. Formally, the input data consist
of a stack of M = 5 feature maps F := {Fi|i = 1..M} corresponding to the
RGB color-space and pixel position (F x,y

1 = Rx,y, F x,y
2 = Gx,y, F x,y

3 = Bx,y,
F x,y

4 = x, F x,y
5 = y). The choice of these features is not constrained to a partic-

ular color space and other features like texture could be included as well. The
pixel coordinates (x, y) are important as additional features for an implicit re-

gion modeling. The stack of maps F is represented by a set of vectors ~ξ ∈ RM ,
where every pixel defines a feature vector ~ξx,y = (F x,y

1 ..F x,y
M )T , 1 ≤ x, y ≤ I.

We assume an unknown ground truth map G, which defines the membership
of feature ~ξx,y for every pixel (x, y) to figure Gx,y = 1 or ground Gx,y = 0
with respect to the attended object. The goal is to approximate G by a binary
map A using the initial hypothesis H (also a binary map) and the similarity
information provided from the feature-maps F . The binary foreground map A
is the result of a pixel-wise foreground classifier, which is trained on features
F and hypothesis H for the current image, Ax,y ← Ax,y

F ,H(ξx,y). Though we
cannot expect that the ground truth map can be fully recovered by A, the goal
is to discard at least the inconsistent parts of the hypothesis. If the ground
truth information is available, the segmentation quality can be quantified by
a pixel-wise comparison of G with the resulting foreground classification A,

i.e. D(M1 = A,M2 = G) := 1−
∑

x,y |Mx,y
1 −Mx,y

2 |
I2

. But using this pixel-wise
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comparison, one must be aware of the variability of the foreground hypothe-
ses/segmentation in their size and proportion to the number of background
pixels within the sequence of images. Therefore we measure the success of the
segmentation by an increased overlap S(A,G) > S(H,G) of A with the ground
truth segmentation G. The similarity function S(M1,M2) normalizes the dif-
ference of two binary maps Mx,y

1 ,Mx,y
2 ∈ {0, 1} by the sum of their foreground

regions and discards the background pixels.

S(M1,M2) := 1−
∑

x,y |Mx,y
1 −Mx,y

2 |∑
x,y Mx,y

1 +
∑

x,y Mx,y
2

This measure S(M1,M2) yields a monotonically increasing function dependent
on the overlap of M1 and M2. Note that, if the figure occupies only a small
fraction of the image, then S(A,G) and D(A,G) can be strongly different,
because the latter is mainly computed on the background.

2.2 General concept for segmentation

After the acquisition of the feature maps F and the hypothesis H (Fig. 2)
a pre-processing F x,y

i ← TF (F x,y
i ) of the feature maps F x,y

i (a gamma cor-
rection and white balancing on the maps representing the image data) is
performed first. Afterwards all skin-colored areas S,Sx,y ∈ {0, 1} (filtered
in a separate processing stream for skin color detection [18]) are removed
(TH(H) := H ← H − (H ∩ S)) from the hypothesis H. This is necessary
because the hand is strongly connected to every object/hypothesis and state
of the art object classifiers are not capable of learning/representing the spe-
cial role of the skin colored areas. To build A and to extract the relevant
object parts from F using H, we state the task of object segmentation as
a binary classification problem and use generalized learning (i.e. supervised)
vector quantization to train a classifier for foreground. We adapt a codebook
of N class-specific prototypes P :=

{
~wp ∈ RM |p = 1..N

}
, to represent the

clusters in the data F (homogeneous regions in the image) by the proto-
types ~wp. For figure-ground segregation a setup with two classes is used where
c(~wp) ∈ {0, 1} encodes the class-membership, assigned by the user, of every
prototype to figure or ground. The codebook P is initialized for each class
separately with a random sampling of features ~ξ from the first image (respec-
tively F ,H). After the initialization of P , this codebook is adapted for every

succeeding image (Sec. 2.3) on randomly chosen pairs (~ξx,y,Hx,y). The reuse
of prototypes on subsequent images accounts for the continuity of the image
sequence and allows a reduced number of update steps on a single image. In
the evaluation-phase, the image is partitioned into N segments (binary maps)

Vp ∈ {0, 1} by assigning all feature vectors ~ξx,y (i.e. pixels) independently

to the prototype ~wp with the smallest distance d(~ξx,y, ~wp). Using an adaptive
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Learning Vector Quantization approach, the final segmentation A is combined
by choosing the activation-maps from prototypes assigned to the foreground
A =

∑N
p c(~wp)Vp.

The general concept for combining the information from the image and the
hypothesis can be summarized with the following pseudo code:

(1) Input: feature maps and hypothesis from object ROI:
Fx,y := {F x,y

i |i = 1..M},
Hx,y ∈ {0, 1}

(2) Preprocessing of feature maps:
F x,y

i ← TF (F x,y
i )

(3) Preprocessing of hypothesis:
H ← TH(H)

(4) Init codebook P = {~wp}, p = 1, .., N if not already done
(5) Adaptation (for t update steps)

• Select ~ξx,y at random position 1 ≤ x, y ≤ I
• Find best matching prototypes ~wJ for the correct label, ~wK for the in-

correct label
~wJ = {~wp ∈ P|d(~wp, ~ξ

x,y) = min
q,c(~wq)=Hx,y

d(~wq, ~ξ
x,y)}

~wK = {~wp ∈ P|d(~wp, ~ξ
x,y) = min

q,c(~wq)!=Hx,y
d(~wq, ~ξ

x,y)}

• Update prototypes with learning rate α
~wJ ← ~wJ + α ·∆~wJ

~wK ← ~wK + α ·∆~wK

• Update metrics d(·, ·), see Sec. 2.3
(6) Evaluation: for all pixels 1 ≤ x, y ≤ I
• Compute activation map for each prototype

V x,y
p :=





1 if d(~ξx,y, ~wp) < d(~ξx,y, ~wr),∀r 6= p, {r, p} ∈ P ,

0 else

• Determine foreground segmentation
A =

∑N
p c(~wp)Vp

The ASDF model [13], which is used for the comparison of the performance
in Sec. 4, differs in three aspects. In their more heuristical setting, Steil et
al. considered an unsupervised clustering approach and therefore only wJ is
adapted in step (5) where c(~wp) = 1,∀p ∈ P , is equal for all prototypes. After
adapting the prototypes, the foreground segmentation (6) is constructed with
a heuristics to determine a subset of Vp, each of which shows a sufficient
overlap with the initial hypothesis H. Additionally to the original hypothesis
derived from depth and skin color information a further position prior, an
image centered circular map is used. The most important difference concerns
the distance computation, which is Euclidean and not adapted during learning.
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2.3 Generalized Learning Vector Quantization with Relevance-factors

Similarity-based clustering and classification crucially depends on the under-
lying metrics and many modifications of the Euclidean metrics have been
proposed. One of the most popular metrics manipulation is the introduction
of feature-specific weighting factors, for example to compensate for different
scales of the feature channels. The ASDF approach globally modifies the met-
rics by a rescaling of the feature maps TF (F x,y

i ) := fi · (F x,y
i /σ2

i ) with their
variance σ2

i and a feature-specific a priori weighting factor fi. However, finding
the appropriate weightings is a tough problem. Recently, for Learning Vector
Quantization it has been proposed to optimize such factors for the classifica-
tion problem at hand. Based on the Generalized LVQ (GLVQ [15]) method,
Hammer [16] has extended the standard Euclidean metrics by introducing
a global relevance-factor for each feature dimension (Generalized Relevance
LVQ (GRLVQ)). This leads to the squared weighted Euclidean metrics

d(~ξ, ~w) = ‖~ξ − ~w‖2λ =
M∑

i

λi(ξi − wi)
2,

where λi ≥ 0 and
∑M

i=1 λi = 1. In further investigations, the following two
extensions of this concept have been proposed [19]. First, using an M ×M
matrix of relevance-factors (Generalized Matrix LVQ, GMLVQ results in the
metrics

d(~ξ, ~w) = (~ξ − ~w)T Λ(~ξ − ~w),

where Λ is positive semi-definite, assured by adapting Ω, where Λ = ΩΩT to
yield a valid metrics, i.e. d(~ξ, ~w) = (~ξ − ~wp)

T ΩΩT (~ξ − ~wp) = (ΩT (~ξ − ~wp))
2 ≥

0. Additionally, the authors advise to normalize the diagonal elements by∑M
i=1 Λi,i = 1 to stabilize the algorithm. The second extension introduces local

relevance-vectors/matrices ~λp, Λp specific for every prototype, called localized
GMLVQ/GRLVQ (LGMLVQ/LGRLVQ) to allow prototype specific metrics

manipulations, i.e. d(~ξ, ~wp) = (~ξ − ~wp)
T Λp(~ξ − ~wp). As introduced by GLVQ,

the overall performance of the network is measured by

E =
∑
~ξx,y

σ (µ(d)),

σ(x) = 1
1+e−x , µ(d) = dJ−dK

dJ+dK
,

dJ = d(~ξx,y, ~wJ), dK = d(~ξx,y, ~wK).

The error E is minimized on training samples (~ξx,y,Hx,y), where dJ is the

distance between ~ξx,y and the most similar prototype from the correct class
with Hx,y = c(~wJ) and dK is the distance to the most similar prototype
from an incorrect class. Using stochastic gradient descent to minimize E, the
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prototypes ~wp of the network and the relevance-factors ~λ, Λ are updated by

~w ← ~w + α ·∆~w, ~λ← ~λ + β ·∆~λ. See [20] for a comprehensive overview and
the derivations of the update formulas. For the most complex case, LGMLVQ,
the prototypes as well as the relevance matrices of the two nearest prototypes
~wJ and ~wK are adapted by means of:

∆~wJ =
∂E

∂ ~wJ

=
∂σ

∂µ

∂µ

∂dJ

∂dJ

∂ ~wJ

= −α · e−µ

(1 + e−µ)2

2dK

(dJ + dK)2
(−2ΩΩT (~ξ − ~w)),

∆~wK =
∂E

∂ ~wK

=
∂σ

∂µ

∂µ

∂dK

∂dK

∂ ~wK

= α · e−µ

(1 + e−µ)2

2dJ

(dJ + dK)2
(−2ΩΩT (~ξ − ~w)),

∆ΛJ =
∂E

∂ΛJ

=
∂σ

∂µ

∂µ

∂dJ

∂dJ

∂ΛJ

= −β · e−µ

(1 + e−µ)2

2dK

(dJ + dK)2
· (MT

J + MJ),

∆ΛK =
∂E

∂ΛK

=
∂σ

∂µ

∂µ

∂dK

∂dK

∂ΛK

= β · e−µ

(1 + e−µ)2

2dJ

(dJ + dK)2
· (MT

K + MK),

MJ = Ω(~ξ − ~wJ) · (~ξ − ~wJ)T ,

MK = Ω(~ξ − ~wK) · (~ξ − ~wK)T .

To keep a compact notation, in the following we will refer to the Generalized
Vector Quantization with the symbol Q and use the indices L, G for local-
ized or global metrics extension and M, V for the relevance matrices Λ or
vectors ~λ. That is, GLVQ=Q, GRLVQ=QG

V , GMLVQ=QG
M , LGRLVQ=QL

V ,
LGMLVQ=QL

M .
The relevance factors of QG

V /QL
V yield an ellipsoidal-shaped, axis-parallel scal-

ing of data points equidistant to a prototype. In the case of the matrix trans-
formations the distance computation is shaped to a rotated ellipsoidal. In the
simplest case of only one prototype for each class, standard GLVQ with the Eu-
clidean metrics separates two classes by a linear hyperplane (the border of the
Voronoi cells). This behavior does not change with the introduction of global
transformations (QG

M ,QG
V ). On the contrary, the extension of local relevance

transformations introduces more flexible (non-linear) decision boundaries be-
tween each pair of prototypes, by using different metrics for them. This effect
is independent of the usage of multiple prototypes which yields more complex
tessellations of the feature space. The adaptive metrics are of special interest
for our scenario due to the capability to weight the features according to their
relevance for the classification task. The main idea of the matrix transforma-
tion is to account for correlations/combinations of the feature dimensions in
the off-diagonal elements of Λ.
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Figure 3. Example image from the dataset of rendered objects and corresponding
distortion of the ground truth data. From left to right the original image (a), ground
truth G (b), distorted hypothesis H (c) with a patchsize s1 = 12, shift s2 = 22 and
the resulting segmentation A (d) derived by a classifier trained on H. Finally the
visualization of the overlap of (b) and (d), which is quantified by the measure
S(A,G) during the experiments.

3 Investigation of metrics adaptation

We have formulated the segmentation such that a noisy hypothesis is used
to train a classifier for figure and ground using the samples (~ξx,y,Hx,y). From
previous results in [17] it is known that the performance in classification bench-
marks can strongly benefit from the usage of the adaptive metrics. According
to our hypothesis-driven learning approach, we investigate the impact of these
methods with respect to the quality of the target information H and the gen-
eralization capabilities to the relevant image structures. After the description
of the general setup used for our experiments, we consider the results from
a single image in a simple example to get some insights what happens with
increasing noise. Secondly we use ground truth data from a rendered-object
dataset to compare the different adaptive metrics by their capability of op-
timizing the classifier on the basis of an existing set of prototypes. Thirdly
we investigate the generalization capabilities of LGMLVQ by using different
levels of noisy hypotheses, and compare the obtained foreground classification
to the ground truth.

3.1 Setup

3.1.1 Database of rendered objects

To investigate the effect of different adaptive metrics in GLVQ we employ a
dataset of rendered objects according to our scenario. A collection of rendered
image sequences from 25 realistic 3D objects (bottles, boxes, cars etc.) is used,
where a ground truth segmentation is available for every object view. The arbi-
trarily rotated object-views are pasted in the center of a typical non-rendered
scene (human in the background, hand near object, see Fig. 3a), generated by
tracking the view-centered hand in front of the camera system. Additionally,
the corresponding ground truth membership G of pixels to the foreground is
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used to generate artificial (noisy) hypothesis maps H (Fig. 3c). The distor-
tion mimics the noise obtained from standard stereo depth algorithms. This
is achieved by randomly selecting and shifting 1000 patches with size s1 × s1

from one position in the mask G to another by a distance randomly chosen
between 1 and s2. To address the capability of hypothesis refinement on the
feature-maps F , these hypothesesH are used as target labels for the randomly
chosen pixels during the adaptation of the classifier. During the experiments
we generate hypothesis maps with increasing noise by setting s1 = 30 and
varying the parameter s2. The intensity of the scrambling and the similarity
of the produced foreground classifications A to the ground truth data G and
hypothesis H are quantified by S(H,G), S(A,G), S(A,H), as defined in Sec.
2.1. Due to copyright restrictions on the 3D-objects used for image rendering,
the dataset cannot be published. Detailed statistics of the dataset on a per ob-
ject level are available on request. To give a short overview of the dataset, the
average RGB color is (92, 85, 79) for the foreground and (86, 82, 80) for the
background. The standard deviation in all feature channels is approximately
55 on both regions. On average the foreground object occupies 13% of the
image region, the average bounding box of the images occupies 24%.

The images of the dataset are processed by the method described in Sec. 2.2.
For the experiments we use two different configurations for the number of
prototypes and learning rates to adapt the networks.

3.1.2 Multi-prototype setup

This setup is our current configuration optimized for QL
M to segment the ob-

ject from the background and is used in our experiments on the complete
rendered and realistic datasets. Because we want to investigate the effect of
the increasing complexity of the metrics, we use this configuration for all al-
gorithms to ensure comparable conditions. In this configuration, the network
consists of N=20 randomly initialized prototypes (5 for figure, 15 for ground).
The decision on the number of prototypes for both classes depends on the
image size, proportion of object size to the background and complexity of
foreground and background. Most of the objects presented to the system con-
sist of 3-5 different colors, which explains the choice of 5 prototypes for the
foreground class. Note that this does not exclude single colored objects from
the segmentation. Typically the background is more complex and cluttered
than the foreground such that 10-15 prototypes are appropriate. This decision
is supported by observations of Sun et al. [10] and previous experiments with
the unsupervised Instantaneous Topological Map (ITM) [21], which was used
to estimate the number of prototypes on comparable image data [22].

In particular, we address the figure ground segregation in an online learning
scenario. This restricts the computation time to segment each image and in-
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troduces constraints on the number of training steps and the learning rates.
The prototypes are adapted by 10000 training-steps for each image with a
learning rate appropriate for fast adaptation to the changing image content.
During preparatory experiments we observed that a fast adaptation of both,
prototypes and relevance factors, strongly impairs the performance. By regular
sampling in the parameter space spanned by the learning rates, we optimized
the learning rates for QL

M towards α = 0.05 for the prototype adaptation and
β = 0.005 for the adaptation of the relevance factors. In this setup, to average
the prototypes and matrices are effectively updated with values of magnitude
around 10−4. While this is moderate for the relevance factors, the prototypes
with a range of ξi ∈ [0..255] in the color components are slowly adapted,
which is still reasonable on the large amount of data we use (300-700 images
per object). Therefore we mainly use metrics learning which is discussed in
the experiments. To find an appropriate learning rate for GLVQ, to compare
the effect of prototype adaptation and metrics adaptation, also regular sam-
pling in the parameter space was used and yields α = 100 for the input data
we use in our experiments. Due to the dependence of the effective learning

rates on the distances occurring to the best matching prototypes (see
∂µ

∂dK
in the update rules described in Sec. 2.3), the average update values have a
magnitude around 10−2.

3.1.3 Two-prototype setup

For a simple example we use a slightly different setup. First we want to achieve
a better separation between the effects of prototype and metrics adaptation
and use α = 0 to adapt only the metrics. Second we constrain our investiga-
tion on a single image and a two class setup, each class modeled by a single
prototype ~wfg, ~wbg for foreground and background. This offers the possibility
to observe the properties of the prototype under changing noise-conditions
and we do not need to account for interactions of multiple prototypes for each
class.

3.2 Effect of increasing noise

In this section, we investigate the effect of increasing noise in H on the data
used for training and on the relevance determination of the localized adaptive
metrics QL

M , QL
V . We restrict the experiment to processing a single image, use

the two-prototype setup and select an appropriate sample from the dataset of
rendered objects consisting of two nearly homogenous regions (Fig. 3a).

In Fig. 4, the corresponding relevance factors for the foreground prototype
Λfg, ~λfg as determined by QL

M (left plot) und QL
V (middle plot) are displayed
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Figure 4. Effect of noise on metrics adaptation of QL
M , QL

V on a single image with
increasingly distorted hypothesis H (avg. over 25 repetitions). As the two-prototype
setup is used, the prototypes are randomly initialized and not adapted. For QL

M the
determined relevance values for the diagonal element of Λfg corresponding to the
color and position as well as the interaction of the pixel position indicated by the
off-diagonal element Λ4,5 are shown. For QL

V the plot contains the components of
the relevance vector ~λfg. With increased scrambling more and more background is
included and changes the properties of the region covered by the hypothesis (right
plot). This is indicated by the average ξ̂i of the feature components in this region.
In this case, QL

M and QL
V are capable of adapting the relevance and increase the

importance of the coordinates and their interaction.

depending on the increasing noise. For the generation of the plots, the hypoth-
esis was disturbed by 50 levels of noise with fixed window size s1 = 30 and
gradually increasing shift distance s2. To keep conditions on all 50 noise-levels
constant, only on the first hypothesis (in this case H = G) the prototypes
have been randomly initialized. This initial set is stored and used for the ini-
tialization of the network for the other 50 noise levels. For visualization, the
averages of 25 repetitions with different initializations were computed.
With this increasing noise, the properties of the foreground region are con-
tinuously changing as observable by the average color features (ξ̂1, ξ̂2, ξ̂3) in
the right plot of Fig. 4. As the noise especially affects the object contour,
the objects center of mass (ξ̂4, ξ̂5) does not change significantly. The average
color/position features are computed by ξ̂i := 1∑

x,y
Hx,y

∑
x,yHx,y · ξx,y

i .

Despite the limitations in the setup, the effect of increasing noise on determin-
ing the relevance factors can be visualized. The prototypes are not adapted
during this experiment (α = 0) and therefore not shown. Regarding the rel-
evance factors, the advantage of metrics adaptation becomes visible with an
increasingly imprecise hypotheses. That is, the color features become less im-
portant than the position, indicated by the changes in their determined rel-
evance. While the center of mass does not change with increasing noise (see
Fig. 4 right) for QL

V the weight of this feature dimensions is simultaneously
increased. For QL

M this dependence can also be expressed by the correspond-
ing off-diagonal element Λ4,5. Hence with increasing noise the introduction of
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Method Q QG
V QG

M QL
V QL

M

S(A,G) 0.076 0.423 0.461 0.646 0.926
Table 1
Evaluation on the rendered-object dataset with the multi-prototype setup (i.e.
α = 0.05). In this table the average similarity of foreground classification A to
ground truth G for Q with different adaptive metrics is shown (5 repetitions on
25 objects and 700 views of the dataset). Here the perfect training data H = G
was used to adapt the classifier. For this S(A,G) allows conclusions to the fore-
ground classification error introduced by the methods itself. Also we can observe
from these results the increase in foreground classification performance caused by
the increasing complex metrics adaptation.

the position gets more important for the foreground classification which is the
desired behavior. The effect of metrics adaptation compared to the prototype
learning will be further evaluated in Sec. 4.

3.3 Learning on ground truth

Here we investigate the capabilities of the adaptive metrics to optimize the
classifier on the basis of an existing set of prototypes, i.e. adapt primarily
the metrics and only slightly the prototypes. Contrary to the previous exper-
iment, we use the multi-prototype setup with the learning rate α = 0.05. Due
to the changing image statistics within the large dataset caused by changing
background and different objects, a learning rate α = 0 is not reasonable.
This enables a high flexibility in the metrics adaptation, which yields the best
performance in our scenario (Sec. 2.3), and can be regarded as a compro-
mise between plasticity and stability for online learning. For this baseline test
(Tab. 1), we apply the variants of GLVQ using different adaptive metrics to
the complete dataset of rendered objects. In this experiment we use the ground
truth data H = G for supervised learning and the complexity of the adaptive
metrics is the only modified condition. From Tab. 1 it is visible that an in-
creasing complexity of the adaptive metrics from relevance-vectors to matrices
and from global to local ones clearly leads to an improved foreground clas-
sification performance and increasing capability to compensate the strongly
reduced prototype adaptation. Measured by the overlap S, which considers
only foreground-pixels, the resulting foreground mask reaches an average sim-
ilarity to the ground truth data up to 0.92 for QL

M . In particular the results
on the whole dataset give a more differentiated view on the capabilities of the
different adaptive metrics. While QL

M yields a tolerable testing error (derived
from the similarity S(A,G)), the less complex metrics adaptations are not
appropriate for an application on the intended scenario. Note that, although
S(A,G) can be very small for Q, the overall pixel-wise classification perfor-
mance is much better (defined by D(A,G) in Sec. 2.1), e.g., 87% for Q and
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Figure 5. Effect of increasing noise on QL
M . This plot shows the average similarity of

the foreground classification A to ground truth G for the localized adaptive metrics
QL

M on the rendered-object dataset using the multi-prototype setup (5 repetitions
on 25 objects and 700 views of the dataset). The network was adapted with increas-
ingly noisy hypotheses H, which were obtained by scrambling with s1 = 30 and
increasing shift distance s2. The capability of QL

M to approximate the ground truth
information shows a graceful degradation with increasing noise. While keeping the
prototypes nearly constant during the adaptation on a single image, the metrics
adaptation is capable of obtaining a classifier for figure and ground which general-
izes to the relevant object regions S(A,G) > S(H,G). Due to classification errors
of the algorithm itself, the largest gain is achieved for intermediate levels of noise.
A further increase of noise results in a learning of the hypothesis S(A,H), because
the proportion of the object region is significantly reduced.

98% for QL
M . The reason is a large share of correct background classification

versus figure. Therefore the quality of the foreground classification is hard to
assess from the measure D. Finally, because we use the ground truth data
H = G for supervised learning in this experiment the results can be consid-
ered as upper bounds of the foreground classification performance using the
given setup.

3.4 Hypothesis refinement

On the basis of the preceding results we investigate the generalization ca-
pabilities of QL

M to the ground truth data. That is, the robustness against
the increasing noise and the refinement of the initial hypothesis indicated by
S(A,G) > S(H,G). Therefore we train a QL

M network by using multiple lev-
els of distortions of H (Tab. 5). Because of classification errors introduced by
the method itself (also observable in Tab. 1), some amount of distortion is
required to observe the hypothesis-refinement effect for our scenario. In this
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case, the higher model complexity enables a higher capability to generalize to
the consistent parts of the object also in the presence of the increasing noise.
Increasing the model complexity normally introduces the problem of over-
fitting. Therefore we also compare the similarity S(A,H) of the foreground
classification to the data used for trainingH. We can observe that in particular
for intermediate levels of noise, the foreground classification is more similar to
the ground truth data than to the hypothesis, which indicates the good gen-
eralization capabilities. In the next section we will verify these observations
on real image data recorded from the object learning scenario.

4 Object recognition scenario

We want to investigate the effect of the object segmentation derived by proto-
type and metrics adaptation on the data recorded in an online object recogni-
tion scenario. We use the data from [14] consisting of 50 natural, view centered
objects with 300 training and 100 testing images without ground truth infor-
mation. From the available depth and skin information the hypothesis H is
computed without additional prior information on object position (as used in
[13], see Sec. 2). In Comparison to the statistics of our dataset of rendered ob-
jects (Sec. 3.1.1), the average color of the foreground and background is (141,
119, 106) and (112, 99, 99) respectively. Similarly, the standard deviation in
all feature channels is approximately 50 on both regions. Slightly larger, the
foreground object occupies 22% of the image on average (39% for the bound-
ing box).
To compare the results of the different methods where ground truth informa-
tion is not available, the image regions defined by the foreground classification
(i.e. the presented objects) are fed into a hierarchical feature processing stage
[14]. For object learning and recognition, a separate nearest neighbor clas-
sifier is applied to the derived high dimensional shape features (Fig. 1). The
resulting foreground segmentation is indirectly compared via the object classi-
fication performance of the nearest neighbor classifier on top of the segmented
object views. Figure 6 shows samples for A and the recognition performance
from using the depth-map itself, the hypothesis H, the ASDF (used from
[14]), and the results of the compared GLVQ-extensions. To distinguish be-
tween metrics and prototype learning, Q(a) was trained with fast (α = 100)
and Q(b) with slow learning rate (α = 0.05). Q with adaptive metrics was
trained analogously to Sec. 3 with α = 0.05, β = 0.005 primarily adapting the
metrics. While Q is not able to cope with the noisy supervised data, QL

M is
capable of representing figure and ground on the basis of the most relevant fea-
tures/feature combinations, which enables a correct foreground classification
of the main object parts. Using foreground classifications of QL

M causes a sig-
nificant improvement in recognition performance on real world data. Though
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Object Depth H ASDF Q(a)

Perf.: 0.735 0.755 0.778 0.364

Q(b) QG
V QG

M QL
V QL

M

0.214 0.372 0.512 0.679 0.883

Figure 6. From left to right: input image, depth-map, hypothesis H and derived
A using Q with Euclidian and adaptive metrics. Q(a) uses a higher learning rate
of α = 100. Bottom row, the average object recognition performance of a separate
nearest neighbor classifier on the high-dimensional shape features derived using
the topographic visual hierarchy applied to the segmented object images (3 repe-
titions on 300 images for training, 100 for testing). We observe a gradual increase
of segmentation quality and performance with increasing complexity of the metrics
adaptation as well as the usage of local transformations rather than global ones.
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the more complex metrics adaptations induces a higher computational load,
the proposed segmentation method is still running at reasonable time for on-
line learning of 7 frames/sec on this dataset (using a single core of a 2.66 GHz
Intel Xeon processor machine).

5 Comparision to Graph-Cut segmentation

In the previous sections we showed that modeling figure and ground with pro-
totypical feature representatives can strongly benefit from the localized metrics
adaptation. Despite of a supervised learning method on the noisy hypotheses,
the generalization capabilities can achieve a large gain in segmentation qual-
ity. While we are mainly concerned with an online application, this method is
not constrained to that specific scenario, as long as the hypothesis is provided.
Particularly interesting for an application of this method is the dependence
of the generalization capability on the model complexity, the properties of
the derived relevance factors as well as a comparison with the capability of
other models. Prominent state of the art methods for segregating single ob-
jects from the backgrounds are methods based on Level-Sets [11] and Markov
Random Fields [23,9]. To allow a comparison with these methods we apply the
proposed method on the dataset 1 introduced by Rother et al. [9], which was
also used for Level-Sets [11]. To our knowledge, currently the Graph-Cut [23]
segmentation achieves the best performance on this dataset. For this bench-
mark the ground truth information is available, which allows a quantification
of the segmentation quality. Furthermore, for each of the images a grey-value
image called Trimap is available. This map mimics a user interaction that
can provide hints to the algorithm about the relation of every pixel to figure
or ground, encoded by Trimap ∈ {0, 64, 256}. Furthermore Trimap ∈ {128}
encodes for unknown status.

The benchmark dataset consists of quite different images. While there are
many images with homogeneous object and/or background regions, other
scenes are more difficult. In principle, prototype based methods are confronted
with a model selection problem, that is, to determine the appropriate num-
ber of prototypes for each class. We decide to apply the QL

M method with
the following setup. The number of prototypes is investigated with two dif-
ferent settings, consisting of one prototype for each class for the first setup,
respectively two prototypes for the second setup. This might be insufficient
for some of the images, but on the other hand increasing this number leads to
overfitting effects on the simpler scenes and impairs the overall performance
as well. Using only one prototype for each class further allows for a more

1 http://research.microsoft.com/vision/cambridge/i3l/segmentation/GrabCut.htm

19



Method Error rate (avg. and std. dev.)

H 07.72% ± 03.41

QL
M , 2 prototypes, unconstrained Bimap 04.42% ± 03.04

QL
M , 4 prototypes, unconstrained Bimap 04.15% ± 03.15

Graph-Cut, Trimap 02.38% ± 01.51

Graph-Cut, contrained Bimap 04.76% ± 04.36

Graph-Cut, unconstrained Bimap 12.90% ± 12.70
Table 2
Comparison of the error rates from QL

M and Graph-Cut applied to the benchmark
dataset. Here the pixel-wise error rates (1 − D(A,G) ∗ 100) are used to achieve
comparability to the cited literature [9,11]. First the hypothesis itself is evaluated,
and then the metrics learning was applied with a two-prototype and four-prototype
setup. For Graph-Cut several settings where used, which differ in the usage of the
information provided from the Trimaps. While Graph-Cut strongly relies on this
information to achieve a good performance, the proposed method is capable to cope
with the unconstrained setting. Increasing the model complexity to multiple proto-
types can increase the performance on the more complex samples of the dataset.

detailed inspection of the derived relevance factors over multiple repetitions.
The learning rates are fixed with α = 0.05 and β = 0.005. Due to the signifi-
cantly higher image dimensions and the applications on single images, a larger
number of 500000 trainings steps for each image is performed. The hypoth-
esis to train the classifier for figure and ground is derived from the provided
Trimaps of the database. That is, to train the LVQ network, all pixels whose
corresponding values of the Trimap ∈ {128, 256} are used as training data for
foreground and otherwise for background.

In Table 2 the error rates of the derived foreground segmentations are com-
pared to the results of a Graph-Cut [23] implementation. The parameters of
the Graph-Cut model are λ, which is set to 1/15 in all experiments, and σ.
While λ specifies a relative importance of the region properties in the error
functional of the Markov Random Field, σ is part of the boundary property
term which defines cost for cutting the edge between two neighboring pixels.
The parameter σ is estimated from the data as proposed in [9]. Like Graph-
Cut, the proposed method is capable to derive a figure ground segregation
that improves the initial guess. A significant difference between the proposed
method and Graph-Cut is the large variance of the results. This variance oc-
curs between the different images (Tab. 2), as well as for multiple repetitions
on the same image, visible from the relevance factors in Fig. 8. This can be
explained by the usage of the parameter from the online learning setup on this
database. For gradient descent convergence to local a minimum is guaranteed,
which depends on the initialization. Therefore the purely random initializa-
tion of the prototypes as well as the constant learning rate have a significant
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Example 1

Example 2

Figure 7. Sample segmentations derived by QL
M with the 2 prototype setup, one

for foreground and one for background. The pixels used for the training of the
foreground class are bounded by the red line on the input images (left). The right
image is an overlay of the input image with the resulting foreground segmentation.

impact. A more sophisticated initialization as well as decreasing learning rate
over time might relieve such effects. The important difference stems from the
observation that the performance of the Graph-Cut approach in drastically
decreased if the full information of the Trimap is not used. Obviously the
Graph-Cut methods strongly rely on information which parts of the scene are
definitely foreground (Trimap ∈ {256}) or background (Trimap ∈ {0, 64})
which is used as hard constraint for the algorithm. The proposed method does
not rely on this information and uses the unconstrained Bimap. That is, the
whole image is used to build the models and all pixels have to be classified
afterwards and can be changed in their assignment to foreground or back-
ground. An intermediate setting where only the background is used as hard
constraint is referred as ”constrained Bimap”.
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Relevance Factors for Example 1
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Figure 8. Visualization of the derived relevance factors and their standard devia-
tion on examples of Figure 7. The size of the boxes encodes the magnitude of the
weights (empty box = -1, full box = 1). A middle sized box represents a value of
0, also visualized by the dotted inner square if this factor is smaller than zero. The
intensity encodes for the standard deviation according to the right color encoding.
Rightmost, the prototypes are visualized in a similar manner, where the size of the
box encodes the value between zero and maximum. To ease the visualization, the
position features are ignored because of their different range. The color of the boxes
encodes for the standard deviation as before. These plots visualize the variance of
the resulting relevance matrixes dependent on the initialization of the prototypes.
Compared to standard prototype based representations, the properties of the rep-
resented image regions are primarily reflected in the relevance factors rather than
in the prototypes.

The usage of only one prototype for each class allows an evaluation of the
relevance learning over multiple repetitions on the same image. In Fig. 8 the
average relevance matrix derived by QL

M and the standard deviation are visu-
alized on the basis of 10 repetitions, visualized for example 1 and example 2
in Fig. 7. Firstly, the variance of the results is not equally distributed on all
relevance factors, which means that they are the result of a systematic pro-
cess converging into the local minima of the error function depending on the
initialization. Secondly, the derived relevance factors reflect the image data in
their prominent colors. For example the color blue gets a high weight for the
foreground in example 1 and a large weight for background in example 2. Com-
pared to standard prototype based learning, we observe that the properties of
the image region represented by the pair of prototype and relevance matrix
are primarily reflected in the relevance factors. This reflects the capabilities
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Method Error rate, noisy H Error rate, H = G
H 5.64% ± 1.00 0.00% ± 0.00

Graph-Cut 8.30% ± 8.82 7.30% ± 7.92

QL
M , 2 prototypes 5.48% ± 4.18 4.87% ± 3.66

QL
M , 20 prototypes 1.65% ± 1.03 1.32% ± 0.01

Table 3
Comparison of metrics adaptation with Graph-Cut on the dataset described in Sec.
3.1.1. Here the average and standard deviation of the pixel-wise error rates similar
to Tab. 2 are used. The metrics adaptation was applied with two different setups.
The first setup consists of 20 prototypes and is described in Sec. 3.1.1, for the
second setup only 2 prototypes are used to allow a comparison to Tab. 2. Metrics
learning as well as Graph-Cut is applied on the ground truth data and a scrambled
hypothesis, where the unconstrained Bimap setting was used in all conditions. Given
an appropriate model complexity, the prototype-based learning is less sensitive to
the quantity and quality of the provided training data.

of metrics adaptation to compensate for the reduced prototype adaptation,
caused by the different learning rates. But in general the relevance cannot
be rated on the region they present alone and in particular correlations be-
tween features are difficult to judge for human observers. Instead, the derived
relevance factors are the results of the learning dynamics on foreground and
background of the current image. Thus they cannot be simply transferred from
one image to another.

5.1 Comparison to Graph-Cut on the dataset of rendered objects

Despite of the different usage of the information provided by Trimaps, an-
other quite important difference is the usage of histograms to model figure
and ground in the Graph-Cut approach. This relies on sufficient image data to
model the feature distributions. On can expect that the performance depends
on the image size where prototypical representatives yield a more compact
model of the image data and can cope with smaller image dimensions. To
evaluate the performance of the Graph-Cut method in our scenario we use
our database of rendered images. Another problem that does not occur on the
benchmark database is that the hypothesis is allowed to have holes. That is,
in particular for the depth information estimated on homogeneous surfaces,
the hypothesis for foreground can consists of regions where no measurement
of depth is available (pixels that can be ignored to train the models) or sim-
ply assigned to background as it is the case for the rendered image database.
Therefore we cannot use the Trimap or constrained Bimap setup for Graph-
Cut, without further preprocessing ( e.g. compute the convex hull of the hy-
pothesis). Using the unconstrained Bimap setup as well as the histograms on
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single small images strongly impairs the performance of the Markov Random
Field approach. The prototype based approach shows a significantly stronger
robustness under these conditions. Nevertheless, a two prototyp setup on this
scenario does not have the appropriate model complexity. The setup optimized
on this scenario allows a significant improvement of figure-ground segregation
comparable to the results of Tab. 1 and Fig. 5.

6 Conclusion

In this paper, we propose a fast image segmentation scheme which is capable
of refining a given hypothesis for arbitrary background conditions. We model
figure and ground by prototypical feature representatives and compare several
metrics extensions applied to GLVQ to improve this approach. Finally, we
adopt LGMLVQ in the domain of figure-ground segregation for this purpose.
In comparison to other metrics (Sec. 3.3, 4), we have shown that the extension
to local matrices of relevance vectors leads to improved foreground classifica-
tion resulting in a significant enhancement of object learning and recognition.
Compared to the ASDF approach [13], which also directly addresses the fore-
ground segmentation from an initial hypothesis, the supervised learning does
not rely on additional a priori assumptions about object position, size and
segment-selection. In comparison with a current state of the art object seg-
mentation method, we show that the proposed method has fewer constraints
on the provided training data and is less sensitive to the quality of the initial
hypothesis.

To explain the positive effect on hypothesis refinement, the number of pro-
totypes and the introduction of the pixel position as additional features are
important. The number of prototypes is constrained to be small and therefore
the algorithm is forced to represent the most dominant structures in the im-
age by means of this limited set. Important for interpreting the capabilities
on hypothesis refinement is the fact that the noise induced by a wrong hy-
pothesis is not randomly distributed over the image, but structured near the
corresponding object. This noise, as well as similar colors in foreground and
background, is responsible for overlapping clusters in feature-space. Transfer-
ring this feature into a higher dimensional space by adding the position alone
does not solve this problem. Only the non-linear decision boundaries intro-
duced by local transformations in connection with the even higher flexibility
by using multiple prototypes for each class allow a better representation of
this heterogeneously structured data.

By optimizing the parameters to the most complex metrics adaptation we
found that the largest benefit of metrics adaptation can be obtained by focus-
ing the learning on this part. Adapting the prototypes very slowly allows us
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to separate the effects of prototype and metrics adaptation and to compare
the impact of several adaptive metrics by exclusively varying their complexity
and none of the remaining parameters (learning rate, number of prototypes).
Further we optimize the learning rate for GLVQ which allows us to compare
the effects of prototype adaptation vs. metrics adaptation. We observe that
increasing the complexity of the metrics successively increases the generaliza-
tion capabilities and compensates for the missing prototype adaptation. Also
metrics adaptation yields a clear advantage in particular on noisy supervised
information.

The capability of optimizing the foreground classifier on a stable set of proto-
types offers some interesting possibilities. In the experiments, the prototypes
have been randomly initialized. In particular, the learning of the network is im-
paired by a fast prototype adaptation on partially inconsistent training data.
Adapting only the metrics while keeping the prototypes stable yields the de-
sired generalization capabilities. This motivates for future work to introduce
a higher flexibility of the prototype adaptation by a separate learning method
while using metrics adaptation to refine the hypothesis. To achieve this and
to address the general model selection problem, the unsupervised Instanta-
neous Topological Map [21] offers the advantage to initialize the prototypes
and estimate their number for each class [22]. As the proposed method is not
constrained to a particular set of feature maps (e.g. RGB or other color spaces
like CIE Lab or HSV), further investigation will also address the introduction
of additional features (e.g. texture). The extension to a three class setup for
a direct integration of the skin color detection seems promising, too.
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segmentation, in: A. Gasteratos, M. Vincze, J. K. Tsotsos (Eds.), Computer
Vision Systems, Vol. 5008 of LNCS, Springer, 2008, pp. 66–75.

[13] J. J. Steil, M. Götting, H. Wersing, E. Körner, H. Ritter, Adaptive scene-
dependent filters for segmentation and online learning of visual objects,
Neurocomputing 70 (7-9) (2007) 1235–1246.

[14] H. Wersing, S. Kirstein, M. Götting, H. Brandl, M. Dunn, I. Mikhailova,
C. Goerick, J. J. Steil, H. Ritter, E. Körner, Online learning of objects in
a biologically motivated visual architecture, International Journal of Neural
Systems 17 (4) (2007) 219–230.

[15] A. Sato, K. Yamada, Generalized learning vector quantization, in: Advances in
Neural Information Processing Systems, Vol. 7, 1995, pp. 423–429.

[16] B. Hammer, T. Villmann, Generalized relevance learning vector quantization,
Neural Networks 15 (8-9) (2002) 1059–1068.

[17] P. Schneider, M. Biehl, B. Hammer, Relevance matrices in LVQ, in:
M. Verleysen (Ed.), Proceedings of the European Symposium on Artificial
Neural Networks (ESANN), d-side publications, 2007, pp. 37–42.

[18] J. Fritsch, S. Lang, M. Kleinehagenbrock, G. A. Fink, G. Sagerer, Improving
adaptive skin color segmentation by incorporating results from face detection,
in: 11th IEEE International Workshop on Robot and Human Interactive
Communication (ROMAN), IEEE, 2002, pp. 337–343.

[19] P. Schneider, M. Biehl, F.-M. Schleif, B. Hammer, Advanced metric adaptation
in Generalized LVQ for classification of mass spectrometry data, in: Proceedings
of 6th International Workshop on Self-Organizing Maps (WSOM), 2007,
published on CD ( Univ. Bielefeld 2007 ).

26



[20] M. Biehl, B. Hammer, P. Schneider, Matrix learning in learning vector
quantization, Technical Report, Insitute of Informatics, Clausthal University
of Technology (2006).

[21] J. Jockusch, H. Ritter, An instantaneous topological mapping model for
correlated stimuli, in: Proceedings of the International Joint Conference on
Neural Networks (IJCNN 99), 1999, p. 445.

[22] A. Denecke, Anwendung vektorbasierter Netzwerke zur adaptiven
Segmentierung von Bildfolgen, Master’s thesis, University of Bielefeld, Faculty
of Technology (2005).

[23] Y. Y. Boykov, M. P. Jolly, Interactive graph cuts for optimal boundary & region
segmentation of objects in n-d images, in: Eighth International Conference on
Computer Vision (ICCV’01), Vol. 1, 2001, pp. 105–112.

27


