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Abstract.

Inspired by recent findings on the similarities between the primary audi-
tory and visual cortex we propose a neural network for speech recognition
based on a hierarchical feedforward architecture for visual object recogni-
tion. When using a Gammatone filterbank for the spectral analysis the
resulting spectrograms of syllables can be interpreted as images. After a
preprocessing enhancing the formants in the speech signal and a length
normalization, the images can than be fed into the visual hierarchy. We
demonstrate the validity of our approach on the recognition of 25 differ-
ent monosyllabic words and compare the results to the Sphinx-4 speech
recognition system. Our hierarchical model achieves an improvement for
high noise levels.

1 Introduction

In recent years significant similarities between the primary auditory and visual
cortex have been revealed. Sur demonstrated in 1988 that, when their auditory
cortex was fed with visual input, newborn ferrets developed some visual capac-
ities in the auditory cortex [1]. More recently Shamma unveiled that the time-
frequency receptive fields in the primary auditory cortex of ferrets show strong
similarities to those of the visual cortex [2]. They are selective to modulations in
the time-frequency domain and have Gabor-like shapes. These receptive fields
have been modeled by Chin [3] and used for source separation [4] and speech
detection [5]. Gabor-like filters have been used extensively in object recognition
systems [6, 7].

The above findings motivated us to develop a system for speech recognition in
strong resemblance to a hierarchical object recognition architecture. It is based
on a feedforward neural network initially developed by Wersing and Körner for
object recognition [7]. Our aim is to overcome the limitations of conventional
speech recognition systems which substantially lack robustness. In our system
we use syllables as speech units. Syllables being the basic units for speech
production and showing less co-articulatory effects across their boundaries, we
believe that they are the adequate speech units for a biologically-inspired system.
Moreover the syllable segmentation required for the training of the system seems
biologically plausible for speech acquisition.
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Fig. 1: Overview of the system.

In the following sections the building blocks of the system are detailed (Fig.
1). We then compare our results to a state of the art speech recognition system
and conclude with a discussion of the obtained results.

2 Preprocessing of the spectrogram

The preprocessing aims at retaining only the phonetic information from the
speech signal and removing speaker and recording specific parts. The formants,
the resonances of the vocal tract, convey the main phonetic information. There-
fore their trajectories are enhanced in the spectrogram. The resulting spectro-
gram can then be fed as ”image” in the hierarchical recognition architecture.

The first step in the preprocessing is the application of a Gammatone filter-
bank which models the response of the basilar membrane in the human inner
ear. The signal’s sampling frequency is 16 kHz. The filterbank has 128 channels
ranging from 80Hz to 8 kHz. The spectrogram of the signal is calculated via
rectification and low-pass filtering of the Gammatone filterbank response (Fig.
2 left). To compensate the influence of the speech excitation signal, the high
frequencies are emphasized by +6dB per octave resulting in a flattened spectro-
gram (Fig. 2 center). Next, the formant frequencies are enhanced by filtering
along the channel axis using mexican-hat filters (Fig. 2 right). For the filtering
the size of the kernel is channel-dependent, varying from 90Hz for low frequen-
cies to 120Hz for high frequencies. This takes the logarithmic arrangement of
the center frequencies in the Gammatone filterbank into account.

Finally the length of the spectrogram is scaled using linear interpolation
so that all the spectrograms feeding the recognition hierarchy have the same
size. The sampling rate is then reduced to 100Hz. By doing so syllables of
different lengths are scaled to the same length. This makes the approximation
that a linear scaling can handle variations in the length of the same syllable
uttered at different speaking rates. However these are known to be non-linear.
In particular some parts of the signal, like vowels, are more affected by variation
in the speech rate than other parts, e.g. plosives. The generalization over
these variations is a main challenge in this recognition task. In order to also
assess the performance of the recognition hierarchy independent of this non-
linear scaling we also applied the Dynamic Time Warping (DTW) method on
the spectrograms. For the DTW we selected one single repetition of a syllable
and warped all the other repetitions to it. Afterwards the syllables were again
scaled to the same length and downsampled. At the output of the preprocessing
stage the spectrograms feeding the recognition hierarchy have all the size of
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Fig. 2: Overview of the preprocessing step for the word ”list” spoken by an american
woman. Left: response of the basilar membrane. Center: after a low-pass filtering over
the time and a preemphasis. Right the harmonic structure has been removed using a
filtering along the frequency axis.

128×128, i.e. 128 time frames over 128 frequency channels. Note, however, that
the application of DTW requires an hypothesis on the syllable to be known.
Thus cannot easily be applied in a real recognition setting. Further work will
focus at releasing this constraint.

3 The recognition hierarchy

The preprocessed two-dimensional spectrogram is from now on considered as an
image and feeds a feedforward architecture initially aimed at object recognition.
However, the structure of spectrograms differs from the structure of images taken
from objects and, keeping the overall layout of the network described in [7], the
receptive fields and the parameters of the neurons were retrained for the task of
syllable recognition. The recognition hierarchy is illustrated in Fig. 3.

3.1 Feature-Selective Layer

The first feature-matching stage consists of a linear receptive field summation, a
Winner-Take-Most (WTM) mechanism and a pooling. The preprocessed spec-
trogram is firstly filtered by eight different Gabor-like filters. The purpose of
these filters is to extract local features from the spectrogram. In [7] the receptive
fields were chosen as four first-order even Gabor filters. For syllable recognition,
8 receptive fields were learned using independent component analysis on 3500
randomly selected local patches of preprocessed spectrograms.

The WTM competition mechanism between features at the same position
introduces nonlinearity in the system. The pooling performs a downsampling
of the spectrogram by four in both time and frequency directions. The feature-
selective layer transforms the 128 × 128 original spectrogram to eight 32 × 32
spectrogram feature maps.

3.2 Combination Layer

The goal of the combination layer is to detect relevant local feature combinations
in the first layer. Similar to the previous layer it consists of a linear receptive field
summation, a Winner-Take-Most mechanism and a pooling. These combination
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Fig. 3: The system is based on a feedforward architecture with weight-sharing and a
succession of feature sensitive matching and pooling stages. It comprises three stages
arranged in a processing hierarchy.

cells are learned using the non-negative sparse coding method (NNSC) as in [7],
however no invariance transformations have been implemented at this stage.

Similarly to Non-Negative Matrix Factorization (NMF), the NNSC method
decomposes data vectors Ip into linear combinations (with non-negative weights
s

p

i ) of non-negative features wi by minimizing the following cost function:
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NNSC differs from NMF by the presence of a sparsity enforcing term in
the cost function, controlled by the parameter β, which aims at limiting the
number of non-zero coefficients required for the reconstruction. Consequently, if
a feature appears often in the data, it will be learned, even if it can be obtained by
a combination of two or more other features. The NNSC is therefore expected
to learn complex and global features appearing in the data. An exhaustive
description of this method can be found in [8].

For the proposed syllable recognition system 50 complex features wi have
been learned out of image patches extracted from the output of the feature-
selective layer. At last, a WTM competition and a pooling are applied on the
50 neurons and their size is reduced to 16 × 16.

3.3 Syllable-Tuned Units

In the last stage of the architecture, linear discriminant classifiers are learned
based on the output of the combination layer. A classical gradient descent is
used for this supervised learning including an early stopping mechanism to avoid
overfitting. The obtained classifiers are called Syllable-Tuned Units (STUs) in
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Fig. 4: Comparison of the Word Error Rates (WER) between the proposed system
and Sphinx-4 in the presence of babble noise. Left: Recognition performance at the
different layers of the hierarchy. Right: Recognition performance when Dynamic Time
Warping is used to scale the signals.

reference to the View-Tuned Units used in [6] and [7].

4 Recognition performances

In order to evaluate the performance of the system, a database was built using
25 very frequent monosyllabic words extracted from the DARPA Resource Man-
agement (RM) database. Isolated monosyllabic words have been chosen in lack
of a syllable segmented database with sufficient size. The words were segmented
using forced-alignment. For each of the monosyllabic words we selected 140 oc-
currences from 12 different speakers (6 males and 6 females) from the speaker
dependent database part. 70 repetitions of each word were used for training, 20
for the early stopping validation of the Syllable-Tuned Units and 50 for testing.

The parameters of the WTM competitions and poolings were optimized using
a raster method. Following the notations introduced in [7], γ1 = 0.85, θ1 = 3,
σ1 = 2.5 for the first layer and γ2 = 0.8, θ2 = 1.1, σ2 = 2 for the second layer.

The performance of our system has been compared to the Sphinx-4 speech
recognition system, an open source speech recognition system well performing on
the whole RM corpus [9]. The Hidden Markov Models for Sphinx were trained
only on the segmented monosyllabic words. The robustness towards noise has
been investigated adding babble noise to the test database at different signal
to noise ratios (SNR) while training was still performed on clean data. Fig. 4
summarizes the performance of both Sphinx-4 and the proposed system.

To measure the baseline similarities of the image ensemble, we also give the
performance of a nearest neighbor classifier (NN) that matches the test data
against all available training ”views”. An exhaustive storage of examples is,
however, not a viable model for auditory classification. With clean signals, the
STUs show better generalization capabilities and perform better than a nearest
neighbor on the input layer (Fig. 4 left). For noisy signals, the STUs are slightly
worse, however, at a strong reduction of representational complexity.

With a simple linear time scaling our system only outperforms Sphinx-4 for
low SNRs, but, when Dynamic Time Warping is used to proper scale the signals,
the STUs improve the already good performances obtained directly after the
preprocessing in all the cases and outperforms Sphinx-4 even for clean signals



(Fig. 4 right). With clean data Sphinx obtains a 3.1% Word Error Rate (WER),
our system with the DTW achieves 1.5% WER with the DTW and 6.2% without
the DTW.

5 Discussion

In this paper we presented a novel approach to speech recognition interpreting
spectrograms as images and deploying a hierarchical object recognition system.
We could show that such a system performs better than a state of the art system
in noisy conditions even when we applied a simplistic linear scaling of the input
for time alignment. When we aligned the current utterance with the DTW to
a known representation in an optimal non-linear way we obtained better than
state of the art results for all cases tested.

From this we conclude that our architecture and the underlying features
are more robust against noise than the commonly used mel frequency cepstral
coefficients (MFCCs). This robustness in noise is very important for real world
scenarios which are usually characterized by significant background noise and
variations in the recording conditions. A similar robustness was also observed
for visual recognition in clutter scenes [7].

Our comparison to using the DTW shows that the performance of the model
could be significantly improved by better temporal alignment. We therefore
consider methods for improving this alignment as interesting future research
directions.
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