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Abstract

In this paper we propose a feedforward neural network for syl-
lable recognition. The core of the recognition system is based
on a hierarchical architecture initially developed for visual ob-
ject recognition. We show that, given the similarities between
the primary auditory and visual cortexes, such a system can suc-
cessfully be used for speech recognition. Syllables are used as
basic units for the recognition. Their spectrograms, computed
using a Gammatone filterbank, are interpreted as images and
subsequently feed into the neural network after a preprocessing
step that enhances the formant frequencies and normalizes the
length of the syllables. The performance of our system has been
analyzed on the recognition of 25 different monosyllabic words.
The parameters of the architecture have been optimized using an
evolutionary strategy. Compared to the Sphinx-4 speech recog-
nition system, our system achieves better robustness and gener-
alization capabilities in noisy conditions.

1. Introduction
The aim of the proposed speech recognition architecture is to
overcome the limitations of conventional, HMM-based, sys-
tems which substantially lack robustness against noise.

It has recently been shown that the time-frequency recep-
tive fields in the primary auditory cortex of ferrets have strong
similarities to those of the visual cortex [1]. They are selective
to modulations in the time-frequency domain and have Gabor-
like shapes. A mathematical model of these receptive fields was
given in [2] and has already been used for source separation [3]
and speech detection [4]. As Gabor-like filters are extensively
used in object recognition systems [5, 6], we decided to develop
a system for speech recognition by adapting the feedforward
neural network initially developed by Wersing and Körner for
object recognition [6].

Syllables are the basic units for speech production and
show less co-articulatory effects across their boundaries. There-
fore, we believe that they are the adequate speech units for our
biologically-inspired system. Moreover, the syllable segmenta-
tion required for the training of the system seems biologically
plausible for speech acquisition.

The building blocks of the system (Fig. 1) are detailed in the
following sections. After explaining how we optimized the pa-
rameters of the architecture using an evolutionary strategy, we
will compare our results to a state of the art speech recognition
system and conclude with a discussion of the obtained results.

2. Preprocessing of the spectrogram
The preprocessing mainly aims at transforming a previously
segmented speech signal, corresponding to one syllable, into
an ”image” that is fed into the hierarchical recognition architec-
ture. A two-dimensional representation of a signal is obtained
by computing its spectrogram. In addition to the phonetic in-
formation, the speech signal also contains many speaker and
recording specific information. As the phonetic information is
chiefly conveyed by the formant trajectories, we enhance them
in the spectrograms prior to recognition.

We used a Gammatone filterbank to compute the spectro-
gram of the signal. It models the response of the basilar mem-
brane in the human inner ear and is, therefore, adapted to a
biology-inspired system. The signal’s sampling frequency is
16 kHz. The filterbank has 128 channels ranging from 80Hz to
8 kHz. The left part of Fig. 2 shows the response of the Gam-
matone filterbank after rectification and low-pass filtering. To
compensate for the influence of the speech excitation signal, the
high frequencies are emphasized by +6 dB per octave resulting
in a flattened spectrogram (Fig. 2 center). Next, the formant
frequencies are enhanced by filtering along the channel axis us-
ing mexican-hat filters (Fig. 2 right), only the positive values
are kept. For the filtering the size of the kernel is channel-
dependent, varying from 90Hz for low frequencies to 120Hz
for high frequencies. This takes the logarithmic arrangement
of the center frequencies in the Gammatone filterbank into ac-
count.

Finally, the length of the spectrogram is scaled using linear
interpolation so that all the spectrograms feeding the recogni-
tion hierarchy have the same size. The sampling rate is then
reduced to 100Hz. By doing so syllables of different lengths
are scaled to the same length. This relies on the assumption that
a linear scaling can handle variations in the length of the same
syllable uttered at different speaking rates. However, these are
known to be non-linear. In particular, some parts of the signal,
like vowels, are more affected by variation in the speech rate
than other parts, e.g. plosives. The generalization over these
variations is a main challenge in the recognition task. In order
to also assess the performance of the recognition hierarchy in-
dependent of this non-linear scaling, we applied the Dynamic
Time Warping (DTW) method to the spectrograms. For each
syllable, we selected one single repetition as reference template
and aligned the other by DTW.

Afterwards the syllables were again scaled to the same
length and downsampled. At the output of the preprocessing
stage the spectrograms feeding the recognition hierarchy have
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Figure 1: Overview of the system.
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Figure 2: Overview of the preprocessing step for the word ”list” spoken by a female American speaker. The 128 channels logarithmi-
cally span the frequency range from 80Hz to 8 kHz. Left: Response of the basilar membrane. Center: After a low-pass filtering over
time and a preemphasis has been applied. Right: The harmonic structure has been removed using a filtering along the frequency axis.

all the size of 128 × 128, i.e. 128 time frames over 128 fre-
quency channels. Note, however, that the application of DTW
requires that a hypothesis for the syllable is available. Thus, it
cannot easily be applied to a real recognition test.

3. The recognition hierarchy
The preprocessed two-dimensional spectrogram is from now on
considered to be an image and feeds into a feedforward archi-
tecture initially aimed at visual object recognition. However,
the structure of spectrograms differs from the structure of im-
ages taken from objects and, while keeping the overall layout
of the network described in [6], the receptive fields and the pa-
rameters of the neurons were retrained for the task of syllable
recognition. The recognition hierarchy is illustrated in Fig. 3.

3.1. Feature-Selective Layer

The first feature-matching stage consists of a linear receptive
field summation, a Winner-Take-Most (WTM) and a pooling
mechanism. The preprocessed spectrogram is first filtered by
eight different Gabor-like filters. The purpose of these filters is
to extract local features from the spectrogram. In [6] the recep-
tive fields were chosen as four first-order even Gabor filters. For
syllable recognition, 8 receptive fields were learned using inde-
pendent component analysis on 3500 randomly selected local
patches of preprocessed spectrograms.

The WTM competition mechanism between features at the
same position introduces nonlinearity into the system. The
value rl(t, f) of the spectrogram in the lth neuron of the
feature-selective layer after the WTM competition is given at
the position (t, f) by the following equation:

rl(t, f) =

(
0, if ql(t,f)

M(t,f)
< γ1 or M(t, f) = 0

ql(t,f)−γ1M(t,f)
1−γ1

, else
(1)

where ql(t, f) is the value of the spectrogram before the WTM
competition, M(t, f) = maxk qk(t, f) the maximal value at
position (t, f) over the eight neurons and 0 ≤ γ1 ≤ 1 is a pa-
rameter controlling the strength of the competition. A threshold
θ1 is applied to the activity rl(t, f). This threshold is common
for all the neurons in the layer. The pooling performs a down-

sampling of the spectrogram by four in both time and frequency
direction. It is done by a Gaussian receptive field with width
σ1. The feature-selective layer transforms the 128× 128 origi-
nal spectrogram to eight 32× 32 spectrogram feature maps.

3.2. Combination Layer

The goal of the combination layer is to detect relevant local fea-
ture combinations in the first layer. Similar to the previous layer
it consists of a linear receptive field summation, a Winner-Take-
Most and a pooling mechanism. These combination cells are
learned using the non-negative sparse coding method (NNSC)
as in [6], however no invariance transformations have been im-
plemented at this stage. Similarly to Non-Negative Matrix Fac-
torization (NMF), the NNSC method decomposes data vectors
Ip into linear combinations (with non-negative weights sp

i )
of non-negative features wi by minimizing the following cost
function:

E =
X

p

‖Ip −
X

i

sp
i wi‖2 + β

X
p

X
i

|sp
i |.

NNSC differs from NMF by the presence of a sparsity en-
forcing term in the cost function, controlled by the parameter β,
which aims at limiting the number of non-zero coefficients re-
quired for the reconstruction. Consequently, if a feature appears
often in the data, it will be learned, even if it can be obtained by
a combination of two or more other features. Therefore, the
NNSC is expected to learn complex and global features appear-
ing in the data. An comprehensive description of this method
can be found in [7].

For the proposed syllable recognition system 50 complex
features wi have been learned from image patches extracted
from the output of the feature-selective layer. At last, a WTM
competition (γ2, θ2) and pooling (σ2) are applied to the 50 neu-
rons and their size is reduced to 16× 16.

3.3. Syllable-Tuned Units

In the last stage of the architecture, linear discriminant classi-
fiers are learned based on the output of the combination layer.
A classical gradient descent is used for this supervised learn-
ing including an early stopping mechanism to avoid overfitting.
The obtained classifiers are called Syllable-Tuned Units (STUs)
in reference to the View-Tuned Units used in [5] and [6].
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Figure 3: The system is based on a feedforward architecture with weight-sharing and a succession of feature sensitive matching and
pooling stages. It comprises three stages arranged in a processing hierarchy.

4. Optimization of the architecture
The performance of the recognition highly depends on the
choice of the non-linearities present in the hidden layers of the
architecture, i.e. the coefficients and the thresholds of the WTM
competitions (Eq. 1) and the width of the poolings. The six pa-
rameters (γ1,2, θ1,2 and σ1,2) have to be tuned simultaneously
and the receptive field of the combination layer as well as the
Syllable-Tuned Units have to be learned at each iteration, simi-
larly to the method used in [8].

Practically, this tuning of the model parameter set has been
realized within an evolutionary optimization aiming at maxi-
mizing the recognition performance in a clean speech scenario.
Due to the stochastic components and the use of a population
of solutions evolutionary algorithms need more quality evalu-
ations than other algorithms, but on the other hand they allow
for a global search and are able to overcome local optima. In
the present context, an evolutionary strategy with global step
size adaptation (GSA-ES) has been applied relying on similar
ranges of the object variables. Initially, standard values, see
[9, 10], have been used and then tuned in some test experiments
to this specific task. Based on these experiments we have cho-
sen a population size of 32 individuals. Each generation, the
two individuals with the best performance have been chosen
as parents for the next generation. The optimization parame-
ters have been scaled and the initial global step size was set to
0.003.

Although the evolutionary optimization used a clean sce-
nario for the performance evaluation of each individual we will
show that the optimized parameters are robust with respect to
noisy signals.

5. Recognition performance
In order to evaluate the performance of the system, a database
was built using 25 very frequent monosyllabic words extracted
from the DARPA Resource Management (RM) database. Iso-
lated monosyllabic words have been chosen in lack of a syllable
segmented database with sufficient size. The words were seg-
mented using forced-alignment. For each of the monosyllabic
words we selected 140 occurrences from 12 different speakers
(6 males and 6 females) from the speaker dependent part of the
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Figure 4: Improvement of the recognition performance using
an evolutionary algorithm to tune the parameters, compared to
manual tuning one layer after the other. The spectrograms are
scaled using a linear interpolation.

database. 70 repetitions of each word were used for training,
20 for the early stopping validation of the Syllable-Tuned Units
and 50 for testing.

The performance of our system has been compared to the
Sphinx-4 speech recognition system, an open source speech
recognition system that performs well on the whole RM corpus
[11]. The Hidden Markov Models for Sphinx were trained only
on the segmented monosyllabic words. The robustness towards
noise has been investigated by adding babble noise to the test
database at different signal to noise ratios (SNR) while training
was still performed on clean data.

Figure 4 illustrates the gain in performance obtained us-
ing the evolutionary algorithm, compared to a manual tuning
of the parameters one layer after the other. Following the no-
tation introduced in [6], the optimal parameters given by the
evolution strategy are γ1 = 0.82, θ1 = 2.66, σ1 = 3.16 for
the first layer and γ2 = 0.84, θ2 = 2.78, σ2 = 1.87 for the
second layer, when linear interpolation is used to scale the sig-
nals. Using a DTW, the optimal set of parameters is γ1 = 0.99,
θ1 = 0.32, σ1 = 4 for the first layer and γ2 = 0.89, θ2 = 0.99,
σ2 = 1.93. As can be seen, the performance increased due to
the optimization at all SNR levels. With clean speech we ob-
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Figure 5: Comparison of the Word Error Rates (WER) between the proposed system and Sphinx-4 in the presence of babble noise.
Left: The spectrograms are scaled using a linear interpolation. Comparison between Sphinx-4, a nearest neighbor classifier on the
preprocessed spectrograms and the proposed hierarchy. Right: Improvement of the performance when a Dynamic Time Warping
method is used to scale the signals.

serve an improvement from 6.72% to 5.44% (19% relative).
The largest improvement was achieved at 15 dB SNR from
30.72% to 17.04% (44.5% relative).

Fig. 5 summarizes the performance of both Sphinx-4 and
the proposed system. To measure the baseline similarities of
the image ensemble, we also give the performance of a nearest
neighbor classifier (NN) that matches the test data against all
available training ”views”. An exhaustive storage of examples
is, however, not a viable model for auditory classification. With
clean signals, the STUs show better generalization capabilities
and perform better than a nearest neighbor on the input layer
(Fig. 5 left). For noisy signals, the STUs are slightly worse,
however, at a strong reduction of representational complexity.

With a simple linear time scaling our system only outper-
forms Sphinx-4 in noisy conditions but shows inferior perfor-
mance on clean data. When Dynamic Time Warping is used to
properly scale the signals, the STUs improve the already good
performance obtained directly after the preprocessing in all the
cases and our system outperforms Sphinx-4 even for clean sig-
nals (Fig. 5 right). With clean data Sphinx obtains a 3.1% Word
Error Rate (WER), our system achieves 0.9% WER with the
DTW and 5.4% without the DTW.

6. Discussion
In this paper, we presented a novel approach to speech recog-
nition interpreting spectrograms as images and deploying a hi-
erarchical object recognition system. To optimize the main free
parameters of the system, we used an evolutionary algorithm
which allows us to quickly change the system without the need
for manual parameter tuning.

We could show that our system performs better than a state
of the art system in noisy conditions even when we applied a
simplistic linear scaling of the input for time alignment. When
we aligned the current utterance with the DTW to a known rep-
resentation in an optimal non-linear way, we obtained better
than state of the art results for all cases tested. However, in its
current form the DTW makes use of information not available
in real situations.

From this we conclude that our architecture and the under-
lying features are more robust against noise than the commonly
used mel frequency cepstral coefficients (MFCCs). This robust-
ness against noise is very important for real world scenarios
which are usually characterized by significant background noise
and variations in the recording conditions. A similar robustness

was also observed for visual recognition in clutter scenes [6].
Our comparison between the linear scaling and the DTW

shows that the performance of the model could be significantly
improved by better temporal alignment. We therefore consider
methods for improving this alignment as interesting future re-
search directions.
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