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Abstract. A cognitive visual system is generally intended to work ro-
bustly under varying environmental conditions, adapt to a broad range
of unforeseen changes, and even exhibit prospective behavior like sys-
tematically anticipating possible visual events. These properties are un-
questionably out of reach of currently available solutions. To analyze
the reasons underlying this failure, in this paper we develop the idea of
a vision system that flexibly controls the order and the accessibility of
visual processes during operation. Vision is hereby understood as the dy-
namic process of selective adaptation of visual parameters and modules
as a function of underlying goals or intentions. This perspective requires
a specific architectural organization, since vision is then a continuous
balance between the sensory stimulation and internally generated infor-
mation. Furthermore, the consideration of intrinsic resource limitations
and their organization by means of an appropriate control substrate be-
come a centerpiece for the creation of truly cognitive vision systems.
We outline the main concepts that are required for the development of
such systems, and discuss modern approaches to a few selected vision
subproblems like image segmentation, item tracking and visual object
classification from the perspective of their integration and recruitment
into a cognitive vision system.

1 Introduction

1.1 Motivation: The Quest for a Cognitive Vision System

Imagine a complex visual scene, like given by a working environment in a factory
or a traffic situation, where several objects have to be analyzed and kept in mind
for a meaningful, visually-guided way of operation. What happens in the mind of
humans when interacting with such a scene is still largely a mystery. A plethora
of questions immediately arises on how the brain copes with the large potential
complexity of visual sensory analysis of complex scenes, in particular when they
are not static (which is the case in nearly all situations in a real environment, with
most exceptions being artificially generated like when observing a photograph).
With potential complexity we denote the combinatorial way of choices that the
brain has to deal with for the visual analysis: It e.g. has to decide on which visual
properties to concentrate (dynamic properties like motion-induced displacements
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and appearance changes, static properties like characteristic patterns, colors,
shadings, textures, 3D aspects like depth or surface curvature, to name only a
few), how to tune the system on these properties (usually the visual properties
that the brain has access to are not capable of analyzing a large sensory spectrum
in full detail, instead, sensory analysis has to focus on the relevant sensory ranges
by a dynamic adaptation process), how to extract single parts and objects from
the scene (deciding on what makes up the most relevant aspects on a scene), how
to analyze these parts during the time-course of the scene analysis, how to detect
and analyze properties that depend on the combined treatment of several parts or
objects (like e.g. relational properties where different parts have to be considered
as a conjunction, as it is the case when a distance or a relative position of parts
is of interest, or the appearance of two similar objects is analyzed in detail for
discrimination), and finally, how to combine the results with each other resp. how
to bootstrap choices made in a particular domain of the visual analysis using
results gained in another domain. This list of choices that a human visual system
has to perform is of course non-exhaustive and could be extensively continued;
but we can already notice the diversity and the complexity of operations that is
involved in such a process. In short, multiple specialized analyses occur during
vision, which have to be tuned, adapted, and selectively integrated over time.

To the contrary, when we speak of vision, we often only denote a particu-
lar, isolated aspect, like e.g. visual object classification, i.e., the attribution of a
class or category label to a selected portion of the visual input. With the pre-
vious list in mind, we are able to understand that vision is a complex process
within which object classification or any other specialized visual analysis is only
one minor component among many. The main reason behind the complexity of
visual operations is an inherent resource limitation. Now, given that many of
the specialized analyses can probably be carried out in parallel, and taking into
consideration that the brain is a device with a myriad of elements working con-
currently, particularly specialized for parallel processing, why should there be
any resource limitation at all? The reason is that the space of possible interac-
tions among several parts and objects in a scene is too large. The combinatorial
complexity explodes when visual analyses involve the integration of several cues
and objects. In addition, several resources for visual analysis have to be recruited
and adapted exclusively for a single visual subtask rendering them inaccessible
for others, as can be easily understood in the case of the eyes, which during
gazing concentrate on a particular portion of a scene and even on a particular
depth. Even though in cases of higher visual processing that are further away
from the sensory periphery the case of exclusive resource allocation is not as
evident as for the eyes, the logical considerations are analogous. A case where
this becomes evident is for objects defined by conjunctions of visual properties
(e.g. form and color), which require attentional focusing for correct recognition,
a phenomenon that has been hypothesized to work in analogy to an internal
”zoom lens” [19, 18] which would allow the preferential but exclusive processing
of only one object at a time. Besides some visual preprocessing steps like the
extraction of local edges, patterns or velocities, which can be carried out in par-
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allel over the entire visual field and which serve as a common sensorial basis,
most subsequent visual processing steps suffer from similar resource limitations:
They have to be specially tuned to a particular purpose, object or visual task
so that they are exclusively specific, meaning that they cannot be used for the
inspection of e.g. another object at the same time since this would require the
same processing substrate. In other words, they have to be controlled by some
higher level instances and the control strategies of specialized visual processes
have to be orchestrated depending on higher level demands, as provided by a
broader knowledge context or information about a task that a system has to
perform.

1.2 Access to Visual Memory

A further important factor that introduces a resource constraint is visual mem-
ory. Although this is a term with a broad range of meanings, here we denote it
as the capacity to retain information about aspects of a visual scene that can
be recalled at later moments or used to reinspect parts of the scene. We can
retain information about form, visual properties like color, texture, shading and
reflectance, as well as positions and positional relations of visual objects. On a
scene level, we can recall the experience of a particular scene impression, as well
as the overall spatial arrangement and identity of visual objects. In the following,
we use the term visual memory in the sense of a working memory for the current
visual scenery 1.

While it is undisputed that selected results of visual analysis subprocesses
are stored in visual memory, there is a diverging debate about how much infor-
mation can be stored, what exactly is stored and to which degree of accuracy.
The last point refers e.g. to the dispute whether the brain attempts a faithful
internal reconstruction of the physical world that it inspects through its visual
senses. The alternatives are that visual memory may be trying to construct
an as-complete-as possible internal representation of the world as opposed to
being partial and selective, in the sense that it only stores information about
specific objects that are of interest at a given moment. Similarly, it is argued
that the brain targets at an accurate representation of the true physical causes
of a sensory input (e.g. representing the world as an accurate geometric envi-
ronment with physical objects) vs. representing the world only up to the level
of description that suffices for a given task or behavior in a situative context.
The tendency is towards a partial and selective representation at a suitable level
of description that is adjustable to the situation, with the main arguments sup-
ported by change blindness (the fact that changes of visual properties or parts of
a scene are not noticed if they are not attended, e.g. [41,6]) and memory capac-
ity measurements (many psychophysical experiments suggest that the capacity

1 A metaphor suggestive for the type of information that is stored in visual working
memory is that of a theatre stage as introduced by [5], containing a context, a
scenario, actors and objects; in addition to spotlights that highlight parts of the
scene.
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of visual short term memory is extremely small, about 4-5 items, see e.g. [45,
15], but this refers particularly to a very specific type of iconic memory). We
will briefly return to this topic in section 6; the important bottomline here is
that visual memory constitutes a resource bottleneck for visual processing.

Why should this be so? If we regard visual memory as more than a mere buffer
for storing n memorized iconic items, but rather a sketchpad where information
from the specialized visual analyses can converge, then it is the substrate where
selective, object- and situation-specific integration of information occurs. As ar-
gued in the last section, such an integration most likely involves selective tuning
of the underlying visual subprocesses, under consideration of resource constraints
like exclusive recruitment and competition. Specific integration would therefore
involve an active, selective choice of the system to inspect certain visual proper-
ties, based on the knowledge that the visual memory is able to provide. At the
same time, such a selective choice would imply that an order for accessing visual
subprocesses in terms of prioritization schemes is imposed (some visual objects
or attributes are identified as being important to be inspected before others),
which on its own implies that the proper sequentialization has to be cared for.
Such a control scheme would require a large amount of prior knowledge about
the visual subprocesses themselves, i.e., it would require knowledge of the system
about its own sensory apparatus and its limitations.

The picture that emerges is that of a generalized visual memory working
as the central executive for the control instances responsible for an active ac-
quisition of visual information. It would be a visuospatial sketchpad (see [7]
for an early proposal of a visuospatial sketchpad, however quite different from
the specific one proposed here) where visual events and measurements are an-
notated, hypotheses about causes relating visual events are created (eventually
leading to notions of rudimentary objects or interaction elements), corroborated
and refuted, the entire visual presence (the knowledge about the current visual
situation) is kept up-to-date and from which the processes for the underlying
visual analyses are controlled. At the same time, such a sketchpad would be the
ideal candidate for the integration of, and coupling with, information from other
senses.

1.3 Overview

In this paper, we will put forward the idea that the combinatorial complexity of
controlling several visual processes should be at the center of considerations when
trying to understand a cognitive vision system. We will term this the ”control
view of cognitive vision”, and, in the following, mean this view when we speak
about ”cognitive vision”, if not especially denoted otherwise 2. This is a view
that differs considerably from most standard approaches to vision 2, and that
has a number of deducible consequences that we should focus on. First of all, we

2 Although the opinion of different authors on what cognitive vision is differ substan-
tially in the literature.
3 However, other work in comparable directions exists, see e.g. [9, 35].
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can ask which high-level representational framework does allow best for a vision
system operating in the described conditions. Second, we can ask which low level
visual sensory subprocesses are a prerequisite for such a system, especially when
operation in a sufficiently complex visual environment is demanded. One of the
many pitfalls of modern vision systems is that the need for control processes
does not become apparent if the conditions are too restrained or specific. Third,
we can ask what particular characteristics should visual subprocesses have that
operate in a cognitive vision system as described. How do they specialize to
enable control, and how general should the results be that they deliver to other
parts of the system? Forth, we can ask who mediates the control processes.
This question has tight interactions with the quest for understanding one of the
key ingredients for the power of visual processing in the human brain, wvisual
attention. Fifth, we have to ask about the intrinsic properties of the control
process (or, rather, the plural control processes) itself. What type of convergence
of visual information does it need, where and how (and when!) is this information
represented, what does the control process optimize, how does it subdivide and
delegate control to visual subprocesses and tune them accordingly, and how does
it finally evaluate and integrate the results of a visual analysis. In its majority,
these questions have rarely been approached yet by current vision research (at
least under the perspective of an integrated cognitive vision system), and the
scientific research is not able to give a concluding answer to any of them at this
point 4. Nevertheless, they provide a starting point for a paradigm shift in the
research of cognitive vision systems.

In the following sections, we will proceed step-by-step to develop the idea of
a control-based cognitive vision system. In a first section, we will give a brief
account on current paradigms in vision research, shortly reviewing the main
characteristics of the different approaches and trying to position the control
view of visual processing within these ideas. We will see that the control view
describes a regime that is not covered by the two prominent (admittedly ex-
treme) paradigms of current vision - cognitivist and emergent - , rather, it can
be identified as a third paradigm that poses important questions on its own right
that are not explicitly covered otherwise. In addition, we will explain how the
control view is related to many open themes reoccurring in visual research, as
there are: Active vision, grounding, anchoring, binding, visual anticipation and
prediction. In a second, more extensive section, we exemplarily zoom in on a
few specialized visual processing ”subsystems” that current vision research has
identified as key ingredients of a general vision architecture. We will review the
properties of such systems, concentrating on them from the perspective of the
control view of cognitive vision. These subsystems would represent the (on one
hand) fixed basic structure, since it determines which visual properties the sys-
tem can in principle analyze; on the other hand they would have to be sufficiently

4 In particular, the last question is central since it somehow codetermines the previous
ones; i.e., we need an understanding of the nature of the control processes in vision to
be able to design and understand better visual subprocesses dealing with specialized
analyses.
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|:| Behavior layer
|:| High-level scene interpretation

|:| Geometrical scene description
|:| Visual objects

|:| Combined features
|:| Low level features
|:| Preprocessing

Fig. 1. A typical architecture of a cognitivist vision system. A cascade of representation
layers serves to construct increasingly amodal abstractions that describe the objective
external world. At the highest level, this is used to achieve intelligent behavior. Details
of the representation have to be foreseen by a human designer.

flexible to be able to be recruited and tuned by control processes. Being an open
topic, a short discussion about the type of required representation for cognitive
vision and the interaction of this representation with the visual subprocesses
concludes the paper.

2 Challenges for Cognitive Vision Systems

In the broadest sense, the term cognitive vision is used for the current state
of research dealing with vision systems that incorporate a rich internal state
representing accumulated visual information and which operate flexibly even
under unforeseen changes of the visual environment. It has been introduced to
separate these from previous attempts of visual systems that often were tailored
to specific visual contexts and which exhibited little robustness and adaptivity.

2.1 The Range from Cognitivist to Emergent Vision System

The two main paradigms in cognitive vision are the cognitivist and the emer-
gent systems approaches. The cognitivist approaches assume that the target of
such systems are the faithful reconstruction, by terms of an appropriate explicit
representation, of the external world from visual data. The representation is
centered around the requirement that it should describe the objective external
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world [49] as accurately as possible, including its geometrical and physical prop-
erties (already Marr stated that the goal of a computer vision system should be
a “description of the three-dimensional world in terms of surfaces and objects
present and their physical properties and spatial relationships” [32]).The pro-
cess to achieve this is an abstraction chain, which starts at the perceptual level,
abstracts from there using appropriate symbol sets, and reasons symbolically
with the gained representations in order to achieve an intelligent behavior. For
the cognitivist approach, the main job of a cognitive vision system is to pro-
vide the symbolic representation which then can be operated upon with more
general logical frameworks. Since all vision systems operating in real world have
to start at a quantitative level based on noisy and uncertain data, modern cog-
nitivist systems are turning towards subsymbolic preprocessing levels based on
probabilistic, machine learning, or connectionist techniques.

Figure 1 shows an example of a cognitivist system. We can see a cascade
of stages that extracts increasingly complex components of a scene, ranging
from signal to symbolic representations through several layers of processing.
Each stage involves computations that abstract and generalize on the preceding
stage. At the final stage, the representation is used to reason about high-level
concepts such as spatial object configurations, and to generate behavior. The
information flow between the layers may be bidirectional, expressing that there
can be a modulatory influence from higher levels to improve the performance of
lower level processing stages.

A major critique of cognitivist approaches is that they heavily depend on the
designer to find a representation that is suited to the solution of a visual prob-
lem, and that the representational structures gained from human idealization
exhibit a bias that is detrimental. In addition, purely symbolic representations
and rule-based reasoning on such representations has proven to be insufficient to
capture the variability of real-world sensory perception. Probabilistic and learn-
ing frameworks are being proposed as alternatives to this problem [36], relaxing
the demand for an explicit representation and adapting a systems structure to
empirically provided constraints.

The second paradigm is the emergent systems view. This view emphasizes
that the system is embedded in a cognitive agent whose capabilities are deter-
mined and have been developed in interaction with an environment. The agent
operates within the environment and constructs its representation of the world
as a result of this operation [33]. This is enabled by a continuous and real-time
interaction of the system with the environment, and leads to systems that can
cope well with the specific environmental conditions and the variability of the
system-environment interaction.

Figure 2 shows a sketch of an emergent vision system. The agent preprocesses
the visual data and then passes it on to a flexible structure where the proper
representations should emerge during system-environment interaction and co-
determination. The importance here is on the coupling between the system and
the environment through the behaviors of the agent. In the emergent paradigm,
the purpose of vision is simply to provide the appropriate sensory data to enable
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sensible actions. The richness of the developed vision system is to a large extent
determined by the richness of the action interface. The work of the designer is to
choose the developmental structure, the complexity of the environment (which
may vary over time) and the action interface.

Emergent vision systems are usually implemented using parallel, real-time
and distributed architectures. Dynamical systems models provide characteristics
that allow, in principle, the development of cognitive visual functions, achieved
by means of consequent self-organization. The vision system as such is a sort of
black box, which adjusts its dynamics so as to achieve a desired behavior. The
representation of the visual information is implicit, in the sense that there are
no a-priori identifiable states or nodes representing entities of the visual world
like objects, etc. In addition, no symbolic representations (especially human-
designed) are required. Cognitive phenomena like visual memory should emerge
from the developmental process; in addition, identifying these phenomena is a
matter of interpretation of the systems dynamics by an external observer. The
accuracy and completeness of the visual representation of an emergent vision
system is optimally adapted to its interaction repertoire, meaning the it is just
sufficient to enable the system to do certain things.

In practice, although systems could be developed that exhibit surprisingly
non-trivial behaviors that would otherwise require considerable designing efforts
(see e.g. [21] and [48] for a review), it remains to be shown that emergent visual
systems can develop higher-order cognitive capabilities. Solutions evolved by
emergent systems tend to specialize to a particular visual context (which often
is representationally poor or at least does not require perceptually more abstract
representations) and have problems to scale up and generalize to other domains.
It is again the burden of the designer, this time not to choose the detailed rep-
resentational structure but the teaching signals, the environmental richness and
the necessary learning mechanisms. Furthermore, the capabilities to generalize
are often already given by an appropriate preprocessing stage, which also has to
be provided by the designer.

2.2 Grounding and Binding

In a symbolic cognitivist approach, an internal representation of the world from
sensory signals is gained by increasing abstractions that could allow for a decou-
pling from the systems perceptual apparatus (they become amodal [8]). If this
were so in a rigorous sense, representational parts of the system could be isolated
that have no relation at all with the external world. The question then arises how
these parts can have semantic content on their own right, i.e., a meaning that
refers to real world entities and behaviors. In a more relaxed consideration, one
could say that representations at higher processing levels of a cognitivist system
loose the information about the original sensory objects that created them. This
is called the so-called symbol grounding problem.

There is a very close analogy to a second hypothetical problem of cogni-
tive science, the binding problem. Interestingly, this second problem is usually
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| Interaction with the environment

Behavior action output selection

Self-organized representation

Preprocessing

> Input from visual sensors

Environment

Fig. 2. The emergent systems view. In this case, the system is embedded into an
environment and the representations self-organize by continuous interaction with the
environment. No symbolic or human-designed representations are necessary, the expec-
tation is that cognitive phenomena arise implicitly from the developmental process.

motivated by the connectionist and neural network background and not by cog-
nitivist approaches. It denotes the loss of reference to the originally constituting
cues as one moves along a processing hierarchy. An often cited example is given
by a configuration of two stimuli, each defined by a particular conjunction of
two different cues (e.g. form and color, with stimulus 1 having a T-form and
red color, and stimulus 2 being a green cross). If form and color are processed
independently of each other and generalize over position, all the information
that arrives at a higher stage is that there are two forms and two colors present.
The “binding” of its two constituting cues to an object is then lost, making it
impossible to retrieve the information which colors and forms correspond to each
other. In a sense, this is the same problem as for symbol grounding, only that we
do not consider the relation between external sensory signals and internal sym-
bolic representations, but between internal representations at different levels of
abstraction.

In the brain, binding losses indeed seem to occur when inspecting scenes
with several objects defined by conjunctions of cues, leading to conjunction er-
rors [46], meaning that people make mistakes when forced to determine which
form corresponds to which color for each object. These errors always appear in
combination with attentional overload, i.e., when there are not sufficient atten-
tional resources that can be devoted to each object, either because of too many
objects present or too short presentation times.
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2.3 Anchoring and FINST’s

Both the symbol grounding as well as the binding problem are rather artifical,
idealized constructions, as we will argue in the following. They are based on
the assumption that even when looking at a representational result in isolation
one should get an automatic reference to the original objects or lower level
representations that generated it. By automatic it is meant that this reference
is a passive, or straightforwardly deducible property.

Proposals on how to do this exist, at least for the binding problem. They
introduce mechanisms which code the references between representational items
by additional states, which can be evaluated when accessing the representations.
These states serve to relate (i.e., they “bind”) the different representations with
each other, or representations with parts of the original sensory input. One
proposal is to use time labeling mechanisms, e.g. by the phase of an oscillatory
activity that synchronizes by appropriate internal system dynamics.

Although this seems reasonable at a first glance, it is still a passive property,
in the sense that it should be automatically present when some access to a
part of the internal representation is required. Nevertheless, the capacity of such
mechanisms is severely limited, since they can work only on a very small subset
of the representational items at a time.

The important point here is that binding should not be considered as a rep-
resentational property, but rather as an effortful process. Effortful meaning here
that it requires active and selective focusing on a small subset of representational
items because it allocates exclusive processing resources in a vision system. As
such this process has to be controlled from within a larger knowledge context,
including both context information about the visual scene as well as specific
information about the visual subprocesses that mediate the binding.

A term that appears in the literature in a similar context is that of grounded
cognition [8] and anchoring [14]. Grounded cognition emphasizes the role of
modal (perception specific) representations, internal simulations, imagery and
situated action for binding internal representations to external objects. Anchor-
ing is the “process of creating and maintaining the correspondence between
symbols and percepts that refer to the same physical objects” [14], and is pre-
sumed to be a necessary component in any physically embedded system that
uses a symbolic internal representation.

For the special domain of simultaneous multiobject tracking and attentional
selection, FIngers of INSTantiation (FINST’s, [38]) have been proposed to solve
the anchoring task in early vision. It is argued that the process of incrementally
constructing perceptual representations, solving the binding problem as well
as grounding perceptual representations in experience, arises from the capacity
to select and keep track of a small number of sensory items. These items are
identified to have a particular, consistent and enduring identity that can be
maintained during the tracking process despite considerable changes in their
properties. In a sense, FINST objects have been described as mental “rubber
bands” between internal representations and external objects.
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Extending the ideas of a cognitive vision system from section 1, we consider
FINST’s to be but one emanation of a deeper concept that emphasizes the
process and control aspects of establishing temporary, selective correspondences
between more abstract, higher-level representations and the input at the sensory
periphery.

2.4 Anticipation and Prediction

What is the deeper purpose of anchoring? On one side anchoring and its mani-
festations, e.g. as proposed by FINST’s or as experienced during tracking, rep-
resents a behaviorally useful capability in its own right: It keeps the attended
item in focus so that it can be easily reaccessed when needed. It also stabilizes
the sensory input, so that some variablities in the appearance change are com-
pensated for, as can be seen in a straightforward way in the case of translational
(in)variance during object tracking (this is particularly evident when combined
with the overt behavior of gazing at an object during smooth pursuit).

But the more important point of anchoring is that it requires an active inter-
nal anticipation of the stimuli as they are expected in the near future. A good
anticipation is necessary because it narrows down the search range and there-
fore decreases the processing resources for reaccessing the item in next timesteps
(here we close the loop to the resource limitation arguments of section 1).

Anticipation is a hard generalization task for a cognitive vision system, be-
cause visual stimuli are highly variable due to two different reasons: First, the
items themselves as they appear in the physical world (e.g. non-rigid objects) to-
gether with their projection by the sensory apparatus (e.g. 3D onto 2D, causing
view changes as an object rotates) are highly variable, and second, nearly every
behavior can have a severe effect on the sensory input (which is straightforward
for direct interaction with objects like manual manipulation, but consider also
indirect effects like egomotion of the system changing the visual appearance of
an object). If a cognitive system wants to generalize its anticipatory capabilities,
it has to be able to separate the two sources of variability. This has deep conse-
quences: It means that the system has to acquire knowledge about the process of
its own sensory apparatus on one side and about the external causes of sensory
inputs on the other side °. Process knowledge on its own sensory apparatus will
allow such a system to discount or compensate for changes caused by own be-
havior as well as internal adaptation and modulation, leading to a more robust

5 This reminds us to the cognitivist idea of building an accurate and detailed model
of the physical world, see section 2.1. In the current argumentation, however, we
1) emphasize the role of the dynamic anticipatory and control process instead of
concentrating on the structure and content of the internal world representation, 2)
we make no claims about the degree of accuracy, so that variably coarse descriptions
of the physical causes may already be sufficient for reasonably good anticipation,
depending on the demands of a task, and 3) the modal knowledge of the system
about its own sensory capabilites is crucial, whereas purely cognitivist approaches
prescind from this, targeting an amodal, abstract representation of the outer physical
world only.
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Sensory input

State update Measurement model

Prediction model

Fig. 3. Prediction as a fundamental process for active acquisition of visual informa-
tion in a cognitive visual system. Shown is a prediction-measurement-update loop that
makes use of two types of knowledge: 1) The prediction model that expresses how the
state of a sensory item changes over time, representing knowledge about the external
causes of sensory inputs, and 2) the measurement model that comprises knowledge
about a systems own sensory processes, anticipating the expected sensory input for
a given hypothetical state of a sensory item. In the control view of cognitive vision
systems, several prediction-measurement-update loops interact, comprising process in-
formation about sensory items and the active coupling between internal representations
and external sensory measurements.

and stable sensory analysis of sensory objects. Knowledge about the external
causes leads to more stable and generalizable representations of the world, since
many visual changes occur by own sensory behavior and not by changes in the
state of the world objects themselves (as in the case when objects are static but
an observer moves around them).

The two types of knowledge and their interaction during active sensory pro-
cessing can be schematized in a perceptual cycle as shown in figure 3. The
knowledge about a sensory item resp. the external causes of a sensory input
is represented in the item state (bottom left) and a prediction model that indi-
cates how the state is expected to change in the future (bottom). The knowledge
about its own sensory processes is comprised in the measurement model, which
is applied onto the sensory input (from top) to estimate how likely a sensory
measurement is for the assumption of a predicted item state. This likelihood is
used in an update step to adjust the items state. In the control view of cognitive
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vision, perceptual cycles with prediction-measurement-update steps constitute
a central element, both for low-level visual processes (for example in a tracking
context), as well as operations far from the sensory periphery, working on more
indirect representations.

2.5 A Modern Account of Active Vision Systems

In this paper we argue that the selective choice of sensory information and the
corresponding tuning of sensor parameters, i.e., the effective focusing of visual
processing resources, is a necessary property of any artificial or biological vision
system with a claim for some minimal generality and flexibility. Such focusing
capabilities largely make up for the flexibility of biological visions system that,
depending on the (visual) task in question, the context of already acquired as
well as prior information and the available processing resources, may deploy very
differently even for identical sensory input 6.

The idea is that different visual tasks, motivated by internal goals, trigger
different visual processes, and that these processes have to be organized in a
systematic way because there is simply not enough capacity otherwise. Such a
system would therefore continuously have to modulate and adapt itself, organize
the cooccurrence or their temporal order of visual operations, and monitor their
success. The processes referred here are mainly seen as internal operations, such
as e.g. the selective enhancement of competition, the dynamic adjustment of filter
parameters or the concentration on special feature channels, like edges, motion,
color, etc. The means by which this could occur is via attention, combining
top-down signals that provide expectations and measurement resp. confirmation
requests with bottom-up signals that provide measurements coming from the
sensors.

The task-dependence of internal organization processes in such a vision sys-
tem is a view shared with behaviorist paradigms, which concentrate on “visual
abilities which are tied to specific behaviors and which access the scene directly
without intervening representations”. One of them is active vision (see e.g. [2]),
a term that is used for systems that control the image acquisition process e.g. by
actively modulating camera parameters like gaze direction, focus or vergence in
a task-dependent manner. Along a similar line, purposive vision ([1]) regards vi-
sion processes always in combination with the context of some tasks that should
be fulfilled. Common to both active and purposive vision approaches is that
they have concentrated on overt behaviors and actions that are directly observ-
able from outside, and in how visual information can be extracted that supports
particular behaviors.

To the contrary, in the framework put forward in this paper, a proper minimal
representational structure on which the control and modulation processes can
operate is crucial. Visual cognition is understood as any goal-driven mediation
between an internal representation and the incoming sensory stimulation. The

6 With the classical attentional phenomena being one notorious example for the fo-
cusing of visual resources during operation
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mediating control processes serve to gather visual information that could be
potentially used for guiding overt behaviors, (without necessarily being tied to
the behaviors). In fact, we interprete any internal modulation and attentional
focusing as a wirtual action, in principle not different from overt actions . The
basic assumption is that, from a task-driven perspective, there is simply not
enough processing capacity to cover all the different ways to operate on the visual
input in a hard-wired manner, so that a vision system has to flexibly organize
its internal visual processing during operation and this organization has to be
controlled by the (visual) intentions of the system. The tasks and intentions we
mention here are supposed to be of intermediate level, but still relatively close
to the sensory domain, like e.g. “concentrate on an interesting moving object
in the visual scene and keep its coordinates up-to-date”, “compare the feature
composition of two objects” or “track an object, use motion segmentation to
separate it from the background”.

So what is a cognitive vision system intended to do operationally? It should:

— Establish temporary or semi-continuous links from internal representations
of sensory events to the incoming sensory information (“anchoring”).

— Use this possibility actively when different / additional / not yet analyzed
data is required or information has to be renewed.

— Work with the stored information to establish relations, discover regularities
and analogies, i.e., explore and learn about the visual sensory world.

— Use the gained world knowledge to control active processes for the acquisition
of visual information.

The establishment of temporary or semi-continuous links between internal
representations and sensory information occurs by means of prediction-measurement-
update loops as introduced in section 2.4. Ideally, the granularity of the informa-
tion represented in the prediction-measurement-update loops need not be defined
a priori, but may be developed in an self-organized way by visual investigation,
resulting in the right level of abstraction and detail. In any case, it is assumed
that several loop exist, that they interact and that they even organize in a hier-
archical manner. One example is given by the multiple adaptation processes at
different abstraction levels occurring during vision, as there are:

— Local modulation processes adapting to optimal sensory ranges, as e.g. given
by local filter contrast adaptation and contour completion processes.

— Prediction-measurement-update loop of elementary sensory states of visual
items, such as the position update of an item that is being tracked.

— Higher-level prediction-measurement-update loops dealing with engagement
and loss of lower level loops, such as given by processes of finding suitable
sensory items, engaging in a tracking loop, evaluate the success to detect

" We even explicitly disregard any overt actions like gaze or head orienting for the
following argumentation, since we think that the more interesting aspects of visual
cognition appear without the need to concentrate on the hardware specificities of
sensory devices.
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Fig. 4. Scheme of the necessary structures for a cognitive visual system with a focus
on virtual visual actions and their control. White nodes denote control instances which
mediate between sensory item representation and visual processes at all levels of ab-
straction. Sensory items denote state information which can be updated by temporarily
activating prediction-measurement-update loops, as it occurs on a rapid timescale for
the items in active visual short-term memory. The basic control framework as well as
the visual subprocesses are assumed to be given, whereas the memory content and its
representational structure can be developed in an emergent way.

e.g. when a prediction fails, reacquiring the item when it was lost and finding
an alternative item if necessary.

— Serialization processes. Since the prediction-measurement-update loops of
different visual events compete for resources, higher-level visual tasks re-
quiring several of them have to organized temporally, e.g. establishing which
precede others.

Figure 4 shows a scheme of the necessary structures for a cognitive visual
system as they are proposed in this paper. On the lowest level, after some general-
purpose preprocessing that is independent of the items in visual memory, mul-
tiple visual subprocesses in form of prediction-measurement-update loops ap-
ply. The recruitment and the modulation of these loops is organized by control
structures (indicated by white nodes) acting as proxies between them and visual
memory. The loops work largely in an object-specific mode, e.g. specialized to
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search and find sensory objects with predefined visual properties, or segment a
visual region starting with an already known position and approximate size.

Nodes indicate “representational compounds”, comprising both states of sen-
sory items as well as process knowledge on how to link the state with active vi-
sual subprocesses in a prediction-measurement-update loop to couple the state
with sensory perception. Different levels of abstractions of memory items are
indicated by boxes, ranging from short-term, purely visual to long-term, cross
modal memory. The main difference between them is in the type of integration
into the sensory control processes, reflecting a control hierarchy rather than an
representation hierarchy as previously in the cognitivist paradigm of figure 1. As
an example, active visual short-term memory is composed of those visual items in
memory that are engaged in a short-term prediction-measurement-update loop,
anchoring them temporarily but continuously with sensory events. In our view,
this is a buffer of a small subset of task-relevant items which are dynamically
selected by a responsible control structure (in figure 4 the white node in the
“scene presence” frame) from a larger number of items that make up the visual
scene memory. The items in active visual short-term memory provide predic-
tions and modulation priors to visual subprocess control structures (indicated
by the arrows with white heads), which steer the subprocesses on demand and
update the information of the items. Other information from sensory memory
can provide high-level modulation priors, as indicated in figure 4 by the addi-
tional arrow from top-left to a subprocess control structure. However, control
processes mediating between memory and the active acquisition and update of
information are assumed to work not only at the sensory periphery, but also
between higher levels of representation.

A cognitive vision system as proposed is therefore composed of an intertwined
hierarchy of representations providing item and control information, together
with a corresponding control dynamics of the processes necessary for the active
acquisition of information at any representational level. Control structures of
this kind could in principle self-organize in an emergent way (see the emergent
systems view from section 2.1), but are very hard to develop systematically,
in a self-organized fashion. Therefore, we propose to provide a framework for
control structures and their representations, but not the representation of sensory
items themselves, which could develop incrementally and autonomously during
interaction. Only at the lowest sensory level, at the interface to some well-defined
visual subprocesses we would predefine the basic visual sensory events.

3 Ingredients of a Cognitive Vision System

In the following, we present some concrete descriptions of visual subprocesses
that would be needed by a cognitive vision system. As suggested in the introduc-
tion, we are interested in the control aspects of such subprocesses, highlighting
the multiple control loops that arise when being operated in combination with
other subprocesses in conjunction with visual memory representations.
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The particular choice of the subprocesses is not intended to be unambiguous
or complete; rather, it is motivated by their suitability to be recruited into a
general-purpose control framework for cognitive vision.

3.1 Preprocessing Example: Segmentation

One very important visual subprocess that precedes several other visual oper-
ations is image segmentation. In the following description we understand by
image segmentation the segregation of the 2D visual input space into 2 regions,
one characterizing the (generally more specific) region of interest corresponding
to an object or a part of the scene, and the other one (generally unspecific)
corresponding to the rest, i.e., the “background”. We describe one image seg-
mentation method of choice (there are numerous) that we are using for building
a cognitive vision system, again with the focus of understanding it in relation
with a superordinate control instance.

The segmentation occurs by means of level-set methods [37,34,57,11, 28],
which separate all image pixels into two disjoint regions [37] by favoring ho-
mogeneous image properties for pixels within the same region and dissimilar
image properties for pixels belonging to different regions. The level-set formal-
ism describes the region properties using an energy functional that implicitly
contains the region description. Minimizing the energy functional leads to the
segmentation of the image. The formulation of the energy functional dates back
to e.g. Mumford and Shah [34] and to Zhu and Yuille [57]. Later on, the func-
tionals were reformulated and minimized using the level-set framework e.g. by
[11]. Among all segmentation algorithms from computer vision, level-set methods
provide perhaps the closest link with the biologically motivated, connectionist
models as represented e.g. by [24]. Similar to neural models, level-set methods
work on a grid of nodes located in image/retinotopic space, interpreting the grid
as having local connectivity, and using local rules for the propagation of activity
in the grid. Time is included explicitly into the model by a formulation of the
dynamics of the node activity. Furthermore, the external influence from other
sources (feedback from other areas, inclusion of prior knowledge) can be readily
integrated on a node-per-node basis, which makes level-sets appealing for the
integration into biologically motivated system frameworks.

Level-set methods are front propagation methods. Starting with an initial
contour, a figure-background segregation task is solved by iteratively moving
the contour according to the solution of a partial differential equation (PDE).
The PDE is often originated from the minimization of an energy functional [34,
57].

Compared to “active contours” (snakes) [27], that also constitute front propa-
gation methods and explicitly represent a contour by supporting points, level-set
methods represent contours implicitly by a level-set function that is defined over
the complete image plane. The contour is defined as an iso-level in the level-set
function, i.e. the contour is the set of all locations, where the level-set function
has a specific value. This value is commonly chosen to be zero, thus the inside
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Fig. 5. Processing and control flow in a generalized segmentation process. The proper
segmentation process occurs in a recurrent network dynamics indicated by the circu-
lar arrow. Local control loops involve the adjustment of the dynamic cue weightings
as well as the compound of region assignment, recurrent dynamics and segmentation
result evaluation. Furthermore, higher-level contexts requiring visual memory are in-
volved in controlling the cue adaptation and selection process, the region descriptors,
the initialization as well as other prior information on the item that should be seg-
mented (arrows with white heads). All these processes are assumed to be covered by
corresponding perceptual prediction-measurement-update cycles.

and outside regions can easily be determined by the Heaviside function H (z) 8.
A level-set function ¢ € {2 — R is used to divide the image plane (2 into two
disjoint regions, (27 (background) and {25 (object), where ¢(x) > 0if x € 27 and
¢(x) < 0if x € £25. A functional of the level-set function ¢ can be formulated
that incorporates the following constraints:

— Segmentation constraint: the data within each region 2; should be as similar
as possible to the corresponding region descriptor p;.

— Smoothness constraint: the length of the contour separating the regions {2;
should be as short as possible.

8 H(z)=1forz > 0and H(z) = 0forz <0 .
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This leads to the expression ?

2
v / VA =3 [ i) logrice 1)
i=1lg

with the Heaviside function H(¢) and x1 = H(¢) and x2 = 1 — H(¢). That is,
the x;’s act as region masks, since x; = 1 for z € {2; and 0 otherwise. The first
term acts as a smoothness term, that favors few large regions as well as smooth
region boundaries, whereas the second term contains assignment probabilities
p1(x) and p2(x) that a pixel at position = belongs to the inner and outer regions
21 and {2, respectively, favoring a unique region assignment. Additional terms
can be very easily appended, expressing e.g. prior knowledge about the expected
form of the region.

Minimization of this functional with respect to the level-set function ¢ using
gradient descent leads to

30 =000 v (g7 +oue] (2)

A region descriptor p;(f) that depends on the image feature vector f serves to
describe the characteristic properties of the outer vs. the inner regions. Examples
are statistical averages, variances or histograms. The assignment probabilities
pi(z) for each image position are calculated based on an image feature vector
via p;(x) := p;(f(z)). The parameters of the region descriptor p;(f) are gained in
a separate step using the measured feature vectors f(x) at all positions « € {2; of
aregion i. This occurs alternatingly, updating in a first step the level set function,
characterizing the segmented region, and in a second step the region descriptors
of the inner and outer regions. In [16,51], probabilistic and histogram-based
region descriptors are combined with level-set methods for an application in a
multicue setting, required for general-purpose segmentation tasks (see below).

Figure 5 shows a block diagram of a more generalized segmentation frame-
work. A visual input is first preprocessed by analyzing different but arbitrary
visual cues and properties, like colors, textures and gabor structures at different
orientations (but also more sophisticated cues can be incorporated, like dispar-
ity from binocular vision, or motion estimates from a sequence of images). The
only prerequisite is that they all operate in the same spatial image space. For
each target that should be segmented, the cues are combined with their proper
region descriptors to get the assignment probability maps. These are fed into a
recurrent dynamics as described to minimize the level-set functional. In a post-
processing step, the segmentation result can be used for other purposes, like
image classification, or the extraction of statistics resp. new region descriptors
for the gained region.

The link with the control view of cognitive vision systems appears when we
regard the numerous possibilities to control and tune the segmentation process

% Remark that ¢, x; and p; are functions over the image position z.
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using prior knowledge to specialize it to a given task. Figure 5 indicates these
control influences by the vertical arrows from the top. First of all, the multicue
preprocessing demands for a cue adaptation and selection process, since some
cues provide correlated, or, alternatively, irrelevant information. Second, spe-
cific region descriptors can be provided by previously gathered prior knowledge,
e.g. about an objects’ color, texture, etc. Third, the recurrent level-set dynam-
ics can incorporate explicit information about a regions expected form, spatial
preferences, and dynamic compensations (e.g. if during the segmentation process
the visual input changes systematically so that it can be predicted). Sitting on
top of this, modules have to decide on all these control alternatives, deciding
on a first place that there may be a candidate area of the scene which may be
worthwhile to look at or that more detailed information about an object with
assumed properties that should be highlighted by the segmentation process is
required. Similarly, modules have to decide on the success of the segmentation,
detecting a failure and reengaging into the segmentation process if necessary.

The segmentation process itself (i.e., the candidate locations for segmenta-
tion, the prior assumptions for the segmentation tuning, the results and all the
control issues) would have to be captured by an appropriate representation at
visual working memory level, as was suggested in sections 1.2 and 2.5.

3.2 Multicue Tracking

As suggested in the first and second sections, tracking objects or other parts
of a scene is a fundamental property of a cognitive visual system to temporally
establish and maintain a link between an internal representation and sensory
measurements originated by external causes. In short, tracking is a constrained
feature and property search, dedicated to a object that can be described by
specific, but rather arbitrary visual features (e.g. a visual pattern or statistical
properties like certain cue combinations), together with an iterative estimation
of dynamic object properties like its position, velocity and visual changes.

Humans are generally able to track arbitrary objects even if they have not
seen or learned them before (i.e., without long-term memory), i.e., they can start
tracking immediately from any region with characteristic properties. In addition,
objects can be tracked even if their visual configurations change considerably
(even if these changes can sometimes not be reported, [47]), it seems to be suf-
ficient if certain dynamic assumptions are fulfilled (in easy cases, smoothness
and continuity in one of the cues that make up the tracked object suffice). And
even better, humans can track simultaneously several objects at once, although
this capacity is limited to a handful of objects [39], a number that reminds to
the capacity limits of visual short-term memory from section 1.2. Taken alto-
gether, visual target tracking is remarkably robust and flexible, being able to
deal with all sorts of target property changes and dynamics, uncertainties in the
measurement and even periods of occlusion.

For a cognitive vision system, we target at a similarly flexible visual object
tracking process, with the purpose to lock and maintain attention on an object
or a part of a visual scene for a short time period. It should be able to deal
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Fig. 6. Processing and control flow in a generalized item tracker. The core of a tracker
is a probabilistic formulation of the prediction-measurement-update loop (circular ar-
row in the state estimation). To cope with a changing visual appearance of the target,
an adaptation loop spans the measurement, likelihood and state estimation modules
adjusting the target descriptors. Higher level priors may also influence the target de-
scriptors, as well as the measurement and prediction models. On top of all, an item
finding, engagement, tracking, evaluation and release or and reengagement loop ac-
tively binds items from visual short-term memory to the tracking process, see fig. 4
and section 2.5.

with varying visual conditions as well as asynchronous, nonregular update at
low frame rates. In addition, for varying visual conditions, no single cue will
be sufficiently robust to provide reliable tracking information over time, so that
we have to use multiple cues for the tracking process (with a preprocessing as
described for the multicue segmentation process in section 3.1). The idea is that
if the cues are sufficiently complementary, there will always be at least one which
can provide a tracking signal that can be exploited. For varying visual conditions,
the reliability of the cues varies and some cues undergo signal jumps, but some
of the remaining cue channels exhibit predictable signals that can be used for
tracking.

After cue preprocessing, the fundamental problem that a tracking system
has to solve is that of iterative, dynamic target state estimation. This means
that it has to estimate continuously the state of a dynamic system using a series
of measurements gained from an observable that can be put in relation with
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the state. Fortunately, this type of problems has been extensively studied in the
domain of dynamic nonlinear filtering, see e.g. [42] for a review.

For noisy states and measurements, the dynamic filtering problem can be
formulated as an optimal recursive Bayesian estimator. Well-known estimators
are e.g. the Kalman filter used for linear Gaussian problems (and its variants),
but also techniques for the approximate numerical handling of the estimation
problem, as given e.g. by the family of particle filter approaches (see e.g. [4] for
an overview). For the Bayesian estimator, one attempts to construct for each
timestep the posterior probability density function (pdf) of the state, taking
into consideration the whole series of past measurements. The pdf contains the
complete solution to the estimation problem (in a statistical sense), which means
that from it, we can extract any relevant statistical estimate of the state.

During tracking, an estimate of the state is calculated every time a new
measurement Z! is received. This means that the filter is applied sequentially
every time a new measurement becomes available, hopefully converging over time
towards the solution. At every time step, only the most recent measurements
are used to refine the estimate, so that the computational cost remains within
acceptable bounds.

The posterior of the state given all past measurements reads

p(XHZE, ..., ZY) (3)

with the present state X! and the measurements Z!, ..., Z! for all discrete, past
timesteps t,t — 1, ..., 1 including ¢.
Let us start from timestep ¢ — 1. We assume that the last posterior

p(XTH 2 L2 (4)

is known. The target is now to estimate the new, present posterior Eq. 3 by
taking into account

— some additional knowledge about how the state X evolves over time from
t—1totand

— knowledge about the measurement that is expected at time ¢ if the system
is in a state X

— the real, new measurement Z! taken at time t.

These points express formally in two stages of the filtering process, usually
termed prediction and update stages. The prediction stage uses the knowledge
about the systems state deployment over time to predict the expected posterior
for the timestep t, i.e., it propagates the posterior from one timestep to the
next without consideration of the new measurement. This type of prediction is
usually coupled with uncertainty, so that it will generally spread and broaden the
pdf. To the contrary, the update step uses the measurement Z! to confirm and
narrow the prediction. The two steps are then combined via the Bayes theorem,
the prediction corresponding to the Bayesian prior and the measurement to
the Bayesian likelihood used for adjusting the prior when extra information is
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available. All this is a probabilistic concretization of the prediction-measurement-
update steps as introduced in section 2.4.

Using knowledge about how the state X evolves over time from ¢ — 1 to ¢
means, in a probabilistic sense, knowing

p(X|X! ) (5)

if we restrict to a Markovian process of order one. Note that there is no depen-
dency on the measurements/observables here, since we assume the measurement
to not have any impact on the state itself. Then, Eq. 5 can be used to get (see

e.g. [42])
pXZ 2 = [ PO X2 2 X ()

which is the expected posterior for time ¢ by taking into consideration all past
measurements Z‘~!, ..., Z', but not yet including the most up-to-date measure-
ment Z*.

Similarly, using knowledge about the expected measurement for time ¢ means
to know

p(Z! X! 707, 7Y (7)

Bayes then gives us

p(XHZE .. ZY) ~ p(ZYX', 22N p(XHZ Y, 2 (8)

Measurement likelihood Predictive prior

which combines the two equations Eqgs. 6 and 7 to get the estimation of the new,
updated posterior. (The proportionalities indicate that all the pdf’s always have
to be normalized.)

Ideally, Z! is the complete multicue measurement. In practice, it is often
assumed that the measurements are independent for each cue, so that the for-
malism applies for each cue likelihood independently and afterwards these can be
combined. The probabilistic approach then automatically decreases the weight
of the contributions of more “uncertain” cues (in terms of noisy, fluctuating).
A probabilistic multicue tracking method that is robust against changes sudden
changes in single cues is presented by Eggert et al in [17].

A nice property of the fully probabilistic approach is that it takes multiple
simultaneous hypotheses into consideration. This implies that testing the dif-
ferent hypotheses is cheap - and therefore does not apply to more specialized
scenarios, where a dedicated machinery has to be specialized and adapted in
order to test each single hypothesis. The probabilistic framework for tracking is
therefore subject to severe resource constraints, as stated in section 1, this time
in terms of prediction range. In practice, the probabilistic approach only works
for simple predictive models and has to be extended by further non-probabilistic
adaptation loops.

Figure 6 shows the block diagram of tracking from a more general perspective.
After the preprocessing of multiple cues, knowledge about the particular target is
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incorporated, e.g. as a multicue template or other indication of visual properties,
similarly to the region descriptors from section 3.1. This gives us the target-
specific measurements which are used for the state estimation.

Control from high-level processing can be exerted at the level of the multi-
cue preprocessing step, similarly to the segmentation case. Second, the target
descriptor has to be provided and adjusted depending on an objects’ appearance
change. Third, the state adjustment relies on a predictive estimation that can be
influenced by other visual subprocesses, e.g. including context knowledge about
preferred location, velocity, rotation, etc. Forth, the dynamic state prediction
model may be subject to change (consider as an example the case of a ball that
is being tracked, rolling on a table surface and then reaching the border, falling
down and bouncing away). Fifth, scene context information is crucial for the
measurement part of the estimation, since object occlusions could be bridged
by changing the state adjustment process if knowledge about occluder objects is
available, by this way “explaining” situations in which the tracking fails. Con-
text information is also necessary for the case of arising correlations between
different object dynamics (e.g. as present in a hand-object coordination scene
during grasping), which can be captured by modification of the prediction models
(the prediction models of the interacting objects becoming entangled). Finally,
higher-level modules have to either start the tracking engagement by presenting
object hypotheses and starting conditions, finish the engagement when tracking
fails, or organize for reengagement if the object should be kept in the processing
focus of the system.

As argued before, we postulate that a suited representation in visual working
memory that has access to the multiple adjustment loops and serves to control
the tracking processes has to be established. This representation would then
couple to other processes that demand a sustained focus on an object or the
estimation of an objects’ parameters as delivered by the tracking process, as well
as to superordinate processes that organize the distribution of tracking resources
on hypothetical objects of interest and the creation and destruction of tracking
subprocesses.

It remains to be stated that an entire plethora of visual tracking approaches
exist, depending on one hand on the types of representations that are used
for representing the objects and on the other hand on the complexity of the
appearance changes to be captured. For technical systems, many tracker work
in constrained environments, like high input frame rates (resulting in very simple
or nearly linear appearance changes, as assumed by KLT or Mean-Shift based
differential tracking systems, see e.g. [31,44,13]) or a stationary background
against which changes can be easily extracted. Here, we wanted to highlight
control issues in trackers that work with large appearance changes, low frame
rates, asynchronous update or measurement and sporadic and selective tracker
engagement; controlled for a dedicated visual task within a specific visual scene
and visual item memory context.
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4 Learning in cognitive vision systems

The human visual system is not fixed and static over time, but a rather flexible
and adaptive system that is subject to a wide variety of learning mechanisms.
Learning occurs at different time scales, ranging from minutes up to life-long
time spans, required to obtain proficiency in specialized, visually dominated
tasks. Flexible and autonomous learning is also a key ability that distinguishes
human visual capabilities from current state-of-the-art technological solutions in
machine vision and object recognition.

In the following we first describe our approach to the main general prin-
ciples that underlie the buildup of a task-driven behaviourally relevant visual
knowledge representation. We then concentrate on the two issues of perceptual
learning, operating on rather short time scales, and already realized concepts of
integrated visual attention and object category learning.

4.1 Self-referential Buildup of Visual Knowledge Representations

The learning processes starting from the initial perceptual capabilities of an in-
fant after birth up to the later development of specialized visual proficiency are
an example for a complex knowledge acquisition process that requires the coor-
dinated interaction of several areas of the brain. As an approach to understand
this, the concept of self-referential learning [29] has been proposed, emphasiz-
ing the autonomous and active character of any brain-like knowledge acquisition
process and the prevalence of task-driven and behaviorally relevant learning.
Both aspects together ensure the consistent buildup of a visual knowledge rep-
resentation that is useful for a living being, that has to survive in a dynamically
changing and unpredictable environment.

Any higher-level biological cognitive system faces the challenge, that its de-
velopment is to a large part determined by the interaction with its surroundings.
Here the feedback from the environment rarely provides explicit teaching signals
that have the quality of the supervised learning paradigm of neural networks or
machine learning. The system rather has to rely on its own internal dynamics
in determining the buildup of meaningful visual categories and evaluating their
success in the interaction with the environment. Kérner and Matsumoto [29]
have emphasized the importance of a subjective stance towards this acquisition
process, defining a ”self”, determined by a value system and guiding the learning
process by emotions and resulting attentional biases. This value system strongly
relates to phylogenetically older substructures of the brain, where especially the
limbic system plays a crucial role. An important concept in self-reference means
that the already acquired representational system strongly constrains the per-
ception, evaluation, and thus value-driven acquisition of new knowledge. This
filtering of new knowledge based on existing representations ensures the overall
consistence of newly stored information in relation to the prior knowledge.

The reference to a value-system for guiding the acquisition of meaningful rep-
resentations provides a direct link to the importance of behavior and task-related
concepts for the learning of visual representations. According to this approach,
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the formation of visual categories is generally done in reference to a task and
behavioral constraints. This provides a strong coupling between action and per-
ception, being a key ability of biological intelligent systems that has proven
notoriously difficult to achieve in technical systems. A good example for such a
representation in the field of vision are action-related object representations of
manipulable man-made objects, that have been found in the dorsal brain areas
[12].

4.2 Perceptual Learning

Perceptual learning has been defined as an acquired change to a perceptual sys-
tem to improve its ability to respond to the environment [23]. The corresponding
time spans range from minutes up to days and weeks and the effects of percep-
tual learning can be quite long lasting. This type of learning adaptation has been
contrasted against cognitive learning processes in the way that it applies to the
perceptual or pre-attentive processes, that are beyond conscious accessibility. In
an attempt to categorize different mechanisms of perceptual learning, Goldstone
[23] has distinguished the following mechanisms:

— Attentional weighting modifies the relevance of visual features in a particular
task context

Imprinting introduces new, specialized features in a perceptual situation

— Differentiation separates previously indistinguishable features

— Unitization merges separate features into greater units to ease perception of
such compounds

Perceptual learning is generally assumed to modify rather the early stages of
cognition and is thus prior to high-level reasoning. The perceptual effect can,
however, deeply influence higher areas by influencing the feature representations
that are the basis of higher level concepts. This low-level property is highlighted
by the limits of generality of this form of learning. Training on simple visual
discriminations often does not transfer to different eyes, to different spatial lo-
cations, or to different tasks involving the same stimuli [20].

Although perceptual learning is an ubiquitous phenomenon in biological vi-
sion systems, almost all current computer vision systems lack this basic capabil-
ity. The reason is that there is no general concept available that could deal with
the resulting plasticity in such a system. A simple example is an object classifier
that is trained by supervised learning on the output of a feature detection stage.
Most current classification models assume a static feature representation and
cannot handle an incremental and dynamic input stage. In a recent contribution
Wersing et al. [53] have investigated a model of coupled learning between the
“what” and “where” pathways for the bootstrapping of the representations for
localizing and classifying objects. This establishes first steps towards modular
cognitive vision systems where parallel learning in different modules can occur
without destabilizing the robustness of the system.
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4.3 Visual Category Learning and Object Attention

Main problems. The processes involved in visual categorization are generally
considered more on the high-level or cognitive side of perception. Nevertheless it
is obvious, that sensing and learning of object classes is strongly dependent on
phenomena of attention, expectation, and task-driven utility. In creating a visual
system with an autonomous strategy for learning visual concepts, the following
questions have to be answered:

— What and where do we have to learn ?
— When do we have to learn 7

The first question is related to the ability of a learning visual system to attend to
particular parts in the scene that offer some saliency that can be both bottom-up
and top-down driven. In general an autonomously learning system requires an
active strategy for selecting elements within a visual scene that are both interest-
ing and can be robustly separated from the distracting surroundings. It should
be one of the main targets of a cognitive vision systems to relax the strong
segmentation constraints that are currently necessary for many computer vi-
sion approaches to supervised learning of object categories. Segmentation in this
framework should be rather a form of attention that is mainly top-down driven
by the prior knowledge of the system. In the human visual system there exists a
clear functional differentiation in the processing of object identity (“what”) and
object positions (“where”) [56].

The second question is related to the temporal coherence and stability of the
learning process. An autonomously learning system cannot rely on an explicit
teacher signal that triggers the start and end of a learning phase. It rather
needs intrinsic signals that characterize points in time where learning is feasible,
based on an internally driven detection of learning success. Prediction is one of
the main concepts that can be used to estimate the feasibility of learning in a
particular scene context. For prediction of the sensory input, it is necessary to
produce generative models, that are capable of reproducing the relevant visual
structures of real objects. We are here, however, not mainly concerned with the
temporal aspect of prediction, but with prediction in the sense of the ability of
the system to effectively represent an externally changing input using its internal
representations. This is normally referred to the concept of deriving a generative
model for the considered stimulus domain. To make this autonomous learning
feasible, apriori information on relevant structural constituents of objects can be
useful.

Related Work. The questions of attention-based learning and object isolation
in real-world scenes have been investigated by a number of recent contributions:

Shams & von der Malsburg [43] considered the autonomous learning of vi-
sual shape primitives in an artificially generated setting with rendered scenes
containing geon components. Using a correlation measure based on Gabor jet
feature representations they manage to derive simple constituents of the scene.
The scaling to more complex real-world scenes, however, was not yet considered.
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Williams & Titsias [54] have proposed a greedy learning approach of multiple
objects in images using statistical learning in a generative model setup. Their
approach is based on a predefined sequence of learning steps. First the back-
ground is learned, then the first object, and subsequently more objects. The
representation is based on a mask and a transformable template. A limitation
is that the method can only register a single pose of a particular object. In
a similar Bayesian generative framework, Winn & Jojic [55] use their LOCUS
model for the learning of object classes with unsupervised segmentation. Addi-
tionally they can handle stronger appearance variation among the members of
the learned class, i.e. color and texture.

Walther et al. [50] investigate the usage of bottom-up saliency for determin-
ing candidate objects in an unsupervised way in outdoor and indoor scenes. For
each frame of a video sequence such candidate objects are determined offline, and
represented using the SIFT feature approach developed by Lowe [30]. Matching
objects are determined between pairs of frames, and compared to a human la-
beling of the objects in the scene. The saliency-based segmentation improves
the matching performance and the system is robust with regard to scaling and
translation, but not very good at representing 3D rotation and multiple poses
of objects.

An interesting approach to supervised online learning for object recognition
was proposed by Bekel et al.[10]. Their VPL classifier consists of feature extrac-
tion based on vector quantization and PCA and supervised classification using a
local linear map architecture. They use a bottom-up saliency coupled with point-
ing gestures in a table setting to isolate objects in the scene. The segmentation
method is similar to the one in [50].

Arsenio [3] uses an active perception model for object learning that is using
motion-based segmentation, sometimes even induced by robot actions. The ob-
ject representation is based on hashing techniques that offer fast processing, but
only limited representational and discriminatory capacity.

Itti [25] develop a general theory of attention as Bayesian surprise. In their
approach, surprise is quantified by measuring the difference between posterior
and prior beliefs of the observer.

Attention for Online Object Learning. Wersing et al. [52] have presented a
biologically motivated architecture for the online learning of objects and people
in direct interaction with a human teacher. Their system combines a flexible
neural object recognition architecture with an attention system for gaze control,
and a speech understanding and synthesis system for intuitive interaction. A
high level of interactivity is achieved by avoiding an artificial separation into
training and testing phase, which is still the state-of-the-art for most current
trainable object recognition architectures. They do this by using an incremental
learning approach that consists of a two-stage memory architecture of a context-
dependent working or sensory memory and a persistent object memory that can
also be trained online.
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Fig. 7. Overview of the visual online learning architecture by Wersing et al. The system
combines feature-based bottom-up saliency with top-down expectations on faces to be
learned. Objects and faces are then incrementally learned in a unified shape feature
map representation using short-term and long-term memory.

They use a stereo camera head mounted on a pan-tilt unit that delivers a left
and right image pair for visual input (see Fig.7). The gaze is controlled by an at-
tention system using bottom-up cues like edge/color /intensity contrast, motion,
and depth, presented in more detail in [22]. Additionally top-down information
on face targets is provided to be followed with a peaked map at the detected face
position. Each cue is represented as a retinotopic activation or saliency map. A
simple addition of the different cues is used, where clear priorities are induced
by weighting the cues in the following sequence: contrast < motion < depth <
face. This simple model enables a quite complex interaction with the system to
guide the attention appropriately.

The default state of the gaze selection system is an exploratory gazing around
that focuses on strong color and intensity contrasts. Moving objects attract
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more attention. An even stronger cue is generated by bringing an object into
the peripersonal space, that is the near-range space in front of the camera that
corresponds to the manipulation space of a humanoid robot [22]. However, also
the weaker cues of contrast give a contribution and stabilize the attention. The
strongest cue is the presence of a detected face, generating a strong task-specific
attention peak at the detected position.

To trigger the online learning and recognition, two parallelly computed object
hypotheses are used. Firstly, objects are learned and recognized, if they are
presented within the peripersonal space. The object is attended, as long as it
resides within this interaction space. Secondly, using skin color segmentation,
candidate region segments are classified according to their face similarity. An
accepted face region is then selected and processed using the same online learning
and recognition pathway as for objects. The attention is retracted from the face,
if no valid face-like segment was detected near the image center for two input
frames.

The system of Wersing is capable of learning and robust recognition of several
objects and face categories, as was shown in [52]. The interaction between the
attention system and the object learning, however, is manually designed and not
dynamic with regard to the selected feature modalities like stereo or face shapes.
The implementation of dynamic mechanisms and learning principles also for this
part of the system will be an important future step to ensure stronger autonomy
of such online learning visual systems.

5

6 Conclusions

During the last years, considerable progress has been made for single visual
processes, as it is also the case for the examples presented here: Segmentation,
tracking and appearance-based object classification and learning. Nevertheless,
in a real-world scenario these processes have to be constrained by sensible as-
sumptions to make the problems tractable. It is likely that no general-purpose
solution exists for any of them without severe constraints, a dilemma that may
be shared with biological vision systems.

This means that we are confronted with the principled problem that a num-
ber of visual subprocesses has to be organized, constrained, adapted and arbited
dynamically, even for simple, brief visual tasks. As a consecuence, visual sub-
processes have to be approached and designed in a substantially different way
than in classical computer vision. This paper presents a proposal on how the
organization of visual subprocesses could be achieved.

Where should information about how to constrain and adapt visual subpro-
cesses come from in a first place? In essence, visual and long-term memory can
store a large amount of specific priors and context knowledge which may be
recalled to tune processes to particular scenarios, object categories and objects.
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The main role of the control processes is to bring together different types
of internal knowledge - long-term assumptions about the world and its items,
short term scene and object memory, and process knowledge about its own in-
ternal adaptation processes, limitations and capabilities - to actively steer the
acquisition of information. Because of limited processing resources, this occurs
selectively, and on demand. It is about anchoring in the broadest sense, but with
dynamically changing configurations of the memory representations which are
being bound to sensory events and only when required for a visual task.

So far we have not discussed concrete realizations of the memory structure
itself. What would be a minimal set of representational properties of a memory
that is capable to serve as knowledge basis for control processes, and that can
be temporarily entangled with selected sensory measurements? How feasible is
the idea of a visual memory that gathers information about items, objects and
scene properties?

The experimental evidence about peoples inability to detect severe visual
changes does not seem to support the idea of a persistent dedicated visual mem-
ory. It rather suggests that “visual representations may be sparse and volatile,
providing no cumulative record of the items in a scene” [6]. However, most of
the studies do not take special care of attention, so that it may be that the
visual system still builds a cumulative record of all attended stimuli and still
miss all changes involving items that were not attended. Here we reencounter
the resource limitation argument, both in terms of memory access and a bot-
tleneck in attentional resources, since attended items require exclusive resource
allocation. Visual memory may therefore store just what is necessary and what
was accessible with limited access resources to visual subprocesses, rendering
control processes deciding on what to focus the visual resources on even more
important. This applies both to visual short-term memory as well as for consol-
idation processes during visual exploration, as introduced in section 4.3: What,
where and when to learn.

Visual scene representations must therefore provide a substrate on which
these issues can be taken into account. It is selectively impoverished (accumu-
lating only sparse and incomplete visual information) and volatile (referring to
short-term visual memory with its limited and temporary anchoring capabilities
to sensory events), but it has to provide interfaces to control structures and con-
trol processes and to the different types of information extracted by the different
visual subprocesses and modalities. First attempts to couple a sparse, relational
visual memory with a simple visual system are presented in [26,40]. A principled
approach to integrate memory in form of priors, contextual and process informa-
tion with dedicated control structures that tune visual subprocesses is however
an open - yet fundamental - research topic for cognitive vision.
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