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Abstract. We present prototype-based classification schemes, e. g. learn-
ing vector quantization, with cost-function-based and geometrically mo-

tivated reject options. We evaluate the reject schemes in experiments on

artificial and benchmark data sets. We demonstrate that reject options

improve the accuracy of the models in most cases, and that the perfor-
mance of the proposed schemes is comparable to the optimal reject option

of the Bayes classifier in cases where the latter is available.

1 Motivation

Powerful machine learning methods such as recent learning vector quantization
(LVQ) models based on cost functions or support vector machines and linear
time approximations thereof provide state of the art classification algorithms
for automated data analysis [1, 2, 3, 4]. Their linear time complexity, high
accuracy, and excellent generalization ability make them suitable also for large
data sets. However, generalization bounds and training algorithms rely on the
assumption of data being i.i.d. This limits the suitability for big data analysis,
streaming data which displays a trend, in presence of outliers, or regions of strong
overlap in the data. These cases require enhancing the classifier by measures of
certainty that a model has taken a classification decision for a certain point or
a data region. Such reject options constitute a first step towards incremental
adaptation of the model complexity tailored to data regions with a high degree
of uncertainty.

While there exist popular extensions of SVM to provide a confidence value of
the classification [5, 6, 7] and first models have been proposed for distance-based
k-nearest neighbor approaches [8], only few approaches address prototype-based
classifiers [9, 10] thereby lacking a comparison to theoretically motivated alterna-
tives such as explicit stochastic models. In this contribution, we are interested in
efficient, online-computable reject options for LVQ classifiers and their behavior
in comparison to mathematically well founded statistical models. For this pur-
pose, we address the cost-function based models generalized LVQ (GLVQ) [11]
and generalized matrix LVQ (GMLVQ) [1] as well as the probabilistic counter-
part robust soft LVQ (RSLVQ) [2]. We propose simple geometric reject options
for these models which can be computed efficiently in online scenarios, and we
compare these reject options to more costly alternatives based on a probabilistic
modeling and an optimum reject option for the Bayes classifier [12].
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2 Learning Vector Quantization

Suppose a data set (xj , yj) ∈ R
n × {1, . . . , C} with data points x and labels y

is given. A LVQ classifier is characterized by a set of prototypes W = {wi ∈
R

n}ki=1 equipped with class labels c(wi) ∈ {1, . . . , C}. A given point xj is
classified according to the label of the closest prototype, the winner, as measured
in the squared Euclidean distance ‖x−w‖2 or any other distance.

Given training data, GLVQ [11] optimizes the location of prototypes by
means of a stochastic gradient descent on the cost function

E =
∑

j

Φ((d+(xj)− d−(xj))/(d
+(xj) + d−(xj)))

where Φ is a monotonic increasing function, e. g. the logistic function. d± is the
distance to the closest prototypes w± of the correct/incorrect class. A gener-
alization of GLVQ towards a general quadratic form (x −wi)

TΛ(x −wi) with
positive semi-definite matrix Λ has been proposed under the acronym GMLVQ
[1]. This cost function strongly correlates to the classification error since a data
point is classified correctly iff the nominator of the cost function is smaller than
zero. Further, the nominator can be linked to the hypothesis margin of the
classifier which influences its generalization ability [1]. Note that the value of
the fraction ranges in the interval (−1, 1) with −1 indicating a certain classifi-
cation because d+ is much smaller than d−. Due to its excellent performance in
practice [13], we will consider a reject option related to these costs.

RSLVQ [2] optimizes the data log likelihood of a probabilistic model:

E =
∑

j

log p(yj|xj ,W) =
∑

j

log (p(xj , yj |W)/p(xj |W))

p(xj |W) =
∑

i p(wi)p(xj |wi) is a mixture of Gaussians with uniform prior
probability p(wi) and Gaussian probability p(xj |wi) centered in wi which is
iosotropic with fixed variance or, more generally, uses a general covariance ma-

trix. The probability p(xj , yj|W) =
∑

i δ
c(wi)
c(xj)

p(wi)p(xj |wi) (δ
j
i is the Kronecker

delta) restricts to mixture components with correct labeling. Relying on a prob-
ability model, RSLVQ provides an explicit confidence value p(y|x,W) for every
pair x and y, paying the price of a higher computational complexity for learning.

3 Reject Options

A reject option relaxes the constraint on a classifier to provide a class label for
every input. We will consider reject options which are based on certainty mea-
sures. Given a certainty measure r : Rn → R for the classification of a point x
and a threshold θ ∈ R, a simple reject option is to reject x iff r(x) < θ. As men-
tioned in [14], uncertainty can have two different reasons: points being outliers,
or points being located in ambiguous regions. As we will discuss, certainty mea-
sures take these two causes into account to different degrees. Further, certainty
measures differ according to their scaling, allowing a uniform threshold θ iff r(x)
is normalized, and they differ according to their computational complexity and
online computability, i. e. efficiency. We investigate the following reject options:



RelSim: The relative similarity is inspired by the cost function of GLVQ. Its
suitability for a rejection measure has been mentioned in [11] already. It is
rRelSim(x) = (d− − d+)/(d− + d+). rRelSim is efficient, normalized to (0, 1), and
takes both, ambiguity and outlier rejection into account.

Dist: As certainty measure, we consider the disambiguity of the classification
as measured by the distance of a point to the closest decision boundary of the
classifier. The distance of a point x to the hyperplane separating the recep-
tive fields of w+ and w− is given by rDist(x) = (|d+ − d−|) /

(

2‖w+ −w−‖2
)

.
This formula is directly applicable if every class is modeled by only one pro-
totype. Otherwise, the underlying topology has to be estimated using e. g.
Hebbian learning [15]. This certainty measure is efficient but not normalized.
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Fig. 1: Isobars of the mea-
sures for an artificial two
class problem with Gaussian
clusters. Black squares are
GLVQ/RSLVQ prototypes.

d+ : Outliers can be identified by their distance
to the closest prototype d+. We use this infor-
mation for an outlier-based certainty measure as
basis for a reject option: rd+(x) = −d+(x). This
measure is efficient but not normalized.

Comb: This measure combines the previous two
reject options rComb(x) = (rDist(x), rd+(x)) lead-
ing to a reject strategy based on a threshold vec-
tor θ = (θ1, θ2): x is rejected if rDist(x) < θ1 or
rd+(x) < θ2. The measure takes into account am-
biguity and outliers, but it requires two thresh-
old parameters. For evaluation, we refer to the
best combination of both thresholds determined
via exhaustive search, which is no longer efficient
but can serve as a baseline for comparison.

Conf: Classifiers based on probabilistic mod-
els such as RSLVQ provide a direct confidence
value of the classification: rConf(x) = maxy p̂(y|x)
with the estimated probability p̂(·). This measure
is normalized and, depending on the probability
model, it takes into account ambiguous regions.
The drawback is that it can only be used for prob-
abilistic models such as RSLVQ which has higher
complexity as compared to GLVQ or GMLVQ.
Conf serves as baseline for an evaluation whether

simple geometric measures can reach the quality of probabilistic models.

Bayes: The Bayes classifier provides class probabilities for each class provided
the data distribution is known. The corresponding reject option rBayes(x) =
maxy p(y|x) is optimal in the sense of an error-reject trade-off [12]. We will use
it as ground truth for an artificial data set with known underlying distribution.

4 Experiments

We evaluate the results of the reject strategies in a 10-fold repeated cross-
validation with ten repeats for RSLVQ, GLVQ, and GMLVQ with one prototype



per class. The following data sets are used:

• Gaussian clusters : This data set contains two artificially generated over-
lapping 2D Gaussian clusters. These are overlaid with uniform noise.

• Image Segmentation: The image segmentation data set consists of 2310
data points representing small patches from outdoor images with 7 different
classes with equal distribution such as brickface, sky, . . . [16]. Each data
point consists of 19 real-valued image descriptors.

• COIL-20 : The Columbia Object Image Database Library (COIL-20) con-
sists of gray scaled images of twenty objects [17]. The objects are rotated
in 5◦ steps, so that there are 72 images per object. The data set contains
1440 data points which are 16384 dimensional. We use PCA [18] to reduce
the dimensionality to 30. The task is to classify each single object.

• Tecator data: The tecator data set consists of 215 spectra with 100 spectral
bands ranging from 850nm to 1050nm [19]. The task is to predict the fat
content of the probes, which is turned into a two class classification problem
to predict a high/low fat content by binning into two classes of equal size.

• Haberman: The Haberman survival data set contains 306 instances from
two classes indicating the survival for more than 5 years after breast cancer
surgery [16]. Data are represented by three attributes related to the age,
the year, and the number of positive axillary nodes detected.

We report the effect of the different reject strategies for the different models
RSLVQ, GLVQ, and GMLVQ where applicable. Thereby, we vary the reject
threshold θ in small steps from no reject (which corresponds to the original
model) to full reject (i. e. no data point is classified). Xθ denotes the points
which are not rejected using θ. The results are reported as graphs of the relative
size Xθ/X versus the classification accuracy on Xθ normalized by its size.

Figure 2 displays all results. For RSLVQ for Gaussian clusters, Conf, Dist
and Comb provide nearly the same shape as the optimal reject option of the
Bayes classifier. The same behavior occurs for RelSim, Dist and Comb with the
G(M)LVQ model. Only d+ shows poor results not only for Gaussian clusters but
also for the other data sets. This can be an indicator that there are less outliers
than ambiguous data points in the data. In nearly all models and for all data sets,
Comb constitutes the best reject measure, but being based on two thresholds
it is not efficient. RelSim and Dist provide comparable curves with less effort
except for Tecator (GLVQ) and Haberman (RSLVQ, GLVQ). As a conclusion,
we can see that RelSim in combination with GMLVQ offers an efficient certainty
measure with a quality comparable to optimum reject strategies in almost all
settings, but releasing the burden of an explicit probabilistic modeling for Conf
or optimization of different objectives for Comb.

5 Conclusion

We have compared several efficient geometric reject measures for prototype-
based approaches with statistical reject strategies on benchmark data sets. We
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Fig. 2: Average results of mentioned rejection options when applying RSLVQ,
GLVQ and GMLVQ models trained for different data sets. We display the
relative size of Xθ vs. the accuracy of the classifier on this set. The averaged
curve is plotted, where at least 80% of the single runs deliver a value.

applied the reject options to different models: GLVQ as popular LVQ scheme
based on a cost function, GMLVQ which uses a metric adaption, and RSLVQ



which provides a statistically motivated discriminative model. We showed that
geometrically motivated measures (RelSim, Dist, Comb) can be used to im-
prove the accuracy of a model and they lead to results comparable to optimum
Bayes reject strategies (e. g. using GMLVQ and RelSim) but releasing the bur-
den of explicit statistical modeling. This opens the way towards the design of
efficient life-long model adaptation for popular prototype-based classifiers such
as GMLVQ: the model complexity can easily be tailored online towards regions
with a low certainty of the classification, e. g. introducing novel prototypes which
are capable of representing novel aspects of the data.
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