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Abstract. In this contribution, we focus on reject options for prototype-
based classifiers, and we present a comparison of reject options based on
statistical models for prototype-based classification as compared to alter-
natives which are motivated by simple geometric principles. We compare
the behavior of generative models such as Gaussian mixture models and
discriminative ones to results from robust soft learning vector quantiza-
tion. It turns out that (i) reject options based on simple geometric show
a comparable quality as compared to reject options based on statistical
approaches. This behavior of the simple options offers a nice alterna-
tive towards making a probabilistic modeling and allowing a more fine-
grained control of the size of the remaining data in many settings. It is
shown that (ii) discriminative models provide a better classification ac-
curacy also when combined with reject strategies based on probabilistic
models as compared to generative ones.
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1 Introduction

Learning vector quantization (LVQ) [15] constitutes a powerful and efficient
classification strategy particularly suited for multi-class classification or online
scenarios. It can be substantiated by strong mathematical guarantees for gener-
alization behavior as well as learning dynamics for modern cost function based
versions such as generalized LVQ (GLVQ) [21] or robust soft LVQ (RSLVQ) [23].
In application scenarios, however, perfect classification can rarely be achieved
due to inherent noise in the data, overlap of classes, missing sensors, etc. Essen-
tially, a reject option relaxes the constraint of a classifier to provide a class label
for a given input with a low confidence value, rather an explicit ‘don’t know’ is
accepted as a return in such cases.

Note that most classifiers actually do provide a continuous value rather than
a crisp output only such as the distance of a given data point to the decision
boundary. Together with an appropriate threshold, these numbers could be taken
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as a reject option. However, the real-valued outputs provided by the classifiers
can usually not be interpreted as a confidence measure because their scaling is
unclear and can vary locally. A variety of approaches is concerned with tech-
niques how to turn these values into a statistical confidence [20, 27], or how to
define appropriate, possibly local thresholds for a reject option which respects
a different scaling of the values [9, 25]. Interestingly, while a number of efficient
strategies have been realized for popular classification schemes like support vec-
tor machines or k-nearest neighbor classifiers [4, 20, 27, 7, 12, 9, 6], relatively little
approaches address prototype-based learning strategies such as LVQ [25, 5, 13].
Another idea is the distance-based two stage approach from [16] which separately
addresses outliers and ambiguous regions. An approach, which combines a reject
option with empirical risk minimization for a binary classifier, is proposed in [11]
which could be a direction of further research.

In this approach we investigate reject options for prototype-based learning
schemes such as LVQ. In particular, we investigate approaches which are inspired
by the geometric nature of LVQ classifiers and we compare these reject options
to reject options based on confidence values. We consider the key question: Are
these geometric approaches comparable to reject strategies based on confidence
values of probabilistic models which can be optimal as shown in [4], and if so
under which conditions? Therefore, we systematically compare the behavior of
the measures to rejection strategies for probabilistic models. We vary (i) the
rejection strategy, ranging from deterministic, geometric measures to reject op-
tions based on confidence values, (ii) the data set, ranging from artificial data to
typical benchmarks, and (iii) the nature of the prototype-based model for which
the reject option is taken, considering purely discriminative models in compari-
son to generative ones. Albeit both classifiers are derived as explicit probabilistic
models. Purely discriminative ones are tailored to the classification task rather
than the data, such that it is not clear whether reject strategies can be based on
their confidence values. Similarly, it is not clear whether efficient deterministic
strategies based on simple geometric quantities can reach the performance of
rejection strategies on confidence values, the latter is supposed to require valid
probabilistic models of the data. We will show that this is indeed the case for
real life settings: heuristic reject strategies based on geometric considerations
offer an alternative to measures based on a confidence value, thus offering a way
towards reject strategies for purely deterministic LVQ schemes.

2 Probabilistic Prototype-Based Classification

Assume a data set X with elements of the real vector space Rn. A prototype-
based classifier is characterized by a set of prototypesW = {wi ∈ Rn}ki=1, which
are equipped with labels c(wi) ∈ {1, . . . , C}, if a classification into C classes is
considered. Classification of a data point x ∈ Rn takes place by a winner takes
all (WTA) scheme: x is mapped to the label c(x) = c(wi) of the prototype
wi which is closest to x as measured in some distance measure. Often, the
standard squared euclidean distance ‖x−wi‖2 or a generalized quadratic form
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(x−wi)
TΛ(x−wi) with positive semi-definite matrix Λ is considered; gener-

alizations to more general dissimilarity measures such as divergences, functional
metrics, or general dissimilarities have also been proposed [26, 10].

Due to its simple classification scheme and the representation of the model
in terms of few prototypes, prototype-based classification enjoys a wide popu-
larity. Additional there are diverse learning techniques available to induce an
appropriate model from a given data set. Popular learning techniques include
the classical family of LVQ as proposed by Kohonen [15], generalizations of LVQ
which establish the model by cost functions [21, 23], or unsupervised learning
schemes equipped with posterior labeling like neural gas or extensions thereof
[17, 2]. Here, we have a glimpse at two different strategies which play a role in
the subsequent experiments. We only consider probabilistic LVQ models, because
the results allow a direct use of a reject option on their confidence values.

RSLVQ: Robust soft learning vector quantization (RSLVQ) has been pro-
posed as a probabilistic model which, in the limit of small bandwidth, yields
update rules very similar to classical LVQ2.1 [23]. The objective is given as

E =
∑
j

log p(yj |xj ,W ) =
∑
j

log
p(xj , yj |W )

p(xj |W )
(1)

where p(xj |W ) =
∑
i p(wi)p(xj |wi) constitutes a mixture of Gaussians with

prior probability p(wi) usually taken uniformly over all prototypes. The prob-
ability p(xj |wi) is usually taken as an isotropic Gaussian centered in wi with
fixed variance σ2, or a generalization thereof with a more general covariance
matrix. The probability p(xj , yj |W ) =

∑
i δ
c(wi)
c(xj)

p(wi)p(xj |wi) (δji being the
Kronecker delta) restricts to the mixture components with the correct labeling.
This likelihood ratio is optimized using a gradient technique. RSLVQ provides
an explicit confidence value p(y|x,W ) for every class y of a given data point x.

GMM: Albeit RSLVQ is derived from a probabilistic model, its cost function
is purely discriminative. This means model parameters do not necessarily yield to
a good generative model for the observed data x. As shown in [22], for example,
this is not the case in general. In practice, generative data models are often
trained in an unsupervised way, directly aiming at a representation of the data
distribution p(x), popular examples being Gaussian mixture models for density
estimation. Here we consider a class-wise Gaussian mixture model (GMM) which
aims at a representation of every class by optimizing the following data log-
likelihood

E =
∑
j

log

(∑
i

δ
c(wi)
c(xj)

p(wi)p(xj |wi)

)
(2)

where p(xj |wi) is a Gaussian distribution centered in wi, and p(wi) is the class-
wise prior of the prototype with

∑
j δ

c(wj)

c(xj)
p(wj) = 1. The model parameters

can be optimized by means of a gradient technique or, alternatively, a classical
EM scheme for every class, since the objective decomposes according to the
class labels [3]. A GMM provides for each class y an explicit confidence measure
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p(y|x,W ) = p(y)p(x, c(x)|W )/
∑
z∈{1,...,C} p(z)p(x, z|W ) where, due to the

training procedure, a generative data model representing the distribution on x
is present. In this context p(y) is the prior of the class with

∑
y∈{1,...,C} p(y) = 1.

Since GMM and RSLVQ offer probabilistic models, the classification of a data
point x can be based on the most likely class argmaxyp(y|x,W ). In practice,
the resulting maximum y often corresponds to the class of the closest prototype
such that a close resemblance to a classical WTA scheme is obtained.

3 Reject Options

What are possible rejection measures of prototype-based models which correlate
to the confidence of a classification and, together with a rejection strategy such
as a simple threshold, lead to a reject option? In general, a rejection measure
constitutes a function r : Rn → R, r(x) indicating the certainty of the classi-
fication of a data point x, together with an ordering direction, which specifies
whether low or high values of r(x) correspond to a high certainty of the clas-
sification. We assume that a rejection measure is always scaled in such a way
that smaller values correspond to a lower certainty. We consider the following
rejection measures:

Conf: Chow proved for a Bayes classifier with known class densities that a
reject option on rConf(x) = maxy p(y|x) reaches the optimum error-reject trade-
off: for a certain error rate (error probability) it minimizes the reject rate (reject
probability)[4]. This means to reject a data point if rConf(x) < θ. This strategy
relies on the assumption that a good probabilistic model of the data is given,
otherwise guarantees as proved e. g. in [11] do not necessarily hold. Note that in
regions with low class densities this measure can return high confidence values
caused by normalization, thus it cannot exclude outliers. Our measure (Fig. 1)
is inspired by the one of Bayes but the values are calculated by the mentioned
models and not by a Bayes classifier.

Dist: This error measure is inspired by geometric considerations. It returns
the distance of x to the closest decision boundary. Assume w+ and w− cor-
respond to prototypes with a different labeling and neighbored receptive fields
with the belonging distances d+ and d− to x. Then, the distance of a data
point x to the decision boundary defined by these two prototypes is given as
rDist(x) = |d+−d−|

2‖w+−w−‖2 (Fig. 1). If only one prototype per class is present, the
prototypes w+ and w− are given by the two closest prototypes of the data
point x. Provided a class is represented by more prototypes than one, the un-
derlying topology has to be estimated using e.g. the Hebbian learning strategy
as proposed in [18].

d+: This error measure is also geometrically inspired, treating points which
are outliers with low confidence. This is measured by the squared distance to
the closest prototype rd+(x) = −d+(x) (Fig. 1).

Note that these reject options differ in the following items:
– Motivation of r: There are essentially two different reasons to reject a data

point, which are referred to in the literature as a rejection because of an
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Fig. 1. Level curves of the considered reject options for a GMM and a RSLVQ model
of an artificial 2D Gaussian data set. The black symbols are prototypes.

ambiguous classification, or a rejection because of the data point being an
outlier [25]. The reject measures as given above follow different principles.
Conf realizes a rejection because of ambiguity, since it requires that the
maximum class probability reaches the threshold θ. Due to the normalization
of probabilities, this results in a gap of the class probabilities. Dist explicitly
realizes an ambiguous reject option by referring to the class boundary, while
d+ realizes an outlier reject option.

– Scaling of r: For Conf, values are in the interval [0, 1] allowing a direct in-
terpretation as statistical confidence value. This fact offers a simple way to
set an appropriate threshold due to external requirements regarding the con-
fidence, for example. In contrast, the other measures take values in the real
numbers, but their scaling is not clear. Since the scaling can even vary locally
and it can depend nonlinearly on the confidence, a proper choice of a thresh-
old is unclear. We will investigate global threshold strategies in experiments,
yielding results comparable to reject options based on the confidence.

– Requirements as regards the model: The scaling of Conf as a confidence
measures requires that a probabilistic model of the data is available. We
investigate the effect of having a discriminative versus generative model in
experiments, only the latter actually providing a valid representation of the
input distribution in general.

These measures provide values indicating the confidence of a classification
such that they give rise to a direct threshold-based rejection strategy: given
θ ∈ R, points which fulfill r(x) < θ are rejected. Since measures such as Dist
and d+ aim at a rejection caused by different reasons. It can be worthwhile to
combine several measures [25]. This leads to a more complex rejection strategy
which depends on two thresholds. We refer to this measure as follows:

Comb: This measure combines the previous two reject options rComb(x) =
(rDist(x), rd+(x)) leading to a reject strategy based on a threshold vector θ =
(θ1, θ2): x is rejected if rDist(x) < θ1 or rd+(x) < θ2.
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4 Experiments

We test the behavior of the different rejection measures in experiments, focusing
on the following questions: What is the behavior of the measures regarding dif-
ferent characteristics of the model ranging from a discriminative to a generative
one? What is the behavior of simple deterministic heuristics in comparison to
rejection strategies based on confidence measures and do the latter require valid
probabilistic models? Since probabilistic models are needed for an evaluation
of Conf, we use the two probabilistic models RSLVQ and GMM. For all set-
tings, RSLVQ and GMM are trained using one prototype per class. For RSLVQ,
a global parameter σ2 is optimized via cross-validation. For GMM, correlations
are set to zero and local scalings of the dimensions are adapted by means of diag-
onal matrices attached to the prototypes which are optimized in an EM scheme.
Training takes place until convergence using random initialization and without
leave-one-out method. Convergence is assumed if the training error changes less
than 10−5 during two sequenced training steps. We use the following data sets:

– Gaussian clusters: This data set consists of two artificially generated Gaus-
sian clusters in two dimensions with overlap. These are overlaid with uniform
noise in the plane. Data are randomly divided into training and test set.

– Image Segmentation: The image segmentation data set consists of 2310
data points representing small patches from outdoor images with 7 different
classes with equal distribution such as brickface, sky, . . . [1]. Each data point
consists of 19 real-valued image descriptors. The data set is decomposed into
a training set of 210 data points and a test set of 2100 data points. Due to
zero variance, dimensions 3 to 5 are deleted, and data are normalized by a
z-transformation before training.

– Tecator data: The Tecator data set consists of 215 spectra with 100 spectral
bands ranging from 850 nm to 1050 nm [24]. The task is to predict the fat
content of the probes, which is turned into a two class classification problem
to predict a high/low fat content by means of binning the real values into
two classes of equal size. Data are randomly split into a training set with
144 samples and test set with 71 samples.

– Haberman: The Haberman survival data set contains 306 instances from
two classes indicating the survival for more than 5 years after breast cancer
surgery [1]. Data are represented by three attributes related to the age, the
year, and the number of positive axillary nodes detected. Data are randomly
split into training and test set of equal size.

For all data sets, two models are trained: a probabilistic generative model by
means of class-wise GMM, and a probabilistic discriminative model by means of
RSLVQ. For the resulting models, the effect of a reject option is compared for
different possible strategies as introduced above. We vary the reject threshold θ
in small steps from no reject (which corresponds to the original model) to full
reject (i.e. no data point is classified). For Comb, a threshold vector is varied
accordingly, and we report the result of the respective best combination. We
denote the set of data points which are not rejected using θ as Xθ. The results
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are depicted as graphs plotting the relative size |Xθ|/|X| versus the classification
accuracy on Xθ normalized by its size.

Figure 2 shows the results obtained for the different rejection strategies and
data sets. The resulting graphs [19] display a smooth transition from the accuracy
of the model without reject options to the limit value 1 (in the case of Gaussian
clusters it goes to 0) which results if |Xθ| approaches 0 (we leave out the value for
the empty set at |Xθ| = 0). The classification accuracy on Xθ does not change
with θ if the classification accuracy is already 100% (as is the case for the Tecator
data set for RSLVQ), or if the errors are uniformly distributed over the range of
the rejection measure r which is the case for the Haberman data set, for example.
In the latter case, classes are imbalanced with the second class accounting for
roughly one third of the data only, and LVQ models tend to represent only class
one properly, such that class two accounts for errors equally distributed according
to r. Note that the graphs are subject of noise if the size |Xθ| approaches 0 which
can be attributed to the small sample size Xθ. Accordingly, the graphs are not
reliable for |Xθ|/|X| < 0.1, and the corresponding parts of the graphs should
be seen as an indicator only. We choose the values of θ equidistant between the
extremal values of each single measure.

Interestingly, the control of the number of points which are not rejected,
|Xθ|, depending on the threshold θ partially has gaps, as indicated in Fig. 2
by the straight parts of the curves and the ending of the curves at some size
of |Xθ| � 0. Such gaps can occur provided the size of Xθ changes abruptly
with the threshold, which seems to be the case in some settings where a further
increase of the thresholds leads to a rejection of all remaining data points. This is
the fact for Conf for Gaussian clusters, Image Segmentation and Tecator for the
GMM model, indicating that no points with confidence larger than a maximum
threshold value θ exist. Interestingly these gaps can be observed for Conf for
the generative models only, not the discriminative ones. Further, this behavior
is observed for d+ for the data sets Gaussian clusters and Image Segmentation
(both models) and Tecator (generative model). In contrast, the graphs of Dist
and Comb do not have large gaps.

We can draw a few general conclusions from the graphs displayed in Fig. 2:
In all cases, the discriminative model RSLVQ yields the same or better results
as compared to generative GMM models, albeit the latter have a higher degree
of freedom because of an adaptive diagonal matrix per prototype unlike RSLVQ,
which relies on a global bandwidth only. This also holds for the full range of cer-
tainty values taken for the reject strategies, regardless of whether deterministic
of probabilistic rejection measures are used. Thus, it seems advisable to focus on
the discriminative task, where confidence based measure or deterministic mea-
sures can be used. As expected, reject strategies based on the confidence yields
the best behavior in most cases, but it does not allow a smooth variation of the
size of Xθ for a large range in two of the settings. As mentioned in Section 3
Conf cannot exclude outliers. This is apparently not a problem for the used
data sets, highlighting the applicability of the optimality criterion of Chow [4].
Dist seems to offer a reasonable strategy in all other settings, whereby the be-
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havior is universally good for generative as well as discriminative models, and
it relaxes the burden of computing an explicit confidence value. d+ gives better
results than Dist in only one case (Gaussian clusters, GMM), and worse results
than Dist in three cases (Gaussian cluster, RSLVQ; Image segmentation, both
models; Tecator, GMM). Thus, in general, focusing on the discriminative nature
seems advisable also as concerns the rejection strategy. As expected, Comb
shows results comparable to the best of the two geometric reject options Dist
and d+, but also requiring a more complex reject strategy by the combination
of both values.

5 Conclusions

We have compared direct geometric reject options and their combination with
Bayesian motivated reject options in a couple of benchmarks using models with
different characteristics. The resulting observations are that geometric measures
such as Dist behave equally good as probabilistic measures, while often allowing
a more fine-grained control of the size of the rejected data set. In addition, they
do not require explicit probabilistic models thus opening the way for an integra-
tion into powerful deterministic alternatives such as GLVQ [21]. The suitability
of the approach to these settings is the topic of ongoing work [8].

While allowing for simple measures which are applicable for a wider range of
models, the scaling of appropriate thresholds is not clear a priori and it depends
on the data set at hand. In the literature, a few proposals how to automatically
determine data-adapted values have been proposed [25], which can be transferred
to our setting. They can even be extended to online scenarios, and LVQ classifiers
offer intuitive life-long learning strategies [14].
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Fig. 2. Results of different rejection options when applied to generative or discrim-
inative models trained for different data sets. We report the relative size of Xθ as
compared to the accuracy of the classifier on this set [19].


