
Certainty-based Prototype Insertion/Deletion
for Classification with Metric Adaptation

Lydia Fischer1,2, Barbara Hammer2 and Heiko Wersing1 ∗

1 – HONDA Research Institute Europe GmbH,
Carl-Legien-Str. 30, 63065 Offenbach - Germany

2 – Bielefeld University, Universitätsstr. 25, 33615 Bielefeld - Germany

Abstract. We propose an extension of prototype-based classification
models to automatically adjust model complexity, thus offering a powerful
technique for online, incremental learning tasks. The incremental technique
is based on the notion of the certainty of an observed classification. Unlike
previous work, we can incorporate matrix learning into the framework by
relying on the cost function of generalised learning vector quantisation
(GLVQ) for prototype insertion, deletion, as well as training. In several
benchmarks, we demonstrate that the proposed method provides compa-
rable results to offline counterparts and an incremental support vector
machine, while enabling a better control of the required memory.

1 Motivation

Machine learning methods such as learning vector quantisation (LVQ) or support
vector machines (SVM) provide state of the art classification schemes for auto-
mated data analysis [1, 2, 3]. The techniques are mostly used in offline scenarios
where a suitable model complexity can be adjusted based on cross-validation.
This procedure becomes prohibitive for big or streaming data sets and life-long
learning, where data cannot be inspected at once, and an appropriate model
complexity cannot be determined prior to training. In this setting, online, incre-
mental, or streaming algorithms are of interest, which are capable of adapting
its model complexity while training based on the observed data [4].

For SVM, incremental variants have been proposed which inspect only one
data point at a time, but require extensive storage space due to a growing number
of support vectors1 [5, 6, 7]. For LVQ, a few online heuristics have been proposed:
some only incorporate new training data [8], while others adjust the number of
prototypes either by error-based insertion only [9, 10, 11], or dynamic prototype
deletion and insertion [12, 13]. Unsupervised counterparts are for example the
growing neural gas [14] and extensions thereof. These techniques, however, are
based on heuristic grounds rather than a cost function. Further, no technique
dynamically adjusts the model complexity and the underlying metric.

In this article we introduce an incremental LVQ method which inserts and
deletes prototypes based on a certainty measure strongly related to the GLVQ
costs [15, 16] and an analysis of its interaction with metric adaptation. This
method allows a fast adaptation to new training data by prototype insertion,

∗BH gratefully acknowledges funding by the CITEC center of excellence. LF acknowl-
edges funding by the CoR-Lab Research Institute for Cognition and Robotics and gratefully
acknowledges the financial support from Honda Research Institute Europe.

1We will use the online SVM code at: http://www.isn.ucsd.edu/svm/incremental/

respecting noise or overlaps by prototype deletion. The method reaches results
comparable to offline variants or the incremental SVM [5], using less memory.

2 Learning Vector Quantization

Assume υ training data points xi with class label yi such that (xi, yi) ∈ Rn ×
{1, . . . , C}. A LVQ classifier consists of a set of prototypes W = {wj ∈ Rn}kj=1

equipped with class labels c(wj) ∈ {1, . . . , C}. A given point xi is classified
according to the label of the closest prototype, the best matching unit (BMU),
as measured in the squared Euclidean distance ‖x−w‖2 or variants.

Given training data, generalised LVQ (GLVQ) [17] optimises the location of
prototypes by means of a stochastic gradient descent on the cost function

E =

υ∑
i=1

Φ((d+(xi)− d−(xi))/(d
+(xi) + d−(xi))) (1)

where Φ is a monotonic increasing function, e. g. the logistic function. d± is the
distance of a data point xi to the closest prototype w± of the correct/incorrect
class. A generalisation of the GLVQ towards a general quadratic form (x −
wj)

TΛ(x−wj) with positive semi-definite matrix Λ has been proposed under the
acronym GMLVQ [1]. A local version thereof is the local GMLVQ (LGMLVQ) [1]
where every prototype wj has its own local metric di(x,wj) = (x−wj)

TΛj(x−
wj). This cost function strongly correlates to the classification error since a data
point is classified correctly iff the nominator of the cost function is below zero.

3 Incremental online LVQ

We introduce an incremental online learning for LVQ (ioLVQ) which can be
used in combination with any of GLVQ, GMLVQ, or LGMLVQ. Starting with
an empty set of prototypes, new prototypes are inserted or deleted on demand.
Existing ones are adapted according to the standard GLVQ scheme, possibly
including matrix learning. Hence the number of prototypes varies automatically
to mirror the complexity of the observed training data. Note that the term

RelSim(x) = (d−(x)− d+(x))/(d−(x) + d+(x)) (2)

relates to the summands of the GLVQ costs and can be interpreted as a certainty
of the classification: It provides values RelSim(x) ∈ (−1, 1), where values near 0
indicate high uncertainty, high values near 1 indicate a high certainty, and values
below 0 indicate a wrong classification since d+ > d−. It has been investigated
recently that this value can serve as an efficient approximation of a confidence for
classification with rejection [16]. In the following, this measure serves as signal
which changes of prototypes likely decrease the GLVQ costs. There are three
mechanisms to self-adjust the model complexity based on the observed data:

New classes insertion strategy taken from [13]: Each training point (x, y) with
y 6= c(wj) ,∀ j, i. e. a new class, is directly used as new prototype with label y
reducing the costs for class y.

Prototype insertion: Wrong classifications increase the costs (1), hence lowering
their number decrease the costs, provided the remainder is not greatly affected.
Based on an idea from [9, 11], wrongly classified training data are stored in a
set S with maximum storage capacity gmax. Once |S| = gmax, for each class p
for which errors are stored (i. e. ∃ i : p = yi ∧ xi ∈ S) a prototype with label p is
introduced. We determine its position to minimise costs, i. e. the point (xi, p) in
the set with lowest RelSim(xi) is chosen as prototype position. Note that this
also corresponds to a high degree of uncertainty, that means a potentially useful
placement. After this insertion, the set S is cleared, i. e. S := ∅.
Prototype deletion: Unbounded prototype insertion can generate prototypes
with noisy Voronoi cells, hence they harm more than they use. We remove
prototypes based on their contribution to the costs (1), mimicking the idea
underlying [12] that counts correct vs. wrong classifications as score. Here, every
prototype w is accompanied by a parameter η(w), initialised with zero, that
sums up the certainty of the classifications of points in its Voronoi cell. Hence a
presentation of a data point (x, y) with BMU wl leads to the update:

η(wl) := η(wl) + RelSim(x) . (3)

The value η(wI) is negative if and only if, on average, the prototype accounts
for more wrongly classified points than correct ones, weighted by their certainty.
In periods of rnum seen training data points, prototypes w with η(w) < 0 are
removed since their deletion directly improves the GLVQ costs.

4 Experiments

Unless stated otherwise, we consider randomly ordered data presented in a single
pass, like in a streaming setting, using constant learning rates. Evaluation is
based on ten repeats of a 10-fold cross validation. Considered data sets are:

• Image: The image segmentation data set contains 2310 data points with
19 real-valued image descriptors. The data represents small patches from
outdoor images with 7 different, balanced classes like grass, cement, etc. [18].

• Coil: The Columbia Object Image Database Library contains gray scaled
images of 20 objects [19]. Rotating each object in 5◦ steps, provides 72
images per object. The data set has 1440 vectors with 16384 dimensions
that are reduced with PCA [20] to 30.

• Outdoor2: The outdoor obstacle data set contains 4000 data points that
contain the 21 values of a 6 bin rg chromaticity diagram. The data points
belong to 40 objects such as dog, red ball, book, etc. lying in grass.

Incremental parameters: We first analyse the effect of the parameters gmax and
rnum of ioGLVQ without metric learning (table 1, first half) since these parameters
have a crucial influence of how the model deals with the stability/plasticity
dilemma like the parameters of an unsupervised counterpart which is discussed in

2Thanks to Viktor Losing for providing this real world data set.

Data Err |W | Err |W | Err |W | Err |W |
gmax 20 50 80 100

Image 13.3 103.1 20.1 62.6 23.6 48.2 25.9 42.4
Coil 4.9 73.0 8.7 58.6 10.8 50.7 13.8 43.7
Outdoor 11.8 376.1 13.1 332.4 14.1 294.8 15.6 268.6

rnum 60 150 250 400

Image 28.6 22.6 22.8 37.3 20.4 42.8 18.4 51.9
Coil 16.8 38.4 12.2 48.5 10.9 52.1 9.0 57.3
Outdoor 30.9 66.7 26.7 97.2 23.1 136.9 20.3 155.9

global a) random b) unit matrix c) mixture d) trained matrix

Image 16.3 21.9 17.2 21.6 16.4 22.2 13.0 17.9
Coil 11.6 30.4 11.5 30.6 11.1 29.6 5.5 23.1
Outdoor 18.6 179.5 16.2 184.1 19.2 180.6 13.7 194.7

local a) random b) unit matrix c) mixture e) next proto

Image 17.5 16.6 17.0 16.5 17.6 16.9 16.7 15.8
Coil 3.2 23.9 3.2 23.5 3.7 24.1 3.0 24.3
Outdoor 19.9 186.2 17.9 191.3 20.1 187.0 19.9 185.8

Table 1: We report the average test errors Err and the average prototype number
|W |. First part: Effect of the parameter gmax without removing and of the
parameter rnum with a fixed gmax = 20 (ioGLVQ). The marked results lie on the
Pareto-front. Second part: Effect of the initialisation of the global/local metric.

[21]. The first block shows results varying gmax only without prototype deletion
(rnum =∞). The parameter gmax controls the speed of prototype insertion, with
small values accounting for a fast reacting but possibly noise-fragile system. A
prototype removal strategy makes the system more robust with respect to noise.

The second block of table 1 shows the effect of rnum for a fixed gmax. Changing
rnum to high values increases the number of prototypes. Too small values of rnum
prohibit a sufficient adaptation of prototype positions, and prototypes are merely
replaced. The parameters gmax and rnum control the trade off between the error
rate and the number of prototypes. In the first half of table 1, Pareto-optimal
solutions with respect to these two criteria are marked in bold. Based on these
findings, in the following, we choose gmax ≈ 40 and rnum ≈ 0.1 · data set size.

Compatibility with metric learning: We analyse the effect of metric learning for
ioLVQ using several initialisation methods for the metric: a) random values in
(-1,1), b) the unit matrix, c) a unit diagonal and random elements otherwise d)
initialisation with pre-trained global matrix obtained from a previous model, e)
initialisation with local matrix of the next prototype from the same class. The
second part of table 1 shows the results. Clearly, differences are only minor. We
will use initialisations c) respectively e) as robust ones in the following.

Comparative Evaluation: We show three experimental settings: 1) a single
streaming pass through the data; 2) multiple streaming passes (Image: 70, Coil:
120, Outdoor: 150; the number of passes is adjusted according to the convergence
speed of batch LVQ); these results are compared with an incremental SVM [5];
3) batch versions of the LVQ approaches, where the method is initialised with
one prototype per class (Image, Coil) and four prototypes per class (larger values
hardly influence the classification accuracy), this is compared with a batch SVM
[22]. In 1) and 2) learning rates are constant while in 3) the learning rates are

Data Err |W | Err |W | Err |W | Err |SV |

1) GLVQ GMLVQ LGMLVQ

Image 20.4 42.8 16.3 21.9 15.9 23.5
Coil 9.0 57.3 11.1 29.6 3.0 24.3
Outdoor 20.3 155.9 16.2 184.1 17.9 191.3

2) GLVQ GMLVQ LGMLVQ incremental SVM

Image 16.6 70.1 4.8 58.3 3.4 55.0 4.2 611.4
Coil3 3.0 83.6 0.7 67.1 0.0 36.1 0.7 1546.3
Outdoor 16.6 241.9 14.8 255.8 16.7 245.2 16.5 446.3

3) GLVQ GMLVQ LGMLVQ batch SVM

Image 20.9 7 9.9 7 5.2 7 2.8 265.8
Coil 9.9 20 3.8 20 0.8 20 0.0 773.8
Outdoor 17.7 160 12.6 160 18.5 160 4.7 1537.4

Table 2: Comparison of the online and batch version of LVQ, batch SVM [22]
and incremental SVM [5]. For SVM, multiple classes are addressed by one vs.
rest encoding. We display the average test error Err and the average number of
prototypes |W |, support vectors |SV |. For settings 1) and 2) Pareto optima are
set boldface. In setting 3) the best error rate (omitting batch SVM) is set italic.

annealed (table 2). The learning rates (prototypes, metric) used in ioLVQ are
roughly one magnitude smaller than in the batch version.

Learning a metric improves the performance and lowers the demand of
prototypes, except for the outdoor data set. The reached performances are
better than the performances of the batch counterparts for LVQ (except outdoor:
GMLVQ) but the ioLVQ models use more prototypes than the batch models, in
the worst case (image: GLVQ) ten times more. In general, this higher number
of prototypes is acceptable since the number is still mostly in the same order
of magnitude. The results of ioGMLVQ are comparable to the results of an
incremental SVM, while ioLGMLVQ is even better for (Image, Coil).

5 Conclusion

We proposed an efficient strategy for inserting/deleting prototypes based on
a certainty measure for online incremental prototype-based classification, in
particular with metric adaptation, and we demonstrated its performance using
GLVQ, GMLVQ, LGMLVQ in benchmarks. It turned out that the initialisation
of the metric parameters only mildly effects the performance, while proper
(i. e. small) learning rates are often crucial. Interestingly, the models are very
robust to the choice of the initialisation strategies and parameters, whereby, as
expected, the incremental parameters gmax and rnum control complexity and
accuracy of the resulting models. Interestingly, most of the obtained values
are Pareto optimal when varying these parameters. The obtained results are
comparable or even better than the results obtained by batch learning and an
incremental SVM version, displaying the great promise of the proposed models.
One striking property of the results which we obtained in real life benchmarks is
the comparably small complexity with a number of prototypes which is larger

3Features are scaled to [0,1] for both SVMs.

than for batch variants but considerably smaller than the respective number of
support vectors in SVM training. This observation identifies ioLVQ as a model
with high promises for efficient online learning in the context of big data.

References

[1] P. Schneider, M. Biehl, and B. Hammer. Adaptive Relevance Matrices in Learning Vector
Quantization. Neural Computation, 21(12):3532–3561, 2009.

[2] S. Seo and K. Obermayer. Soft Learning Vector Quantization. Neural Computation,
15(7):1589–1604, Jul 2003.

[3] I. W. Tsang, J. T. Kwok, and P.-M. Cheung. Core vector machines: Fast SVM training
on very large data sets. Journal of Machine Learning Research, 6:363–392, 2005.

[4] J. Read, A. Bifet, B. Pfahringer, and G. Holmes. Batch-Incremental versus Instance-
Incremental Learning in Dynamic and Evolving Data. In Proc. IDA, pages 313–323,
2012.

[5] G. Cauwenberghs and T. Poggio. Incremental and Decremental Support Vector Machine
Learning. In Proc. NIPS, pages 409–415, 2000.

[6] C.P. Diehl and G. Cauwenberghs. SVM Incremental Learning, Adaptation and Optimiza-
tion. In Proc. IJCNN, volume 4, pages 2685–2690, 2003.

[7] P. Laskov, C. Gehl, S. Krüger, and K.-R. Müller. Incremental Support Vector Learning:
Analysis, Implementation and Applications. J. of Mach. Learning Res., 7:1909–1936, 2006.

[8] S. Bharitkar and D. Filev. An online learning vector quantization algorithm. In Proc. of
the 6th Int. Symp. on Signal Process. and its Applications, pages 394–397, 2001.

[9] S. Kirstein, H. Wersing, and E. Körner. Rapid Online Learning of Objects in a Biologically
Motivated Recognition Architecture. In Proc. DAGM, pages 301–308, 2005.

[10] S. Kirstein, H. Wersing, and E. Körner. A Biologically Motivated Visual Memory Archi-
tecture for Online Learning of Objects. Neural Networks, 21(1):65–77, 2008.

[11] T. C. Kietzmann, S. Lange, and M. Riedmiller. Incremental GRLVQ: Learning Relevant
Features for 3D Object Recognition. Neurocomputing, 71(13-15):2868–2879, 2008.

[12] M. Grbovic and S. Vucetic. Learning Vector Quantization with Adaptive Prototype
Addition and Removal. In Proc. IJCNN, pages 994–1001, 2009.

[13] Y. Xu, F. Shen, and J. Zhao. An incremental learning vector quantization algorithm for
pattern classification. Neural Computing and Applications, 21(6):1205–1215, 2012.

[14] Bernd Fritzke. A Growing Neural Gas Network Learns Topologies. In Advances in Neural
Information Processing Systems, NIPS, pages 625–632, 1994.

[15] L. Fischer, B. Hammer, and H. Wersing. Rejection Strategies for Learning Vector Quanti-
zation. In Proc. ESANN, pages 41–46, 2014.

[16] L. Fischer, B. Hammer, and H. Wersing. Efficient Rejection Strategies for Prototype-based
Classification, 2014, Neurocomputing accepted.

[17] A. Sato and K. Yamada. Generalized Learning Vector Quantization. In Advances in
Neural Information Processing Systems, volume 7, pages 423–429, 1995.

[18] K. Bache and M. Lichman. UCI machine learning repository, 2013.

[19] S. A. Nene, S. K. Nayar, and H. Murase. Columbia Object Image Library (COIL-20).
Technical Report CUCS-005-96, February 1996.

[20] L. J. P. van der Maaten. Matlab Toolbox for Dimensionality Reduction, March 2013.
http://homepage.tudelft.nl/19j49/Matlab Toolbox for Dimensionality Reduction.html.

[21] Fred Henrik Hamker. Life-long learning Cell Structures–continuously learning without
catastrophic interference. Neural Networks, 14(4-5):551–573, 2001.

[22] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011.

