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Abstract—One of the main aims of lifelong learning architec-
tures is to efficiently and reliably cope with the stability-plasticity
dilemma. A viable solution of this dilemma combines a static
offline classifier, which preserves ground knowledge that should
be respected during training, with an incremental online learning
of new or specific information encountered during use. A feasible
realisation has been published lately based on intuitive distance-
based classifiers using the concept of metric learning (Fischer et
al.: Combining offline and online classifiers for life-long learning
(OOL), IJCNN’15). One crucial aspect of such a system is how to
combine the offline and online model. A generic approach, taken
in OOL, uses a dynamic classifier selection strategy based on
confidences of both classifiers. This can cause problems in the case
of confidence drift, especially when the validity of the confidence
estimation of the static offline classifier changes. This pitfall
occurs in the context of metric learning whenever the metric
tensor of the online system becomes orthogonal to the metric of
the offline system, hence the respective internal data description
mismatch. We propose an efficient metric learning strategy which
allows an online adaptation of an invalid confidence estimation
of the OOL system in case of confidence drift.

I. INTRODUCTION

Lifelong learning has stirred quite some attention recently
[1]: in many areas of every-day life, digital data are generated
in a constant stream, stemming e. g. from distributed sensors
in households, wearable technologies, intelligent smartphones,
and smart systems in general. While classical machine learning
enables us to equip data processing technologies with a suitable
fundamental functionality, there is an increasing trend for the
personalisation of electronic systems according to the specific
needs of a user. Since these demands are not known priorly, this
challenge requires lifelong model adaptation and continuous
learning according to the observed data. Emerging areas which
put quite some research effort into lifelong learning include
autonomous robotics, autonomous driving, or assistive systems,
for example [2]–[4].

While batch learning approaches still cover the majority of
machine learning scenarios, humans always learn in an online
setting based on data which are the result of their interaction
with the environment. Thereby, humans can rely on fundamental
concepts which they acquired during their lifetime; at the
same time, they display an astonishing capability of rapidly
integrating novel concepts and adapting to new situations. These
demands correspond to two seemingly contradictory goals:
guaranteeing the stability of ground concepts while enabling
the flexibility to deal with a changing environment. These
conflicting requirements are difficult to realise in technical

systems: It is unclear how to address the so-called stability-
plasticity dilemma, and, often, catastrophic forgetting of funda-
mental concepts can be encountered in technical realisations of
adaptive models [5], [6]. Thus, basic functionality and safety-
critical requirements are often hard-coded in such systems.

A number of promising approaches of how to deal with
so-called concept drift has been published recently [7], [8]:
concept drift refers to the fact that the probability distribution of
the data is subject to change, hence a learned system becomes
invalid and online adaptation is necessary. Concept drift can
either affect the class conditional distribution p(y|x) (real
concept drift) or the input distribution p(x) (virtual concept
drift / covariate shift). Further, the drift can happen rapidly or
gradually, requiring different strategies. Typically, rapid changes
can better be taken into account by active strategies, while
gradual changes are harder to detect and often accounted for by
passive techniques [8]. Active methods aim for an identification
of the time points where concept drift occurs, whereby they
often rely on statistical tests of representative system parameters
[9], [10]. Passive methods realise a continuous adaptation of
the model at hand, e. g. based on online gradient methods [11]–
[13]. Since such techniques face a large risk of catastrophic
forgetting, popular models often combine more than one
architecture, this way enabling a flexible control about which
parts of the system are adapted based on the new data [14], [15].
Ensembles methods have proven as a particularly successful
tool in this context, since they naturally represent a diversity of
different concepts [9], [15], [16]. In this contribution, we will
deal with gradual concept drift, i. e. we will focus on passive
approaches and their suitable online adaptation.

We will tackle one specific setting which is of great relevance
whenever safety-critical scenarios are treated or whenever there
is a need to guarantee some basic functionality of the system
at every time step: we assume, that a trained offline classifier
is available which represents a basic model p(y|x) for relevant
regions of the space as mirrored by a probability distribution
p(x) of the offline training data. This model should remain
stable while training. The goal of the system is to accompany
this basic functionality with an adaptive model which can
take into account new concepts, such as new classes y, or a
refinement of the class conditional p(y|x) for regions of the
space which are not well covered in the offline model (i. e.
p(x) is small for the offline model but it becomes large for
the online data). Note that, unlike concept drift as considered
e. g. in [17] and unlike covariate shift as considered e. g. in



[18], we need to guarantee the functionality of the basic offline
model in addition to the adaptive online model, independent
of the shape of the observed drift.

Recently, an effective architecture has been proposed to
deal with this challenge: A hybrid architecture dubbed OOL
[19], [20] combines two complementary classifiers via a
dynamic classifier selection scheme which is based on classifier
confidences [21]–[24]. One of the classifiers is static and
represents the basic functionality, while the other realises an
adaptive model which can be adjusted to the online training
data. Both classifiers are enhanced with a confidence estimation,
based on which the decision is taken how to compute the overall
output. This classifier selection strategy is accompanied by a
scheme when and how to adapt the online model according to
the given data. Since this second online classifier starts from
scratch and learns incrementally during its whole lifetime, it
allows to deal with concept-drift; in particular, it can react to
new classes y and covariate shift; the latter requires a refinement
of the offline model in specific regions of the data space. First
promising results have been presented in [19], [20], based on
intuitive prototype-based models.

This general architecture, though conceptually simple and
efficient, bears a severe risk: while the offline classifier remains
valid for regions of the data space which are covered by the
offline training set, virtual concept drift, i. e. a change of the
probability p(x), can cause a wrong confidence estimation of
the offline classifier for regions which become relevant while
online learning. Provided training and test data were known
in advance, this setting could be accounted for suitable data
reweighing schemes, one of the most promising techniques to
deal with covariate shift [18]. In our setting, this information
is not available priorly, and there occurs the need to adapt
the classifier confidence estimation according to the observed
drift. We refer to this problem as confidence drift: while
training, the estimation of the confidence of the offline or
online classifier becomes invalid, such that their combination
leads to a false result, albeit the single classifiers are still valid
in their respective regions.

We focus on one popular type of classifiers where this
problem is particularly pronounced: we consider intuitive
distance-based classifiers which are enhanced by the powerful
concept of metric learning [25], [26]. On the one hand,
such models are represented in terms of typical prototypes,
which enables a very natural interface to incremental learning
with scalable memory resources. On the other hand, metric
learning enhances these models to state-of-the-art classifiers
which autonomously adapt the metric parameters, i. e. the
internal representation of the given data according to their
relevance for the classification task. While the latter aspect
allows such models to efficiently deal with high dimensional or
heterogeneous data sets where the standard Euclidean metric
would not be suited, it adapts the data representation according
to the given setting. Hence it fails whenever concept drift
requires a different data representation, and it leads to a wrong
confidence estimation in such cases. In this contribution, we
propose a simple yet efficient approach how to deal with

such confidence drift: we propose an online adaptation of
the internal data representation by means of online metric
learning for both, offline and online classifier, and a self-
adjusted weighting scheme which autonomously adjusts the
relevance of the respective data representation for confidence
estimation.

This contribution is structured as follows: At first we briefly
describe the considered scenario, and we recall the hybrid
architecture which combines an online and offline model. We
rely on a realisation of this architecture with learning vector
quantisation (LVQ) schemes such as proposed in the approaches
for batch scenarios [26]–[28] and its recent extension to
incremental learning, online LVQ (ioLVQ) [29]. Thereafter we
will explain an example of confidence drift, and we propose
its remedy by means of suitable metric learning strategies for
confidence estimation. Before the conclusions, we demonstrate
the capability of the extended architecture on several data sets.

II. THE OOL ARCHITECTURE [20]

We expect two training phases in our scenario. In the first
phase (offline), we assume access to all offline training data
for multiple passes trough the training set. In the second phase
(online), we consider training data points which are available
one after another, within a streaming setting. For both training
phases, we assume labelled training data.

The basic idea of the OOL architecture (Fig. 1, [19], [20])
is the combination of a pre-trained offline model (first training
phase) that preserves known knowledge of the desired task with
an incremental online model adapting to special characteristics
or new classes during the lifelong learning application in its
(dynamic) environment (second training phase). Both classifiers
also provide certainty levels, and classification of a given
data point is done by the most reliable classifier with respect
to their certainty values. Figure 1 shows the OOL scheme.
Subsequently, we specify the role of its parts.

Input
Offline Classifier

Online Classifier

Classifier
Selection

Output

if input is usable for training

Fig. 1. OOL architecture combines an online and offline classifier [30].

Input: A data point x ∈ Rn is the input of the system. It
can contain a label y denoting a new or a known class. Both
classifiers receive the input.

Offline Classifier: This module is a place holder for an
offline classifier which provides a predicted class label yoff

together with a certainty value Υoff(x) for an input data point
x. During the whole application, this offline classifier preserves
the gained knowledge, i. e. its output yoff is static. The output
(yoff, Υoff(x)) is passed to the classifier selection.

Online Classifier: This module is a place holder for an
online incremental classifier which provides a predicted class
label yon and a certainty value Υon(x) for an input data point
x. The online classifier is updated under certain conditions



when receiving new training samples (see classifier selection).
The output (yon, Υon(x)) is passed to the classifier selection.

Classifier Selection: The classifier selection module has
two tasks: 1) choosing the online or the offline classifier based
on their certainty values and 2) determining if the given input
is a proper training example for the online classifier.

These two aspects work as follows: 1) The more reliable
classifier determines the class label of the system

ysys :=

{
yoff,Υoff(x) ≥ Υon(x)

yon, else
.

2) The online classifier is trained as follows: Assume a labelled
example is present (x, y). If the offline classifier is confident
and classifies correctly, the online classifier is not updated.
The online classifier is adapted, if at least one of the three
following conditions is valid.

1. The online classifier is more reliable than the offline one

Υon(x) > Υoff(x) (1)

2. The offline classifier is more reliable but it provides a
wrong class label.

Υon(x) < Υoff(x) ∧ yoff 6= y (2)

3. Both models are unreliable (here: Γ = 0.6).

max{Υon(x),Υoff(x)} < Γ (3)

Output: The output of the system, for a given input, is
the selected class label ysys with its certainty value.

A. OOL Using Learning Vector Quantisation

We use learning vector quantisation (LVQ) [31] for an
implementation of the OOL architecture. LVQ schemes got
popular lately in the context of big data and interpretable
models due to its flexibility and intuitive classification scheme,
see e. g. [32]–[41]. Assume υ training data points xi with
class label yi such that (xi, yi) ∈ Rn × {1, . . . , C}. A LVQ
classifier consists of a set of prototypes W = {wj ∈ Rn}kj=1

equipped with class labels cj ∈ {1, . . . , C}. A given point xi
is classified according to the label of the closest prototype,
the best matching unit (BMU), as measured in the squared
Euclidean distance ‖x−w‖2 or variants thereof.

1) The Used LVQ Approaches: Given training data, the
generalised LVQ (GLVQ) [27] is a learning scheme of LVQ
that is based on a cost function. It performs a stochastic gradient
descent on its cost function (4) with respect to the prototypes
using a step size εw while performing several training epochs
(here 100) through the data.

E =

υ∑
i=1

Φ( (d+(xi)− d−(xi))/(d
+(xi) + d−(xi))︸ ︷︷ ︸

=:µ(xi)

) (4)

The function Φ is monotonic increasing, e. g. the logistic
function. d± is the distance of the data point xi to the closest
prototype w± of the correct/incorrect class. The cost function
(4) strongly correlates to the classification error since a data

point is classified correctly iff the nominator of the cost function
is negative. Note that the relative similarity (RelSim)

RelSim(x) := −µ(x) = (d−(x)− d+(x))/(d−(x) + d+(x))

relates to the summands of the GLVQ costs and can be
interpreted as a certainty of the classification (for this reason
multiplied by -1): The values RelSim(x) range in the interval
(−1, 1) and values near 0 refer to high uncertainty, high values
near 1 refer to high certainty, and negative ones refer to a wrong
classification since d+ > d−. Lately, it has been investigated
that the RelSim measure provides an efficient estimation of
a confidence usable for rejection [42]. The RelSim shows a
similar quality as an explicit probabilistic modelling but at
lower computational costs. The calculation of the RelSim is
based on the estimated class label with respect to the model
for an unlabelled data point x, i. e. d+ is the distance of x to
the BMU ws (defines the label of x); hence d− is the distance
of x to any prototype with a different class label than ws.

Recently the concept of metric learning gained much
attention in distance-based classification which can be in-
tegrated in LVQ [25], [43], [44]. Especially, there exists a
generalisation of the GLVQ towards a general quadratic form
(x−wj)

TΛ(x−wj) with positive semi-definite matrix Λ which
is proposed under the acronym GMLVQ [26]. The updates
of the metric regulates the learning rate εm. Formal learning
theoretical guarantees have proved that GMLVQ networks
constitute an efficient large margin scheme with excellent
generalisation ability [26].

The ioLVQ [29] is applicable in scenarios where training
data points arrive one after another, i. e. in incremental online
scenarios. The model starts with no prototypes (no knowledge),
i. e. W = ∅ and the formulas for prototype and metric updates
are identical with the batch LVQ versions. The only difference
is the dynamically changing set of prototypes due to data drift
or new classes. Insertion and deletion of prototypes rely on
the aim to decrease the costs (4):

1. New classes [45]: The first training data point (x, y)
of a new class, i. e. y 6= cj ,∀ j, becomes a new prototype
with label y. The class label is available since we consider
a dialogue with the system, e. g. a user provides data points
of a new class. Hence, we do not detect a new class from
unsupervised data like e. g. [46].

2. Prototype insertion: Reducing errors lowers the
costs (4). A set S with maximum storage capacity gmax stores
errors during training [47], [48]. Once |S| = gmax, a prototype
with label p is added for each class p for which S stores errors.
The point (xi, p) in S with lowest RelSim(xi) identifies the
prototype location. After insertion, S is cleared, i. e. S := ∅.

3. Prototype deletion: Since prototypes can become
obsolete or can do more wrong than correct classifications, a
strategy for prototype deletion is needed [49]. Each prototype
w is accompanied by a parameter η(w), initialised by zero,
that integrates the certainty of this prototype. The update

η(wl) := η(wl) + RelSim(x)



efficiently computes η(wl) for the BMU wl provided the
point (x, y) is encountered. The value η(wl) is negative iff
on average, the prototype did more wrong classifications than
correct ones, weighted by their certainty. After every rnum
training data points, prototypes with η(w) < 0 are deleted.

Because of the promising results of the OOL architecture
[20], we describe and rely on their realisation in the following.

2) The Precise Realisation: To describe the used scheme
in detail, we have specify the used offline classifier, online
classifier, and confidence estimation.

Offline Classifier: Here we choose a pre-trained GMLVQ1

model, i. e. a set of trained prototypes wj for the C known
classes with a trained global metric using Λ. We use the
RelSim as related certainty value for an input data point x, i. e.
Υoff(x) = RelSimoff(x).

Online Classifier: Here we choose the ioLVQ [29] based
on a GMLVQ model. We use the RelSim as related certainty
value for an input data point x, i. e. Υoff(x) = RelSimoff(x).

Note that in general the metrics of the offline and online
classifiers are different since they are trained on different data.
This can cause problems in the case of confidence drift, in
particular when the validity of the confidence estimation of the
static offline classifier changes. This pitfall occurs in the context
of metric learning whenever the metric tensor of the online
system becomes orthogonal to the metric of the offline system,
hence the respective internal data representations mismatch. In
the following we give an example thereof and we develop a
solution for it.

III. AN EXAMPLE OF CONFIDENCE DRIFT

Fig. 2. The checkerboard data set (Colour encodes class)

Assume a binary 2D 4x4 checkerboard data set (Fig. 2). We
consider two different data splits for the first and the second
training phase of the architecture (Fig. 3). The offline classifier
is trained on the known data only (first training phase) while
the architecture during use encounters known and new data
(second training phase). This leads to a desired data space
partitioning with respect to the classifiers, as shown in Fig. 4.

Analysing setting A, one recognises that all dimensions
are necessary in order to classify the data and this holds
for the known and the new data. Contrary in setting B the
known data can be classified using only one dimension of
the data while classification of the new data still has to use
both dimensions. This difference matters for metric learning, in

1We use the LVQ toolbox at: http://matlabserver.cs.rug.nl/gmlvqweb/web/

known new

(a) Setting A

known new

(b) Setting B

Fig. 3. The checkerboard data is used in three different settings: In setting A
both dimensions of the data are necessary to classify the data in the known
as well as in the new part of the data. In the known data of setting B, one
dimension is enough for classification but in the new data both dimension are
again needed. Setting C is setting B inverted.

(a) Setting A (b) Setting B

Fig. 4. The desired partitioning of setting A and B. The hatched areas should
be classified by the offline classifier while the white areas are related to the
online classifier. The desired partitioning of setting C is (b), inverted.

particular for the metric of the offline classifier in setting B. In
this case the matrix Λ will only focus on one dimension Λ11≈1
while all other elements are approximately zero. Figure 5
contains exemplary results of setting A and B for the described
architecture with metric learning (GMLVQ) and a similar
architecture without metric learning, simply using the Euclidean
distance (GLVQ). The GLVQ architecture shows a similar data
partitioning like the desired ones in Fig. 4. Hence for this
models there is no problem with the classifier selection part.
Analysing the GMLVQ architectures, one can see that setting A
works fine too but setting B does not due to its trained offline
metric. For setting B with the GMLVQ architecture a confidence
drift happens which cannot be followed by the static internal
metric which is suited for the known data but which is improper
for the new data. The problem occurs due to the fact that the
offline classifier deal with a too simplistic data representation:
it disregards data dimensions which are irrelevant for the offline
training data, but which become relevant for future data points;
in consequence, confidence estimation based on this metric
are wrong in the online scenario. Note that an abstraction
from irrelevant regions is crucial for LVQ classifiers to provide
good generalisations for high dimensional data sets. At the
same time, it is priorly unclear which abstractions are too
rigid for future data, hence online adaptation of this confidence
measure becomes necessary. In the next section we develop a
strategy which allows the offline classifier to adapt its certainty
estimation in the case of confidence drift.

IV. ONLINE METRIC LEARNING FOR AN ADAPTATION TO
CONFIDENCE DRIFT

The offline classifier is static and it consists of a set of
prototypes W off and a trained metric using Λoff. Since we
want to keep the gained knowledge of the offline classifier,



offline: class 1
offline: class 2
online: class 1
online: class 2

(a) Setting A: GLVQ

offline: class 1
offline: class 2
online: class 1
online: class 2

(b) Setting B: GLVQ

offline: class 1
offline: class 2
online: class 1
online: class 2

(c) Setting A: GMLVQ

offline: class 1
offline: class 2
online: class 1
online: class 2

(d) Setting B: GMLVQ

Fig. 5. The images show the results for the specific setting and a specific
architecture. The black areas are classified by the offline classifier while the
online classifier is responsible for the white areas (correctly classified). Red
areas are misclassified by the offline classifier and the green areas are wrong
classified by the online classifier. The prototypes of the classifiers are shown
as stars and circles. Their colour indicates the class. GLVQ refers to the
architecture using the standard Euclidean distance instead of metric learning.

we do not change the classifier itself. Instead, we introduce
a metric Λcorrect which can be used to correct the wrong data
representation for its confidence estimation, taking into account
concept drift on the online training set. More specifically,
RelSim, the confidence, is computed by the combination

Λconf = α · Λcorrect + (1− α) · Λoff, α ∈ [0.1, 0.9] (5)

where the scaling parameter α is initialised with 0.1 and the
matrix Λcorrect is initialised with Λoff, and both are adapted in
online training, whenever the offline classifier is erroneous, i. e.
(cp. (2)) holds (Fig. 6): Λcorrect is adapted using the GMLVQ
update rule considering W off together with Λcorrect as GMLVQ
model (but no prototype update is done). In case of a point
with new class label (unknown to the offline GMLVQ), w+

and d+ are taken from the online classifier to update Λcorrect.
The choice of α is crucial, and a static prior choice is usually

suboptimal. Therefore we use a simple Hebbian adaptation
strategy for α ∈ [0.1, 0.9] as follows: A counter Γ (initialised
with zero) counts the relevance of Λcorrect versus Λoff on the
training data. It is decreased by one when ever

RelSimon(x) < RelSimoff(x) ∧ yoff = y (6)

and it is increased by one whenever (2) holds. We enforce
an upper and lower bound a1 ≤ Γ ≤ b2 on the counter to

Input

Offline Classifier
W off,Λoff

Online Classifier
W on,Λon

Λcorrect

Classifier
Selection

Output

α modulates
confidence

train online classifier

offline classifier errs (2)

Fig. 6. Scheme of OOL extension for confidence drift adaptation. The offline
classifier (W,off Λoff) still predicts the label yoff but in order to calculate
RelSim(x) the metric Λconf (5) is used which takes into account the quantities
Λ,off Λcorrect and α.

prevent plateaus for the optimization, and we disregard counters
approximately equal to zero a2 ≤ Γ ≤ b1 for an adaptation of
α where a1<a2<0<b1<b2. Assume a small step size εα>0,
the update rule of the scaling parameter α is

α = α

{
−εα, a1 < Γ < a2 ∧ (2) holds
+εα, b1 < Γ < b2 ∧ (2) holds

.

This corresponds to a Hebbian scheme since the relevance of
Λcorrect is increased / decreased depending on its contribution
to a correct classification.

Exemplary results for setting A and B of the architecture
with confidence adaptation are visualised in Fig. 7. It can be
seen that this change enables the hybrid architecture to learn
correctly for both settings. In the next section we evaluate the
proposed architecture on several data sets.

offline: class 1

offline: class 2

online: class 1

online: class 2

(a) Setting A

offline: class 1

offline: class 2

online: class 1

online: class 2

(b) Setting B

Fig. 7. The images show the results for setting A and B for the architecture
with confidence drift adaptation. The black areas are classified by the offline
classifier while the online classifier is responsible for the white areas (correctly
classified). Red areas are misclassified by the offline classifier and the green
areas are wrong classified by the online classifier. The prototypes of the
classifiers are shown as stars and circles. Their colour indicates the class.

V. EXPERIMENTS

We consider experiments on four data sets: two 2D data
sets (Blossom, Checkerboard) for visualisation and analysing
the architecture, the U.S. Postal Service (USPS2) Handwritten
Digits data, the Letter data set [52], and the Outdoor3 data set
as benchmarks. Each data set is divided into two partitions:
known and new data. Known data are available during both

2Data is obtained from: http://www.cs.nyu.edu/∼roweis/data.html
3Thanks to Viktor Losing for providing the data.



training phases while instances of new data are only accessible
in the second phase.

known data new data

Fig. 8. The Blossom data: Each blossom forms a data partition. The colour
encodes the class.

• Checkerboard: Artificially created two class data set (Fig.
2). Each field of the Checkerboard contains 1000 data
points which sums up to 8000 points per class.

• Checkerboard noise: The Checkerboard data are enhanced
by a noisy third dimension. The values of the third
dimension are uniformly distributed in (0,1).

• Blossom: Artificial data set with three classes (Fig. 8).
Each blossom forms one partition of the data.

• USPS: This data set contains 8-bit grayscale images of
”0” to ”9”; 1100 instances per class. The dimension of
each instance is reduced to 30 with principal component
analysis [50]. Half of the classes form the first respectively
the second partition of the data.

• Letter: The letter data [52] contain 20,000 data points
with 16 dimensions, related to 26 classes (capital letters
A. . . Z). The first 14 letters form the first partition of the
data and the other letters belong to the second partition.

• Outdoor: The outdoor obstacle data set [20], [51] consists
of 40 objects. Each object has 100 representing instances
consisting of 21 values of a 6 bin rg chromaticity diagram.
Half of the classes form the first respectively the second
partition of the data.

We use the same experimental setting as in [20]. Hence,
we assume randomly ordered data points which are used only
once, like in a streaming setting, using constant learning rates
(except for the batch GMLVQ). The evaluation of the data
sets is based on a 10-fold cross validation with ten repeats as
follows: Each data set is divided into two parts: known and
new data as stated before. Known data characterise data for
offline training and online training. New data characterise data
which are only available for online training. It contains new
classes or data subject to drift of p(x). For a 10-fold cross
validation, each partition is divided into 10 folds (see Fig. 9).
The offline training set trainoff consists of four folds of known
data and the online training data trainon (encountered during
use) consists of four folds of known and of eight folds of new
data. For a proper evaluation of the architecture, we consider
three different test sets: testknown, testnew and testall. The test set

first partition: known data

second partition: new data

trainoff

trainon

trainon
testknown

testnew

testknown

testnew

Fig. 9. Each data set is divided into two partitions: known and new data. Two
folds of each set form a test set: testknown and testnew respectively.

testknown are two folds of known data and its error will show
the performance on these data which samples the static ground
knowledge (i. e. the performance tests the stability of learning).
The second test set is testnew which contains two folds of new
data and it will show the accuracy of newly gained knowledge
in the online part of the system, i. e. it tests the flexibility the
system. The overall performance is judged with the test set
testall = testknown ∪ testnew, i. e. it tests the ability to deal with
both challenges, stability and plasticity.

TABLE I
PARAMETERS OF THE OFFLINE AND THE ONLINE MODEL

GMLVQ ioLVQ
w/class εw εm gmax rnum εw εm

Checkerboard 4/2/6 (A/B/C) 0.3 0.07 20 320 0.1 0.01
Blossom 5 or 1 0.3 0.07 20 320 0.1 0.01
USPS 1 0.4 0.01 20 400 0.1 0.001
Outdoor 5 4·10−5 10−5 5 900 4·10−5 10−5

Letter4 1 0.01 0.001 20 400 0.01 0.001

Table I shows the parameters of the experiments and Tab.
II and Tab. III show the results. They contain the accuracies
of the three test sets and the number of prototypes, and (if
available) the trained α value.

A. Evaluation of the Checkerboard Data (Tab. II)

Architecture without concept drift adaptation: Firstly, the
results of Checkerboard and Checkerboard noise are similar
which means that the integrated metric learning detects and
neglects the noisy dimension. This indicates the merit of metric
learning. Secondly, the number |W | of the prototypes is in the
same range for all tree setting indicating that the number of
prototypes is kind of invariant to the used setting. Thirdly, the
accuracy values of testknown show a desired performance for
all settings. The same holds for testnew but for setting A only.
In case of setting B or C the accuracy is low which means
that a confidence drift happened and the plain architecture is
unable to deal with it. This is also the reason for low testall

accuracies (setting A/B).
Architecture with concept drift adaptation: This extended

architecture provides similar results for both Checkerboard data
sets. Hence noisy dimensions with no information are neglected,
too. In comparison to the plain architecture, the number of used
prototypes increases slightly. Since we know, that there is no

4We used 300 training epochs for the Letter data.



TABLE II
THE RESULTS OF THE CHECKERBOARD DATA

We report the average accuracy on the test sets, the related average prototype
number |W | of OOL, and the α values. Results with α=0 belong to the plain
architecture without confidence drift adaptation.

Data α |W | testknown testnew testall

Checkerboard

Setting A 0 28.14 96.45 90.64 93.60
Setting B 0 23.54 94.94 49.35 60.65
Setting C 0 27.42 95.58 43.71 56.81
Setting A 0.1127 36.58 93.91 93.78 93.79
Setting B 0.5217 36.84 92.06 90.28 90.91
Setting C 0.6336 45.90 92.39 93.50 93.12
Checkerboard noise

Setting A 0 27.20 95.91 90.05 92.93
Setting B 0 22.25 94.82 49.08 60.54
Setting C 0 25.36 95.12 43.51 56.37
Setting A 0.1094 35.83 93.49 93.55 93.52
Setting B 0.5387 36.81 92.80 90.59 91.14
Setting C 0.6348 45.50 93.31 93.56 93.57

confidence drift in setting A, we expect the result to reflect this.
The result does reflect it, since the value of α in both cases
is near the lowest possible value and hence the architecture
highlights that there is no need for a confidence adaptation.
The other settings need a confidence adaptation which is nicely
reflected by the α values which improve together with the
trained λcorrect the performance especially on testnew and testall.

B. Evaluation of the Blossom and the Benchmarks (Tab. III)

TABLE III
THE RESULTS OF THE BLOSSOM AND THE BENCHMARK DATA

We report the average accuracy on the test sets, the related average prototype
number |W | of OOL, and the α values. Results with α=0 belong to the plain
architecture without confidence drift adaptation.

Data α |W | testknown testnew testall

Blossom
0 27.33 96.49 97.13 96.80

0.1 30.72 95.59 97.55 96.61
USPS

0 64.19 91.29 59.54 75.26
0.6986 77.25 89.13 84.70 86.98

Letter
0 210.70 80.51 70.15 75.62

0.8112 235.24 80.23 78.00 79.25
Outdoor

0 286.63 89.89 66.65 78.18
0.4135 286.64 90.03 66.74 78.05

Since the known and the new data of the Blossom data set are
similar except an offset in one coordinate, the trained metrics
of the online and the offline classifier should be comparable
and hence there is no confidence drift. This can also be seen on
the already high accuracy values of the plain architecture. We
expect that the extended architecture reflects this with a low α

value and similar performances than the plain architecture. As
can be seen in Tab III this expectation is met.

For the USPS, one can see that there might be a confidence
drift since the performance on testnew and testall of the plain
architecture is bad. Comparing those results with them of
the extended architecture, it turns out that the adaptation
to confidence drift is used and that it helps to improve the
performance on these two test sets. The same facts can be
seen for the Letter data which emphasise the usefulness of
confidence adaptation.

The Outdoor data are a difficult task as mentioned in [20].
The OOL architecture, however, manages to retain known
knowledge (testknown) and to gain new information. Comparing
the plain architecture with the extended one, it turns out that
the results are similar. The reason therefore can be attributed
to the fact that confidence drift is not present in this case.

C. Summing up the Results

The proposed extension increases the performance in cases
with confidence drift (Checkerboard settings B/C, USPS,
Letter) without lowering the performance in cases without
confidence drift (Checkerboard settings A, Blossom, Outdoor).
This behaviour is viable since confidence adaptation in the
latter cases can be potential problematic.

VI. CONCLUSION

The OOL architecture constitutes an approach suitable
for lifelong learning scenarios and for streaming data. Its
basic components are a pre-trained, static offline classifier,
an adaptive online classifier, and a dynamic classifier selection
based on confidences of both classifiers. As pointed out in this
article, the classifier selection strategy can cause problems in
the case of confidence drift. This pitfall occurs in the context
of metric learning whenever the internal data representation of
the online and offline classifier mismatch. We have proposed
an efficient extension to this architecture which allows an
adaptation to confidence drift adaptation based on an online
metric learning and weighting scheme. We analysed the OOL
architecture based on the popular GMLVQ schemes. It turned
out that the proposed modification is effective for a number of
artificial and benchmark data: it enables an efficient scheme
to avoid confidence drift for metric-based classifiers wherever
it would be present with the original OOL scheme.
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