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We analyse optimal rejection strategies for classifiers with input space partitioning, e.g. prototype-based
classifiers, support vector machines or decision trees using certainty measures such as the distance to the
closest decision border. We provide new theoretical results: we link this problem to the multiple choice
knapsack problem and devise an exact polynomial-time dynamic programming (DP) scheme to de-
termine optimal local thresholds on given data. Further, we propose a linear time, memory efficient
approximation thereof. We show in experiments that the approximation has a competitive performance
compared to the full DP. Further, we evaluate the performance of classification with rejection in various
benchmarks: we conclude that local rejection is beneficial in particular for simple classifiers, while the
improvement is less pronounced for advanced classifiers. An evaluation on speech prosody and bio-
medical data highlights the benefit of local thresholds.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

1.1. Motivation

Classification is a standard technique of machine learning:
its application ranges from automated digit recognition, com-
puter vision [1] up to fraud detection, and numerous machine
learning classifiers are available for this task [2]. Often, besides
classification accuracy, the treatment of uncertain classifica-
tions is important. Classifiers providing a certainty level to-
gether with predicted class labels offer such a treatment, i.e.
data with uncertain predictions are rejected. In safety critical
areas like driver assistance systems, health care, or biomedical
data analysis, the certainty of the prediction is almost as im-
portant as the class label itself. Further tests or expert opinions
can be consulted for uncertain predictions to avoid critical
consequences of a misclassification for instance in health care.
For driver assistance systems, a high degree of uncertainty can
lead to turning off the system and passing the responsibility
back to the human driver.

An early reject option was introduced and analysed by Chow
[3]: if the costs for a misclassification versus a rejected data point
are known, one can determine an optimal rejection threshold
based on the probability of misclassification. This finding allows to
d HONDA Research Institute
many.
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extend probabilistic classifiers directly with a reject option based
on their internal probabilistic model. There are approaches which
equip deterministic classifiers efficiently with certainty values, like
the extensions of the support vector machine (SVM) [4–7], ex-
treme leaning machines [8,9], decision trees (DT) [10,11], or pro-
totype-based classifiers [12]. Since these reject options use an
estimate of the underlying probabilities only, their validity relies
on results of the investigation of so-called plugin rules for the true
probability measures [13].

Rejection based on deterministic certainty measures is an
alternative. Deterministic reject options directly address ex-
tensions of the 0–1-classification loss. Many deterministic cer-
tainty measures are based on geometric quantities such as the
distance to the decision border, e.g. [14,15]. Experiments
showed that distance-based rejection can reach the accuracy of
probabilistic counterparts [16,17]. Distance-based reject op-
tions can be used in a post-processing step or they can be in-
volved in the training of the classifier itself. One of the first
embedded reject options for SVM has been proposed in [18].
Later, alternative formulations which approximate the 0–1-loss
by a convex surrogate and which also prove the validity of
embedded rejection have been proposed in [19–21].

So far reject options deal with a single threshold and mostly
with binary classification only. Extensions to more general
settings like multi-label classification [22,23] and multiple
classes [24–26] have been considered. Still, these proposals rely
on a reject option with one global threshold. It has been shown
that reject rules which rely on plugins for the involved
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probabilities can benefit from local rejection thresholds such as
class-wise thresholds [27]. Up to our knowledge, there do not
yet exist strategies how to optimally determine local thresholds
in the case of deterministic rejection, and there does not yet
exist an extensive comparison how optimal local rejection
compares to global rejection for deterministic classifiers.

In this article we tackle these problems related to local reject
options: how to efficiently choose optimal local thresholds
based on a given partitioning of the input space e.g. according
to the predicted output classes. We rely on first promising re-
sults as reported in [28] which proposes an efficient greedy
algorithm. We extend this work by a general formalisation of
the problem to optimally choose local thresholds for any given
classifier. We phrase this problem as an optimisation in form of
a multiple choice knapsack problem [29] and provide an opti-
mal solution for finding local thresholds in form of a poly-
nomial time dynamic programming (DP) scheme. We compare
this scheme to a linear-time greedy alternative from [28], ex-
perimentally validating competitive behaviour of the latter.
While our optimal threshold selection strategy can be used for
any classifier, we focus in the experiments on three popular
classifiers: learning vector quantisation (LVQ) and its deriva-
tives [30,12,31,32], SVM, and DTs. We evaluate the rejection
strategies using benchmarks, and two real-life data sets. As
performance measure, we use the accuracy-reject curve
[33,34]. To summarise, the contribution of this article consists
in the following (i) theoretical and (ii) experimental results:

(i) An optimal, polynomial time DP scheme which determines
local thresholds on given data, by linking it to a specific case of
the multiple choice knapsack problem; a memory efficient
linear-time greedy algorithm thereof.

(ii) We demonstrate that the results of the greedy approximation
are competitive to the full DP scheme. Further, we test the gain
of local reject options versus a global choice for several pop-
ular classifiers and benchmark data sets.

This article is structured as follows: In Section 1.2 we review
existing reject options as proposed in the literature. The general
problem setting of global and local rejection can be found in
Section 2. Afterwards in Section 3, we develop a polynomial
time scheme based on DP allowing an optimal choice of local
thresholds, and a time and memory efficient greedy approx-
imation thereof. In the experiments Section 4, we briefly ex-
plain used classifiers and their related certainty measure.
Thereafter we test the rejection strategies on artificial data,
benchmarks, and two real-life data sets. We illustrate the
suitability of rejection, and we show a comparison of local
versus global rejection on the one hand, and the comparison of
an optimal computation of local thresholds by means of DP
versus an efficient greedy scheme on the other hand. The article
ends with a discussion of the main findings.

1.2. Related work

The following section summarises the state of the art for re-
jection strategies and related certainty measures for classification.
Vailya and Jain [14] highlight two reasons for rejection: ambiguity
and outliers. There exist approaches explicitly addressing one of
these reasons or a combination of both. Mostly, rejection is based
on a measure which provides a certainty value about whether a
given data point is correctly classified.

Probabilistic approaches: Common certainty measures are
based on probabilities. Chow [3] proposed an optimal reject
option, given the true probability density function is known. In
this case, global rejection is an adequate strategy and local
rejection would not offer any benefit in such a setting. In gen-
eral this is not the case and there are many approaches which
use estimated class probabilities for rejection instead. There are
two main ways to get those. Either one uses a probabilistic
classifier providing an internal estimation of the probabilities,
e.g. the Bayes classifier, or the estimation is done in addition to
a non-probabilistic classifier.

The work of [35] proved that in the limit case, the rejection
strategy [3] provides a bound for any other measure in the sense of
the error-reject trade-off and they provide illustrative examples.
The authors introduce a general scaling approach to compare er-
ror-reject curves of several independent experiments even with
different classifiers or data sets. The authors of [13] link the work
of [3] to a regression function and they provide bounds for the
performance of rejection depending on the quality of the prob-
ability estimates. They further extend the formal framework of
Chow towards the two possible errors in binary classification
which are particularly important in medical studies where the
classification of an ill patient as healthy is worse than vice versa.
The approach [27] directly builds on [3] and they state that class-
related thresholds work better than a global one in case of esti-
mated class probabilities. This effect is caused by the difference
between the original and the estimated probabilities which leads
to shifted class borders.

Due to this theoretical background, many approaches estimate
the data distribution first, e.g. with Gaussian mixture models
(GMM) [36,14]. The reliable estimation of GMMs is particularly
problematic for high dimensional data. Therefore, [37] proposes a
suitable approximation of the probability density function for high
dimensionality, which is based on a low dimensional projection of
the data.

In case of non-probabilistic classifiers either one uses a prob-
abilistic counterpart of the desired algorithm (e.g. the robust soft
LVQ [12] instead of distance-based LVQ variants) or one does a
probabilistic modelling of the data in a post-processing step. A
third option is, to turn deterministic measures which are available
in deterministic classifiers, e.g. distances, into probability
estimates.

Turning deterministic measures into probabilities: Platt [6] pro-
posed an approach to turn the activity (the distance of a data point
to the decision border) of a binary SVM into an approximation of a
classification confidence. A transfer of this method for multi-class
tasks is provided by [7] and it is implemented in the LIBSVM
toolbox [38].

Deterministic approaches: Rejection based on deterministic
measures uses the output activation of a given classifier or a
geometric alternative, e.g. the distance to the decision border
or similar [10,15]. The approach [39] focuses on effective outlier
detection, relying on the distances of a new data point from
elements of a randomly chosen subset of given data. An outlier
score is then given by the smallest distance. The resulting
method outperforms state of the art approaches like [40] in
efficiency and accuracy. The authors of [41] introduce a reject
option identifying ambiguous regions in binary classifications.
Their approach is based on a data replication method with the
advantage that no threshold has to be set externally, rather the
method itself provides a suitable cut-off. The approach [42]
addresses different neural network architectures including
multi-layer perceptrons, learning vector quantisation, and
probabilistic neural networks. Here an effectiveness function is
introduced taking different costs for rejection and classification
errors into account, very similar to the loss function as con-
sidered in [3,13]. Furthermore, different certainty measures
based on the activation of the output neurons are investigated.

Conclusion: The aforementioned approaches mostly consider a
global or class-related thresholds in binary classification settings.
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We consider multi-class settings with local thresholds (their
number is at least equal to the number of classes). Further, for the
first time, we study how to optimally choose local thresholds for
any classifier based on an optimisation of its related classification
error.

Subsequently, we consider a deterministic setting and rely on
two elements for rejection: (I) a real-valued certainty measure for
the rejection of an unreliable classification, and (II) a partitioning
of the data space into local patches for local rejection, e.g. a de-
composition of the space based on the predicted class label in case
of a multi-class classification. We analyse, how to optimally de-
termine local thresholds in the following. In particular, we propose
efficient schemes how to optimise local thresholds which are at-
tached to the given partitioning of the input space. We test global
and local rejection for three popular classifiers given by prototype-
based classifiers, SVM, and DT on several data sets.
2. General setting for global and local rejection

General setting: We consider multi-class classification problems
with training data = {( ) ∈ × { … }} =X y Zx , 1, ,i i

M
i
N

1, whereby data
are drawn according to some unknown probability distribution
P on × { … } Z1, ,M . A classifier provides a function

→ { … }c Z: 1, ,M . For classical settings, a classifier aims at mini-
mising the classification error

∫( )≔ ( ( ) ) ( )

( ( ) )≔ ( ) =
( )

⎧⎨⎩

c c y d y

c y
c y

x x

x
x

error loss , , , with

loss ,
0 if

1 otherwise 1

P

Since P is unknown, standard classifiers often optimise the em-
pirical error (2) instead, or a related, numerically simpler
(e.g. convex) surrogate loss. For popular classifiers, results from
computational learning theory guarantee that the empirical error
allows us to uniformly bound the true error provided data are i.i.d.
and suitable regularisation takes place [43].

∑( )≔ ( ( ) )
( )=

c X
N

c yxerror ,
1

loss ,
2i

N

i i
1

In this article, we study how to efficiently extend a multi-
class classifier by a reject option posterior to training. Hence,
we assume that a trained classifier is given. We use determi-
nistic and probabilistic classifiers (Section 4.1). In addition to
the predicted class label, many classifiers provide a certainty
value of its classification like the class probability or the dis-
tance to the decision border. This certainty value is used
whenever classification is extended by a reject option and
points with a low certainty value are rejected. Formally, a reject
option extends the classifier to a mapping (denoted with the
same symbol) → { … ⓡ}c Z: 1, , ,M where the symbol ⓡ de-
notes the rejection of the classification of input x which is ty-
pically defined by an extended 0–1-loss

( ( ) )≔
( ) =
( ) = ⓡ
( ) ≠ ( ) ≠ ⓡ ( )

⎧
⎨⎪

⎩⎪
c y

c y

b c

c y c

x
x
x
x x

loss ,
0 if

if
1 if , 3

where costs ∈ ( )b 0, 1 are assigned to a reject ⓡ [44,20]. For
values <b 1, it is beneficial to reject a wrong classification ra-
ther than to provide a false output, but rejects always come at
the risk of rejecting correctly classified points as well. De-
pending on the application the user is willing to accept the
rejection of many correct classified points, if they are only
focussing on classification of highly reliable data as in [45]. The
ratio between the rejection of correctly classified data and er-
rors can be controlled with the cost parameter b. Hence, our
proposed method can be applied to any use case. The threshold
(or threshold vector) is a crucial parameter in a reject option.
The question how to choose thresholds which optimise the
modified classification error is the key topic of this article.
While threshold optimisation is straightforward in the case of
one global threshold, the optimisation of local thresholds is
more difficult [27].

In the following, we will investigate two aspects of this setting:

� Optimisation of local thresholds: Assume that a trained classi-
fier is given. How can we efficiently determine optimal
thresholds for rejection in particular if local thresholds are
considered, such that the extended loss is minimised? Thereby
we focus on empirical risk minimisation of the expected error
for given training data since the true risk is unavailable, and we
test the performance of the determined thresholds in a cross-
validation for unseen data and we evaluate its generalisation
ability. Further, we do not assume fixed, known costs b, rather
we provide a method which finds optimal threshold vectors for
every choice of b for a given classifier. We phrase local threshold
optimisation as multiple-choice-knapsack problem and propose
a polynomial time exact solution as well as an efficient linear
time, constant memory greedy approximation.

� Evaluation of the efficiency of local and global reject options for
different classifiers: We experimentally analyse the effect of
local and global rejection strategies for popular classifiers which
display different characteristics. This gives insight on the
question which rejection strategy, certainty measure, and par-
titioning of the input space is suited for which classifier. Note
that an optimal reject option can be explicitly computed
whenever the Bayesian risk is known [3], and we use this Gold
standard in artificial settings with known ground truth. Pro-
vided a classifier does not closely resemble the Bayes risk
(e.g. due to the characteristics of the training data, unknown
priors, or technical constraints posed on the form and complex-
ity of the classifier), alternative reject options can be beneficial,
as initially investigated in [27]. We confirm this finding and
study the effect of local and global reject options which are
optimised based on the empirical error.

Global reject option: A global reject option extends a certainty
measure by a global threshold for the whole input space. Assume
that

( ) → ↦ ( ) ( ) r rx x x: , 4M

refers to a certainty measure where a higher value indicates higher
certainty. Given a real-valued threshold θ ∈ , a data point x is
rejected if and only if

θ( ) < ( )r x . 5

A rejection strategy performs optimal if only labelling errors
are rejected. In general this is not the case and a certainty measure
causes the rejection of few correctly classified data points together
with errors.

Local reject option: Global rejection relies on the assumption of
equal scaling of the certainty measure ( )r x for all inputs x . We
relax this assumption by using local thresholds. A local rejection
strategy relies on a partition of the input space M into ζ disjunct,
non-empty sets Υj such that Υ= ∪ζ

=M
j j1 . Using a different

threshold θj in every set Υj enables a finer control of rejection
[14,28].

A separate threshold θ ∈ j is chosen for every set Υj, and the
reject option is given by a threshold vector θ θ θ= ( … )ζ, ,1 of the



Table 1
Definitions of quantities.

X Data set with N elements = ∪X L E
L E/ Correctly/wrongly classified data

Rejection quantities
θ Rejected data = ∪θ θX X

θj Rejected data in Υj

θX Accepted data = ∪θ θX Xj j

θX j
Accepted data in Υj

Lj Correctly classified data in Υj Υ= ∩L Lj j

θ False rejects = ∩θ θ L

θj False rejects in Υj Υ= ∩θ Lj j

= ∪θ θj j

Ej Errors in Υj Υ= ∩E Ej j

θ True rejects = ∩θ θ L
= ∪θ θj j

θj True rejects in Υj Υ= ∩θ Ej j
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dimension ζ equal to the number of sets in the partition. A data
point x is rejected iff

θ Υ( ) < ∈r x xwhere .j j

Hence θj determines the behaviour for set Υj only. In the special
case of one region Υj per classifier output class j, local thresholds
realise class-wise rejection.
Fig. 1. Local thresholds for a partition with 13 points. The first row shows the
sorted certainty values ( )r xi , the second row depicts if a point is correct (+ )/wrong
(−) classified. Here are 4 thresholds corresponding to the Pareto front, according to
the number of signs + (due to the fact that point 13 is in E). The third row shows
the gain when increasing the threshold value θj .
3. Optimal choices of global/local thresholds

Rejection strategies crucially depend on the threshold θ or
threshold vector θ. Subsequently, we analyse how to choose those
in an optimal way which refers to a multiple objective: a threshold
θ or threshold vector θ, should be chosen such that the rejection of
errors (true rejects) is maximised, while the rejection of correctly
classified points (false rejects) is minimised. First we formalise this
setting (definition of quantities see Table 1) and its evaluation.

3.1. Pareto front

Assume that labelled data X is given to determine optimal
thresholds thereon. A classifier decomposes X into a set of cor-
rectly classified data L and a set of wrongly classified data (errors)
E . These sets split with respect to the partition Υj into Lj and Ej. An
optimal rejection would reject all points in E , while classifying all
points in L. This is usually impossible using any reject option.
Applying a global threshold θ , the data X decomposes into re-
jected data θ and accepted data θX . We refer to false rejects as θ
and to true rejects as θ . Note that, when increasing θ , | | | |θ θ, ,
and | |θ are monotonically increasing.

Similarly, for a threshold vector θ θ θ= ( … )ζ, ,1 , we denote the
points in Υj which are rejected as θj, and the accepted points as

θX j. These relate to false rejects θj and true rejects θj for Υj. As
before, monotonicity holds for the size of θ θ,j j and θj when
raising the local threshold θj in Υj.

We report the accuracy-reject curve (ARC) [33] as performance
measure. A given threshold θ leads to the accuracy of the classified
points θ( )≔(| ⧹ |) | |θ θt L X/a versus the ratio of the classified points

θ( )≔| | | |θt X X/c . Both measures quantify conflicting objectives with
limits θ( ) =t 1a and θ( ) =t 0c for large θ (all points are rejected) and

θ( ) = | | | |t L X/a and θ( ) =t 1c for small θ (all points are classified, the
accuracy equals the accuracy of the given classifier for the com-
plete data). The same quantities can be defined for a threshold
vector θ, we refer to as threshold θ in the following, for simplicity.
We optimise θ , such that the value ta is maximised, and tc is
minimised. Hence, not all possible thresholds and related pairs

θ θ( ( ) ( ))t t,a c are of interest, only optimal choices corresponding to
the so-called Pareto front. Note that pairs (| | | |)θ θ, uniquely cor-
respond to pairs θ θ( ( ) ( ))t t,a c and vice versa.

Every threshold uniquely induces a pair (| | | |)θ θ, and a pair
θ θ( ( ) ( ))t t,a c . We say that θ′ dominates the choice θ if | | ≤ | |θ θ′ and

| | ≥ | |θ θ′ and for at least one term, inequality holds. We aim at the
Pareto front

θ θ≔{(| | | |)| ′} ( )θ θ θ, is not dominated by any . 6

Each dominated threshold (threshold vector) corresponds to a
sub-optimal choice only: We can increase the number of true re-
jects without increasing the number of false rejects, or, conversely,
false rejects can be lowered without lowering true rejects.

To evaluate the efficiency of a threshold strategy, it turns out
that a slightly different set is more easily accessible. We say that θ′
dominates θ with respect to the true rejects if | | = | |θ θ′ and
| | > | |θ θ′ . This induces the extended Pareto front

θ θ≔{(| | | |)| ′
} ( )

͠ θ θ θ, is not dominated by any

with respect to the true rejects . 7

Hence, θ can be computed as the subset of ͠ θ by taking the
minima over the false rejects. ͠ θ has the benefit that it can be
understood as a graph where | |θ varies in between 0 and | |L and
| |θ serves as function value. Having computed ͠ θ and the corre-
sponding thresholds, we report the efficiency of a rejection strat-
egy by the corresponding ARC curve, i.e. the pairs θ θ( ( ) ( ))t t,a c :
These pairs correspond to a graph, where we report the ratio of
classified points (starting from a ratio 1 down to 0) versus the
obtained accuracy for the classified points. For good strategies, this
graph should be increasing as fast as possible. In the following, we
discuss efficient strategies to compute the extended Pareto front
for global and local rejection strategies.

3.2. Optimal thresholds for given rejection costs

In the preceding section, we introduced the Pareto front rather
than a single threshold which is optimised according to the ex-
tended empirical risk ( )c Xerror , (2) for given rejection costs b. This
has the benefit that, given any ∈ ( )b 0, 1 , an optimal threshold can
be extracted from the Pareto front due to the following relation:
assume that a threshold θ ∈ θ is chosen; using the notation from
above, we can rephrase

( ) = · | | − ( − )·| | + ·| |
( )θ θ

⎛
⎝⎜

⎞
⎠⎟c X

N
E b berror ,

1
1 .

8

Hence the optimal threshold θ for rejection costs b is given by

θ ( ) = | | −
−

·| |
( )θ

θ θ
⎛
⎝⎜

⎞
⎠⎟b

b
b

arg max
1

.
9

opt

This can be extracted from the Pareto front.
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3.3. Optimal global rejection

Global rejection needs only one threshold θ . We compute
thresholds leading to the extended Pareto front and the corre-
sponding pairs θ θ( ( ) ( ))t t,a c in time ( )N Nlog due to the fol-
lowing observation: Consider a certainty measure ( )r xi for all
points ∈ Xxi and sort the values ( ) ≤ ⋯ ≤ ( )r rx xi iN1 (Fig. 1). We
sort certainty values which are identical such that the points in L
come first. The following holds:

� Each pair (| | | |) ∈ ͠θ θ θ, is generated by some θ = ( )r x ij related
to a certainty value in this list or related to ∞ (i.e. rejecting all
points), since values in between do not alter the number of
rejected points on X .

� Values ( )r x ik with ∈ Ex ik are dominated by ( )+r x ik 1 (or ∞ for the
largest value) with respect to true rejects since the latter
threshold accounts for the same number of false rejects, adding
one true reject x ik.� Contrary, values ( )r x ik with ∈ Lx ik are not dominated with re-
spect to the number of true rejects. Increasing this threshold
always increases the number of false rejects by adding x ik to the
rejected points.

Therefore, the extended Pareto front is induced by the set of
thresholds Θ corresponding to correctly classified points:

Θ θ≔{ = ( )| ∈ } ∪ {∞| ∉ } ( )r L x Lx x if . 10i i ik k N

Θ| | ∈ {| | | | + }L L, 1 depending on whether the last point in this list is
classified correctly or not. Fig. 1 shows an exemplary setting. We
refer to thresholds obtained this way as θ θ Θ( ) … (| | − )0 , , 1 , and we
assume ascending sorted values.

3.4. Optimal local rejection

Computing the extended Pareto front for local rejection is
harder than global rejection since the number of parameters
(thresholds) in the optimisation rises from one to ζ . First, we de-
rive an optimal solution via DP [46,47]. Second, we introduce a
faster greedy solution which provides a good approximation of DP.

For every single partition Υj, the optimal choice of a threshold
and its corresponding extended Pareto front is given in exactly the
same way as for global rejection: we use the same notation as for
global rejection, but indicate via an additional index ζ∈ { … }j 1, ,
that these values refer to partition Υj. For any Υj, optimal thresh-
olds as concerns the number of true rejects are induced by the
certainty values of correctly classified points in this partition,
possibly adding ∞. These thresholds are referred to as

Θ θ θ Θ≔{ ( ) … (| | − )} ( )0 , , 1 11j j j j

equivalent to (10) with Θ| | ∈ {| | | | + }L L, 1j j j .
We look for threshold vectors describing the extended Pareto

front of the overall strategy, i.e. parameters θ such that no θ θ′ ≠
exists which dominates θ with respect to the true rejects. The
following relation holds: θ is optimal ⇒ every θj is optimal in Υj.
Table 2
Example rejects for three partitions and their losses/gains.

Threshold i | |θ ( )j i | |θ ( )j i

0 1 2 3 0 1 2 3

Υ1 0 1 2 3 3 4 6 9
Υ2 0 1 2 – 2 3 6 –

Υ3 0 1 2 3 1 2 10 20
Otherwise, we could easily improve θ by improving its suboptimal
component. The converse is false: e.g., assume a partition and
thresholds as shown in Table 2. Here, we compare the threshold
vectors ( )1, 1, 1 and ( )0, 0, 3 . While both choices lead to 3 false
rejects, the first one causes 9 true rejects and the second one leads
to 25 true rejects. Hence the second vector dominates the first one,
albeit thresholds are optimal within each Υj.

Hence the question arises how to efficiently compute optimal
combinations of the single values in Θj. There exist at most
Θ Θ| |·…·| | = (| | )ζ

ζL1 different combinations (using the trivial upper
bound (| |) ≤ (| |)L Lj for each Θ| |j ). This number is infeasible for large
ζ , i.e. a fine grained decomposition. We propose two methods to
compute the Pareto front which are linear with respect to ζ , which
depend on its formalisation as multiple choice knapsack problem [29].

3.4.1. Formulation as multiple choice knapsack problem
Assume that the number of false rejects n is fixed. Then the

problem of finding a threshold vector θ which leads to a maximal
number of true rejects can be formulated as multiple choice
knapsack problem (MCKP) [29] as follows:

∑ ∑

∑ ∑

∑ζ

ζ Θ

| |·

| |· =

∀ ≤ ≤ =

∀ ≤ ≤ ∀ ≤ ≤ | | − ∈ { } ( )

ζ Θ

θ

ζ Θ

θ

Θ

= =

| |−

( )

= =

| |−

( )

=

| |−

a

a n

j a

j i a

max

subject to

1 : 1

1 , 0 1: 0, 1 12

a j i
i ji

j i
i ji

i
ji

j ji

1 0

1

1 0

1

0

1

ji

j

j

j

j

j

where the variable ∈ { }a 0, 1ji denotes whether the local threshold
θ ( )ij is chosen for rejection in the partition Υj. The constraints
guarantee that exactly one threshold is chosen in each Υj, and that
the sum of false rejects equals n. The objective maximises the
obtained number of true rejects. | |θ ( )ij is the gain obtained in
partition Υj and | |θ ( )ij are the costs which are paid for this choice.

In general, the MCKP allows a pseudo-polynomial algorithm.
Since the involved costs and gains in the formulation (12) are
polynomial with respect to the number of data points | |X , this leads
to a polynomial solution of this problem. As an example, the
contributions [29,48,49] investigate efficient exact solutions,
mostly based on linear programming relaxations which simplify
the original MCKP such that it can be solved optimally by enu-
meration. In our case, we directly derive an efficient and very in-
tuitive alternative with the same computational complexity rely-
ing on the fact that thresholds in every partition Υj have a linear
ordering according to their gain/costs. This enables us to derive a
quadratic time and linear memory algorithm very similar to the DP
scheme of the classical (simple) knapsack problem.

3.4.2. Local threshold adaptation by DP
For any number ζ Θ≤ ≤ | | ≤ ≤ ≤ ≤ | | −n L j i0 , 1 , 0 1j we define:

θ θ θ Θ

θ θ θ θ θ

( )≔ {| | | | | = ∈ { ( ) … (| | − )}

∀ < ∈ { ( ) … ( )} = ( ) ∀ > } ( )
θ

θ θn j i n

k j i k j

opt , , max , 0 , , 1

, 0 , , , 0 13

k j j j

j j j k k

The term ( )n j iopt , , measures the maximum number of true re-
jects that we can obtain with n false rejects, and a threshold vector
that is restricted as follows: the threshold in partition j is one of
the first i thresholds, it is any threshold value for partition <k j,
and the threshold for any partition >k j is fixed to the first
threshold value. For technical reasons, it is useful to extend the
index range of the partitions with 0 that refers to the initial case
that all thresholds are set to 0 which serves as an easy
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initialisation. Since there are no thresholds to pick in partition Υ0,
we define Θ| | = 10 , i.e. the index i is the constant 0 in this virtual
partition Υ0.

The extended Pareto front can be recovered from the values
ζ Θ( | | − )ζnopt , , 1 for ≤ | |n L , since these parameters correspond to

the optimal number of true rejects provided n false rejects and free
choice of the thresholds. Hence an efficient computation scheme
for the quantities ( )n j iopt , , allows to efficiently compute the
Pareto front.

For the values ( )n j iopt , , , the following Bellmann equality
holds:

∑

Θ

Θ

( ) =

= | |

> = − ∞
> > = ( − | | − )
< < > ( − )

≥ > > { ( − ) ( − −
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θ θ
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if 0, 0:

if 0, 0, 0: opt , 1, 1

if 0 , 0: opt , , 1

if 0, 0: max opt , , 1 , opt , 1,

1 14

k

j

j i

1
0

1

1 0

k

j j

This recursion captures the decomposition of the problem
along the partitions:

� In the first case, no false rejects are allowed and the gain equals
the sum of the gains | |θ ( )0j obtained by the smallest thresholds
in the partitions.

� In the second case, the number of false rejects has to equal n,
and only a trivial threshold with no rejects is allowed which is
impossible (reflected with �1).

� In the third case, the threshold of partition j and all partitions
with index larger than j are fixed to the first one by definition of
opt (13). This is exactly the same as the term

Θ( − − )−n jopt , 1, 1j 1 .
� In the fourth case, the i-th threshold is allowed, but it would

account for i false rejects in partition j with only <n i allowed
false rejects. Hence we cannot pick number i but a smaller one
only.

� In the fifth case there are two options, and the better of these
two yields the result: Either a threshold with index smaller
than i in partition j is chosen, or the threshold i in partition j is
chosen. The first option leads to ( − )n j iopt , , 1 true rejects. The
second option causes i false rejects in partition j, hence at most

−n i further false rejects are allowed in partitions 1 to −j 1,
leading to a number of Θ( − − | | − )−n i jopt , 1, 1j 1 true rejects
caused by thresholds in partition 1 to j�1. In addition, by
picking threshold i in partition j, we gain | |θ ( )ij true rejects as

compared to only | |θ ( )0j for the default 0. This is mirrored by the

term ⧹θ θ( ) ( )i 0j j .

This recursive scheme can be computed by DP, since the value i or j
is decreased in every recursion, using loops over n j, and i (Al-
gorithm 1); for memory efficiency we reduce the tensor ( )n j iopt , ,
to a matrix ( )n jopt , denoting the maximal number of true rejects
with n false rejects and flexible thresholds in partitions … j1, , .
Since every evaluation of (14) itself is constant time, the computa-
tion scheme has an effort of ζ Θ(| |· · | |)L maxk k with memory
efficiency ζ(| |· )L . A standard back-tracing scheme reveals the
related optimal threshold vectors.

3.4.3. Local threshold adaptation by an efficient greedy strategy
Albeit enabling an optimal choice of the local threshold vectors
for given data, DP as proposed above (14) is infeasible for large
training sets since its time complexity scales quadratically with
the number of data: The number of possible thresholds Θ| |maxj j

scales with N , we can expect it is of order ζ( )N/ . We propose a
greedy approximation scheme which yields to an only linear
method (besides pre-processing).

The basic idea is to start with the initial setting analogical to
ζ Θ( | | − )ζopt 0, , 1 : all thresholds are set to the default choice θ ( )0j ,

hence no false rejects are present. Then, thresholds are increased
greedily until the number of true rejects corresponds to the
maximal possible number | |E . While increasing their values, the
respective optima are stored and the values of the ARC are
computed.

The greedy step proceeds as follows: In each round, the num-
ber of false rejects n increases by at least one to yield the optimal
achievable gain, as follows:

� We consider local gains | ⧹ |θ θ( + ) ( )k k1j j for each partition Υj

gained by rising the threshold index k by one. In addition, we
evaluate global gains, which are obtained when assigning all
false rejects to one partition only.

� If a global gain surpasses the local gains, this setting is taken
and greedy optimisation continues.

� If a local gain surpasses the global gain, it is checked whether
this choice is unique. If so, the greedy step continues.

� Otherwise, a tie occurs; this is in particular the case when a
threshold increase does not increase the number of true rejects,
e.g. due to clusters of correctly labelled points. In this case, we
allow to increase the number of false rejects until the tie is broken.

This procedure is described in detail in Algorithm 2. Relying on a
greedy strategy, the algorithm may yield suboptimal solutions.
However, as we see in experiments, results tightly approximate the
optimal choices. Unlike the exact algorithm, the greedy strategy only
requires ζ(| |· )L time and ζ( ) memory.
4. Experiments

4.1. Classifiers

We use the following classifiers with their related certainty
measure: prototype-based, DT and SVM classifiers. We ground
local rejection on a natural tessellation Υj of the input space in-
duced by these classifiers.

4.1.1. Prototype-based classifiers
A prototype-based classifier consists of a set W of ξ prototypes

( ) ∈ × { … }c Zw , 1, ,j j
M and a prototype wj has a class label cj. A

data point x is classified according to its closest prototype

( ) = = ( )
( )ξ= …

c c l dx w xwith arg min ,
15l

j
j

1, ,

where d is a distance measure; e.g. the Euclidean distance. Pro-
totype-based models aim at a spars data representation by a
predefined number of prototypes. Such a classifier partitions the
data into Voronoi cells or receptive fields

Υ ξ= { | ( ) ≤ ( ) ∀ ≠ } = … ( )d d k j jx w x w x, , , , 1, , ; 16j j k

and it defines a constant classification on any Voronoi cell given by
the label of its representative prototype.

Prototype locations are usually learned based on a given
training data set X with N data points ( ) ∈ × { … }y Zx , 1, ,i i

M of Z
different classes, aiming at a high classification performance.
While classical training schemes are based on heuristics such as
the Hebbian learning paradigm [30], more recent training schemes
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rely on a cost function, including generalised LVQ (GLVQ) [50], its
extension to an adaptive matrix: generalised matrix LVQ (GMLVQ)
[31], its local version (LGMLVQ) [31] with local adaptive metrics,
and statistical counterparts, the robust soft LVQ (RSLVQ) [12]. La-
tely there are variants using kernels like the SVM as well [51].

GMLVQ: The GMLVQ [31] realises a stochastic gradient decent
on the cost function in [50] with a more general metric Λd than the
standard Euclidean one. This cost function is differentiable and it
approximates the 0–1 loss:

∑ Φ= (( − ) ( + ))
( )

Λ Λ Λ Λ
=

+ − + −E d d d d/ .
17i

N

GMLVQ
1

The metric Λd is defined as general quadratic form

Λ( ) = ( − ) ( − ) ( )Λd w x x w x w, 18T

with a semi-positive definite matrix Λ. The value = ( )Λ Λ
+d d w x,j i is

the distance of a data point xi to the closest prototype wj be-
longing to the same class and = ( )Λ Λ

−d d w x,k i is the distance of a
data point xi to the closest prototype wk belonging to a different
class. Φ is a monotonically increasing function, e.g. the Sigmoid.

Using a local metric Λ= ( − ) ( − )Λd x w x wj
T

j jj for every proto-
type wj instead of (18), one gets the LGMLVQ [31].

Rejection measure: RelSim. The relative similarity (RelSim) is a
certainty measure which is related to the cost function of GLVQ
[50,16]. It relies on the normalised distance +d of a data point x to
the closest prototype and the distance of x to a closest prototype
of a different class −d :

( ) = ( )≔( − ) ( + ) ( )− + − +r d d d dx xRelSim / 19

whereby d is either Λd or Λd j. Note that the prototype which be-
longs to +d also defines the class label of x .

RSLVQ: RSLVQ [12] optimises the data log likelihood of a
probabilistic model with a gradient ascent with respect to the
prototypes:

∑≔ ( ( | ) ( | ))
≤ ≤

L p y W p Wx xlog log , / .
i N

i i i
1

The quantity ( | ) = ∑ ( )· ( | )ξ≤ ≤p W P j p jx xj1 is a mixture of Gaus-

sians with uniform prior probability ( )P j and Gaussian probability
( | )p jx centred in wj which is isotropic with fixed variance. There

exist schemes adapting the bandwidth additionally [52,53]. The
probability ( | ) = ∑ ( )· ( | )( )=p y W P j p jx x, j c yw: j

restricts to mixture

components with correct labelling. Relying on a probability model,
RSLVQ provides an explicit confidence value ( | )p y Wx, for every
pair x and y, paying the price of a higher computational com-
plexity for learning.

Rejection measure: empirical estimation of the Bayesian con-
fidence. Probabilistic models like the RSLVQ provide explicit esti-

mations of the probability ^ ( | )P j x of class j given a data point x
[16] leading to the certainty measure

( ) = ( )≔ ^( | )
( )≤ ≤

r P jx x xConf max .
20j Z1

4.1.2. Basic decision trees for classification
A DT for classification [11] is a rooted tree with one root-node

and interior-nodes which are equipped with a splitting criterion
given by a dimension and a threshold, and Ξ leaves αj which are
equipped with a class label. A data point x is passed through the
DT with respect to the split-criteria at each internal node. The leaf-
node in which the data point ends defines the class label. We
denote the decision border induced by the DT as Γ; a data point x
is mapped to the class label ( )c x defined by the DT by a leaf. Note
that the split-criterion sets a threshold for a specific dimension of
the input space, e.g. on the first one: β( ) <x 1 , hence it defines a
hyperplane. We consider axis parallel decision borders only. We
use the receptive fields of the leaves of a given DT as partition:

Υ α Ξ≔{ | } = … ( )jx x falls into leaf , 1, , ; 21j j

Rejection measure: distance to decision border for DT [10]. The
distance to the closest decision border (Dist) Γ( )d x, denotes the
distance of a data point x to the closest decision border as defined
by Γ; this border is formed by the hyperplanes defined by the
split-criteria of the internal-nodes. Since the partition Υj of leaf αj

of a DT is bounded by axes-parallel hyperplanes, it is easy to
compute the distance Γ( )d x, for a given point Υ∈x j: x is pro-
jected orthogonally onto all hyperplanes which bound the leaf αj,
whereby we have to make sure to restrict to points which are on
the decision border only. Then the minimal distance of x and this
set of projections gives Γ( )d x, and the certainty measure

Γ( ) = ( )≔ ( ) ( )r dx x xDist , . 22

An extension towards DTs with more general decision borders
(such as non-axes parallel cuts, or borders induced by a general
quadratic form) is provided in [54].

4.1.3. Support vector machine for classification
The popular SVM classifier uses an implicit nonlinear embed-

ding of the data into a high dimensional kernel space. For a binary
setting, it realises the generalised nonlinear classification

Φ↦ ( · ( )) ( )Hx w x 23T

with Heaviside function H , linear weighing w, and feature map Φ
which is usually implicitly realised efficiently via a suitable kernel
mapping. Training is phrased as constrained optimisation problem,
which can be solved efficiently based on quadratic programming.
For multiple classes, there exist different encoding schemes which
transfer the problem into several binary classification problems.
One popular approach is the one-versus-one scheme, which se-
parates all pairs of classes by a binary SVM. Coupling can be done
by means of the output activation Φ( ) · ( )w xij

T where wij refers to
the decision border of classes i and j.

Let ( )c x be the class label of a new data point x with respect to
the SVM, then we define the input space partitioning according to
the classes (24). Note that this is a general partitioning of the space
which can be applied for any classifier:

Υ = { | ( ) = } = … ( )c j j Zx x , 1, , . 24j

Rejection measure: class probability estimates of SVM. The ap-
proach by Platt [6] turns the activity of a binary SVM into an ap-
proximation of a classification confidence. This activity (the dis-
tance of a data point to the decision border) is transformed into a
certainty value by a Sigmoid. The parameters of the Sigmoid are
fitted on the given training data. Wu et al. [7] extend this method
for multi-class tasks and it is integrated in the LIBSVM toolbox
[38]. The method leads to a certainty measure similar to (20), but
the empirical probability estimates are extracted from the SVM.

4.2. Data sets

For evaluation, we consider the following benchmark data sets:
Gaussian clusters: This data set contains two overlapping 2D

Gaussian clusters with means μ = ( − )4, 4.5x , μ = ( )4, 0.5y , and
standard deviations σ = ( )5.2, 7.1x and σ = ( )2.5, 2.1y . The points
are overlaid with uniform noise.

Pearl necklace: This data set consists of five 2D Gaussian clus-
ters with overlap. Mean values are given by
μ μ= ∀ = ( )i3 , 2, 44, 85, 100, 136y xi

, the standard deviation per
dimension is σ = ( )1, 20, 0.5, 7, 11x , σ σ=x y.
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Fig. 2. [28] The Pearl Necklace with prototypes trained by GMLVQ (black squares) without metric adaptation. The coloured curves are the contour lines of RelSim (19). Note
that a critical region for a global threshold is between the second and the third cluster from left. The third cluster needs a high threshold because the data points are very
compact. Applying the same threshold for the second cluster would reject most data points in this cluster which is not optimal. (For interpretation of the references to color
in this figure caption, the reader is referred to the web version of this paper.)
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Image segmentation: The image segmentation data consist of
2310 data points which contain 19 real-valued image descriptors.
The data represent small patches from outdoor images of 7 dif-
ferent classes, equally distributed such as grass, cement, etc. [55].

Tecator: The Tecator data [56] consist of 215 spectra of meat
probes. The 100 spectral bands range from 850 nm to 1050 nm. The
task is predicting the fat content (high/low) of the probes. It is a
small, balanced classification problem.

Coil: The Columbia Object Image Database Library contains gray
scaled images of 20 objects [57]. Each object is rotated in °5 steps,
resulting in 72 images per object. It contains 1440 vectors with
16, 384 dimensions that are reduced with PCA [58] to 30.

Since the complete ground truth is available for the first two,
artificial data sets, we use the optimal Bayesian rejection [3] as a
Gold standard for comparison in these two cases.

4.3. Experimental set-up

We evaluate the exact and approximate algorithms to de-
termine optimal thresholds as proposed above. We use a 10-fold
repeated cross-validation with ten repeats. We evaluate the
models obtained by RSLVQ, GMLVQ, and LGMLVQ with one pro-
totype per class,1 DT, and SVM. Since RSLVQ provides probability
estimates, we combine it with the certainty measure Conf (20). In
turn, GMLVQ and LGMLVQ lend itself to the certainty measure
RelSim (19). For the DT we use the default settings of the Statistics
Toolbox of Matlab2 except of the splitmin-parameter and use the
related certainty measure Dist (22). We use the SVM [38] with a
rbf-kernel and choose the best parameters of a cross-validation
and a standard certainty measure [6,7].

In Figs. 4–6, we display the ARC averaged over 100 runs per
data set and classifier. Note that the single curves have different
ranges for | | | |θX X/ corresponding to different thresholds. To ensure
a reliable display, we only report those points | | | |θX X/ for which at
least 80 runs deliver a value.

4.4. Comparison of DP versus greedy optimisation

First, we compare the performance of the greedy optimisation
and the optimal DP scheme for all benchmark data sets and al-
gorithms. Since we are interested in the ability of the heuristics to
approximate optimal thresholds, ARCs are computed on the
training set for which the threshold values are exactly optimised
using DP.
1 We use the LVQ toolbox at: http://matlabserver.cs.rug.nl/gmlvqweb/web/.
2 MATLAB and Statistics Toolbox Release 2008b, The MathWorks, Inc.
We show only the results for RSLVQ and GMLVQ but the results
of LGMLVQ, DT, and the SVM look similar. The mean squared error
of both curves created by DP and the greedy strategy is below
0.0015 for all experiments, for all but two it is even below · −2.1 10 5

(Fig. 3). Hence the greedy optimisation provides near optimal re-
sults for realistic settings, while requiring less time and memory
complexity. In the following, we use the greedy optimisation for
the local reject options.

4.5. Experiments on artificial data

We report the ARC obtained on a hold out test set not used for
training or threshold selection in order to judge the generalisation
error of the classifiers with rejection. For the first two data sets, we
compare local and global reject options with the optimal Bayes
rejection (Fig. 4). Thereby, RSLVQ is combined with Conf as cer-
tainty measure, while RelSim is used for deterministic LVQ models,
relying on the insights as gained in the studies [50,16,17,28], the
DT model uses Dist as certainty measure and the SVM uses the
estimated class probabilities. For all settings, the performance of
the classifier on the test set is shown, after optimising classifier
parameters and threshold values on the training set. Results of a
repeated cross-validation are shown, as specified before.

Gaussian clusters: For this data, global and local rejection ARCs
are almost identical for all three LVQ classifiers. In this setting, it is
not necessary to carry out a local strategy, but a computationally
more efficient global reject option suffices. Only for DT, the curves
are different and local rejection boosts the performance sig-
nificantly. For SVM, local rejection does not improve the perfor-
mance over the global one. Interestingly, rejection strategies reach
the quality of optimal Bayesian rejection in the relevant regime of
up to 25% rejected data as can be seen in the left part of the ARCs.
RSLVQ even enables a close to optimal rejection for the full regime
as well as the local rejection for DT (Fig. 4).

Pearl necklace: The pearl necklace data set is designed to show
the advantage of local rejection (Fig. 2). Here, local rejection per-
forms better than global rejection for RSLVQ and GMLVQ and
slightly better for LGMLVQ and DT. Global and local rejection show
the same performance for SVM. As can be seen from Fig. 4, neither
RSLVQ nor GMLVQ reach the optimal decision quality, but the ARC
curves are greatly improved when using a local instead of a global
rejection strategy. This observation is attributed to the fact that the
scaling behaviour of the certainty measure is not the same for the
full data space in these settings: RSLVQ is restricted to one global
bandwidth, similarly, GMLVQ is restricted to one global quadratic
form. This enforces a scaling of the certainty measure which does
not scale uniformly with the (varying) certainty as present in the

http://matlabserver.cs.rug.nl/gmlvqweb/web/
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data. In comparison, LGMLVQ is capable of reaching the optimal
Bayesian reject border for both, local and global rejection strate-
gies, caused by the local scaling of the quadratic form in the
classifier. The analysis on these artificial data sets is a first in-
dicator showing that local reject options can be superior to global
ones in particular for simple classifiers. On the other side, there
might be a small difference only in between local and global re-
jection for well performing classifiers.

4.6. Experiments on benchmarks

For the benchmark data sets, the underlying density models are
unknown, hence we do not report the result of optimal Bayes re-
jection. Fig. 5 displays all results. The experiments show that local
rejection performs at least as good as global rejection for the im-
portant range from 0% to 25% rejection rate of the data. If the used
classifier is already performing well there are less (e.g. LGMLVQ:
Coil) or no (e.g. SVM: Coil) errors in the training data leading to
bad or no local thresholds which can be applied on the test data.
For simpler classifiers such as GMLVQ, RSLVQ, and DT, local
thresholds improve the performance for several data sets. There-
fore local thresholds seem beneficial in particular for simple
classifiers where they can balance the local characteristics of the
data neglected by the classifiers.

Based on these experiments, we conclude the following:

� Rejection can enhance the classification performance, provided
the classification accuracy is not yet optimal.

� Local rejection yields better results than global ones, whereby
this effect is stronger for simple classifiers for which the clas-
sification accuracy on the full data set is not yet optimal. For
more flexible classifiers with excellent classification accuracy
for the full data set, this effect is not necessarily given.

� Threshold optimisation by means of a linear time greedy
strategy displays the same accuracy as computationally more
complex optimal choices.

4.7. Prosody data

The prosody data contains 1,866 data points related to prominent
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words and 12,191 data points of non-prominent words. Hence, it is a
very imbalanced data set. A single data point consists of 159 audio
features. The data was collected with aWizard-of-Oz setting in a small
cartoon game [59]. The eight (male/female) subjects had to interact
with a computer using spoken advises with simple grammar. Some
words were misunderstood by the computer and the subjects had to
correct the sentence. They repeated the sentence with emphasis on
the misunderstood word. The classification task is to distinguish pro-
minent from non-prominent words in order to correct the mis-
understood word. Note that, each subject has a highly individual
characteristic of emphasising the corrected word. For further in-
formations and recent results we refer to [60].

This data set contains highly imbalanced classes which are also
strongly overlapping. Therefore, we trained the LVQ classifiers
with 15 prototypes per class. Fig. 6 contains the results of the
classifiers on this data set. As one can see, local rejection strongly
enhances the performance of the classifiers except in case of the
SVM. On the one hand the SVM has the highest accuracy without
rejection and on the other hand there are only two local thresh-
olds which can be chosen (class-wise). Two thresholds offer less
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Fig. 6. Averaged ARCs for global and local rejection of the prosody data test sets. For RSL
(19), for the DT the Dist (22) and the SVM uses its estimated class probabilities.
flexibility as for instance the 15 prototypes per class in the LVQ
classifiers. This data set is an example where global rejection can
be less effective while local rejection performs much better
(GMLVQ). For DT, the RSLVQ and the LGMLVQ, global rejection
works but local rejection is clearly a better choice since this
strategy performs much better for this data.

4.8. Medical application

We conclude with a recent example from the medical domain.
The adrenal tumours data [61] contains 147 data points composed
of 32 steroid marker values. Two unbalanced classes are present:
patients with benign adrenocortical adenoma (102 points) or
malignant carcinoma (45 points). The 32 steroid marker values are
measured from urine samples using gas chromatography/mass
spectrometry. For further medical details we refer to [61,62].

Our analysis of the data and the pre-processing follow the
evaluations in [61,62]: we train a GMLVQ model with one proto-
type per class. For the evaluation of rejection we split the data into
a training set (90%) and a test set (10%). We evaluate the ARC of
MLVQ DT SVM
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1000 random data splits and the corresponding GMLVQ models.
Fig. 7 shows the averaged ARCs of the tested rejections.

There is nearly no difference between the curves of the global and
the local rejection for small rejection rates (up to 10%). For more than
10% rejection, the local rejection strategy improves the accuracy as
compared to the global one. Further, the GMLVQ provides insight into
potentially relevant biomarkers and prototypical representatives of the
classes [62]. As a conclusion, the GMLVQ together with the proposed
rejection offers a reliable and compact classifier for this medical ap-
plication. Lately results from the medical domain using learning vector
quantisation [63] could probably benefit from a reject option, too, in
order to improve the performance.
5. Conclusion

In this article, we derived theoretical and practical results for
classifiers with rejection. A rejection strategy can be global (one
threshold) or local (several thresholds).

In our theory part, we introduced two algorithms for determining
optimal local thresholds for the latter strategy: (i) an optimal techni-
que based on DP and (ii) a fast greedy approximation. While the first is
provably optimal, the latter is based on heuristics. The time complexity
of the greedy approximation is only linear with respect to the number
of data, while DP requires quadratic time, and its memory complexity
is constant as concerns the number of data, while DPs memory size
depends linearly on the number of data points. Also we linked the
optimisation problem of finding optimal local thresholds with the
multiple choice knapsack problem.

In our practical part, we firstly compared the results of DP with
the results of the greedy approximation. Our experiments show
that both solutions have very similar results such that the fast
greedy solution instead of the more complex DP solution seems a
reasonable choice. Secondly, we compared global and local rejec-
tion strategies on several benchmarks and two real-life data sets
for three classifier types: prototype-based, DT and SVM classifiers.
The benefit of local strategies becomes apparent especially for
simple prototype-based classifiers and DT. The effect is less pro-
nounced for more complex classifiers that involve local metric
learning like LGMLVQ or the SVM. Nevertheless, as the results of
the prosody data showed, local rejection can provide a much
better performance than the global counterpart. Interestingly, the
proposed rejection strategies in combination with the intuitive
deterministic LGMLVQ lead to results which are comparable to
SVM and related reject options. Thereby, the LVQ techniques base
the rejection on their distance to few prototypes only, hence they
open the way towards efficient techniques for online scenarios.

So far, the rejection strategies have been designed and eval-
uated for offline training scenarios only, disregarding the possibi-
lity of trends present in life long learning scenarios, or its coupling
to possibly varying costs for rejects versus errors. We will analyse
in future work how to extend the proposed methods to online
scenarios and life long learning, where accordingly thresholds are
picked automatically based on the proposed results in this article.
Acknowledgements

The authors would like to thank Stephan Hasler for the basic idea
of the greedy optimisation of local thresholds and helpful discussions
thereon. The authors are grateful for the provided medical data and
the support in related issues by Wiebke Arlt and Michael Biehl. The
authors would like to thank Andrea Schnall for providing the Prosody
data set and the support in related questions. This research was partly
supported by the Cluster of Excellence Cognitive Interaction Technol-
ogy ’CITEC’ (EXC 277) at Bielefeld University, funded by the German
Research Foundation (DFG).
Appendix A
Algorithm 1. DP(X, classifier).
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