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Abstract

Recognition of visual categories is a key component of any human-robot interaction
dealing with objects. The interactive learning of new categories based on human
demonstration provides great opportunities for more flexible capabilities of robots
that can extend their pre-trained knowledge towards novel requirements in a new
operation environment. In this article we first present an earlier developed system
capable of real-time interactive visual category learning on a humanoid robot.
We then show that learning speed and performance can be strongly enhanced by
employing a visual feature computation hierarchy based on deep learning. The
main result is that an architecture pre-trained for object identification provides very
good generalization to more complex categorization tasks, which can be motivated
from concepts like chorus-of-prototypes models (Edelman, 1995).

1 Introduction

Interactive machine learning aims at tasks where a deeper cooperation of humans and machines is
beneficial. Amershi et al. [1] review a wide range of approaches to incorporate human interaction
for accelerating learning and improving performance of machine learning models. We can identify
two important challenges: (i) the machine should solve its task satisfactorily and securely, and
(ii) communication should make the behaviour of the cooperating participants understandable and
informative. Areas of application are online learning and life-long learning which are nowadays
especially interesting for personalisation [13] and big data analysis.

Another highly relevant area is interactive learning for robots to learn new concepts about their
environment and human partners [11, 3]. Affordances have been considered for defining acquired
categories relevant for robot actions [8]. Kirstein et al. [6] have developed an interactive visual
category learning architecture which combines an intuitive speech-based user interaction with a
biologically motivated short-term and long-term memory system for categorizing objects presented
in hand in arbitrary 3D poses. The architecture was integrated in the autonomous learning and
interaction system (ALIS) [4] for the Honda humanoid robot Asimo1.

Categories acquired through interactive learning can provide efficient means of communication and
task cooperation between an intelligent robot and a human. This leads not only to a better performance
but also to a higher acceptance and trustworthiness of the system which is an important ingredient
when humans and machines should work together. The invariant2 recognition of visual categories is a

1An internet search for “learning asimo” leads to a BBC feature about this system.
2Here invariant refers to object transformations like 3D rotation and scaling.
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complex problem, which no current online system can directly learn from scratch. A hierarchical
solution can be to separate the learning architecture into lower feature-representing stages and higher
view-dependent representations, resembling the architecture of the human visual cortex [14]. In this
article we first review the architecture of the interactive learning system from Kirstein et al. [6] and
demonstrate a considerable improvement of this system by employing feature representations derived
from a deep learning architecture.

2 An interactive category learning system

The system [6] performs real-time interactive learning of visual categories. During training the user
rotates an object in hand in front of the stereo camera and tells the system a set of corresponding
visual category labels, e. g. ‘yellow green box’. Based on extracted color and texture features the
system tries to learn the different concepts simultaneously, without any a priori assignment of features
to categories (i. e. assigning color features to color descriptions has to be learned from the input
statistics). In the next training step the user can present a previously seen or new object. The
system categorizes the new visual input and tells the user the detected categories or responds with
‘unknown category’. The user can confirm or correct the labels and the system will update its category
representation using the new information.

Figure 1: Category training setup and feature extraction for interactive online category learning [6].

The framework is based on the concept of shared attention in time and space. The system uses a
stereo-based depth proximity cue to determine the relevant region containing the object for each input
image. As long as the user holds an object close to the camera, the acquired views are assumed to
belong to the same object and to have the same category labels. The size-normalized relevant region
is shown to the user as feedback and is the input for the further processing steps.

The potential category labels are predefined in the grammar of a commercial speech recognition
module. A speech-based confirmation process is used to deal with wrongly understood words. At any
time during the presentation of an object the user can tell labels to the system. The system will repeat
the understood labels and ask for confirmation (‘Did you say: yellow green box?’) expecting the user
to respond with ‘Yes, this is correct.’ or ‘No, this is wrong.’. If one of these phrases is understood by
the system it will respond with ‘Okay’, otherwise it will ask the user to repeat the confirmation.

To deal with the resource constraints of an interactive online learning process, different memory
concepts are combined. The feature vectors of each view of an object are first stored in the quick but
size-constrained short term memory (STM) and are associated with a label vector, containing a 1 for
each present category and a -1 for absent categories, i. e. labels the user did not assign during the
presentation of the object. The long term memory (LTM) tries to efficiently model the categories by a
minimal set of relevant prototypes. These prototypes are selected from the STM, and are later updated
using learning vector quantization [7]. Objects are deleted from the STM if they are sufficiently well
modelled in the LTM.

For each view of a presented object, the system detects the presence or absence of a category based
on the closest prototype in the LTM. Hence for each view of the sequence category memberships
are determined. The categories that are detected in most views are communicated to the user. The
sequence is determined from a dynamic tracking of the object, also indicating a removal of the object
from the scene. The user can either confirm the system output, add missing category labels, or provide
a completely new set of labels, where the latter one is necessary whenever the system has a false
positive. In each of the three cases, the system uses the new data together with the confirmed or
corrected labels to update the category representation.
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3 Experiments using deep features

Kirstein et al. [6] used different features for the real-time build-up of the visual category representation:

Figure 2: The data [6] split
into training/testing.

Hierarchical features learned from unsupervised sparse coding [14],
analytical features learned from supervised greedy optimization of
object discrimination capability [5] and color histograms. Due to the
recent great success of deep neural networks, we were curious if deep
neural network features can provide an improvement for our online
learning architecture. We present the result of this investigation in
the following. To make a controlled experimental comparison to
previous results of Kirstein et al. [6] we use the same recorded data
ensemble and offline category experiment definition.

Data set [6]: We use the so-called unconstrained database [6]
containing 48 objects (e. g. red car) which belong to different shape
(rubber duck, cup, car, cell phone, box) and color (yellow, green,
blue, white, red) categories. For each object there exist 1200 dif-
ferent views in a cluttered office environment. Each object is freely
rotated by hand covering almost the full viewing sphere (Fig. 2)
with hand-caused occlusions.

Training of deep features: As deep feature hierarchy we use the
AlexNet [9], a convolutional neural network with 8 layers; the first
5 layers are convolutional and the remaining 3 are fully-connected.
The original network was trained to distinguish 1000 classes. Initialized from this weight setting,
we fine-tuned the network to discriminate those 126 objects3 which were also used by Hasler et al.
[5] for the supervised training of analytic features. The training of the feature representation is
therefore optimized to identify individual objects, i. e. generate a sparse output vector which only
should be active for the corresponding object and silent for all other objects. Here, we analyse if this
representation optimized for identification will naturally lead to good categorization performance,
which is a more difficult problem for categories with high variability (e. g. chairs).

Feature computation for categorization experiment: For our experiments we extracted for
Table 1: Deep feature layers

name layer dimension

fc6 6th 4096
fc7 7th 4096
fc8 8th 126

each input view the activations from the last three fully-connected
deep layers as feature vectors where we omitted the ReLU non-
linearity (Tab. 1). Each feature vector is attached with a ten-
dimensional category label vector where each element encodes
if the view of the object belongs to a category or does not belong to
it or if the membership is unknown. The data is divided into disjoint
24 training objects and 24 test objects to investigate category generalization across individual objects.

Experimental protocol: We use the same online learning protocol as [6] that simulates a subsequent
training of 24 objects with their respective categories. In each training epoch4 a random object with
its 1200 views is added to a capacity limited memory (containing at most three objects) which is used
to update the category representation. In case there are already three objects stored, the new object
replaces the oldest training object. After each of the 24 epochs the categorization performance is
calculated for the complete test set. We report the average over ten runs.

Experiments with deep features: A baseline categorization performance using the deep feature
representation can be obtained with a simple nearest neighbour (NN) classifier. Since all training
data points/views are stored as prototypes, in each training epoch the data of a randomly chosen
training object is added as prototypes. The winner takes all rule is applied for classification for each
category. Prototypes with unknown category membership are omitted. Figure 3 shows the averaged
categorization performance per epoch. As can be seen, the different deep features (fc6, fc7, fc8)
lead to similar results for shape and color categories. It seems that especially the shape categories
are more challenging in the beginning of the training while the end performance of shape and color
categories is comparable for fc6, fc7, and fc8 features.

3The 126 objects included 39 objects of the online learning data set. This setting resembles the experimental
setup of [6] at which the 126 objects where used for feature leaning in an object identification task as well. The
learnt features are then used for learning the categorisation task on the 48 objects.

4The online system is running at 10 Hz frame rate, resulting in roughly 2 minute training time per object.
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Figure 3: Average categorization performance (over 10 runs) with respect to different deep features
(fc6, fc7, fc8 features of the adapted AlexNet [9]) using a nearest neighbour classifier.

Comparative evaluation: In this section we compare the results of the prior system [6] with the
new results obtained from deep features together with a simple NN classifier (Fig. 3). Because of the
similar behaviour of the deep features, we use the low dimensional fc8 features for the comparison
only which can be seen in Figure 4. The new deep feature representation achieves a consistent
and considerable improvement over the previous feature representation with respect to fast and
robust acquisition of categories. We note that the actual categorization representation layer in [6]
is different to the simple nearest-neighbour classifier by performing a vector quantization-based
compression of representation nodes to speed up the categorization. Future work would thus have
to consider a similar memory consolidation for more efficient prototype storage or alternative final
categorization architectures5. Apart from that the results show that generally the online category
learning performance can be considerably enhanced by using pre-trained deep features.

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

C
at

eg
or

iz
at

io
n 

P
er

fo
rm

an
ce

cLVQ color
cLVQ shape

0 2 4 6 8 10 12 14 16 18 20 22
Learning Epoch

NN color
NN shape

0 2 4 6 8 10 12 14 16 18 20 22
Learning Epoch

Figure 4: Comparison of categorization performance. Left: The results of Kirstein et al. [6]. Right: A
nearest neighbour classifier (NN) using the fc8 features of the adapted AlexNet [9].

4 Conclusion

We demonstrated that using deep feature representations trained in an object identification task
generalize well to performing online incremental learning of visual categories. This principle has been
long identified as one of the key representation advantages of learning-driven distributed processing
systems [12], and our study showed the same effect. Kubilius et al. [10] validate recently that neurons
in intermediate layers of a deep network for object identification develop shape sensitivity.

From a visual representation point of view it is interesting to note that even the last layer of the deep
network which is trained to respond with a 0/1 mapping for the object identification task is suitable
for an essentially different categorization scenario. This can only work, if the residual difference to
the target 0/1 responses after the deep training for similar objects (according to categorization) is
generalizing well for the later categorization task. Effectively this realizes a representation where
categories can be represented by similarity to a number of prototypes, which has been discussed as
the chorus-of-prototypes model in vision [2]. This concept is thus also highly applicable to improving
interactive incremental category learning.

5A non-optimized plain NN classifier Matlab implementation takes 0.3 s for categorizing one frame.
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