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Abstract. When training automated systems, it has been shown to be
beneficial to adapt the representation of data by learning a problem-specific
metric. This metric is global. We extend this idea and, for the widely used
family of k nearest neighbors algorithms, develop a method that allows
learning locally adaptive metrics. To demonstrate important aspects of
how our approach works, we conduct a number of experiments on synthetic
data sets, and we show its usefulness on real-world benchmark data sets.

1 Introduction

Machine learning models increasingly pervade our daily lives in the form of
recommendation systems, computer vision, driver assistance, etc., challenging
us to realize seamless cooperation between human and algorithmic agents. One
desirable property of predictions made by machine learning models is their trans-
parency, expressed in such a way as a statement about which factors of a given
setting have the greatest influence on the decision at hand – in particular, this
requirement aligns with the EU General Data Protection Regulations, which
include a “right to explanation” [1]. The native transparency of machine learning
models varies considerably based on the form and complexity of the models,
ranging from intuitive prototype-based classifiers, which allow a substantiation
of a decision in the form of a typical class representative [2], to mostly opaque
black-box models found in deep learning, for which additional posterior explana-
tion technologies are required [3]. Interestingly, several popular interpretation
technologies for black-box models rely on local feature weighting schemes [4].
Moreover, machine learning models that are intrinsically based on a feature
relevance weighting [5], enjoy a wide popularity in particular in medical domains
to uncover relevant insight, such as the discovery of potential biomarkers [6].

Intuitive indications of which features are most or least relevant for a given
model’s decision can be provided by metric-learning approaches, such as GR-
LVQ [5], which adapts a diagonal matrix, scaling the relevance of the input
features. Generalizations that use a full matrix, such as GMLVQ [7], exist, but
a single global quadratic matrix remains the most common choice [8]. Large
margin nearest neighbor learning (LMNN) implements this idea for a k-nearest
neighbor (kNN) classification scheme [9]. A few approaches extend this setting
to non-global matrices, such as LGRLVQ [10] and LGMLVQ [7], which can be
accompanied by learning-theoretical guarantees, or an extension of LMNN [11].
However, the former only allow one matrix per prototype (which corresponds to
one metric per Voronoi cell in the input space); the latter requires an explicit
partitioning of the training data, commonly based on the respective class labels.
Parametric Local Metric Learning (PLML) [12] learns a smooth metric matrix
function over the data manifold, but again, specific metric matrices are based on
so-called anchor points, such as the means of clusters according to some super-
vised algorithm. Noh et al. [13] take a different approach with Generative Local
Metric Learning (GLML), where they learn an optimal local metric for a learned
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generative model. Fitting class-wise Gaussians, they inherit the inflexibilties that
come with this assumption-heavy approach.

In this work, we formulate and explore an extension of kNN to local relevance
matrices, which are specific to a given point and indicate the local relevance of
the features in its region, i. e. the factors most relevant for a specific decision
rather than the global model. Further, unlike LMNN, PLML, and GLML, we
aim for an online adaptation technique, which can be integrated into incremental
models or models for streaming data, such as the one proposed by Losing et al.
[14]. In the following, we will propose a cost function, based on a differentiable
approximation of the output label distribution of a kNN classifier, and we will
demonstrate how to derive an intuitive local relevance learning scheme based
thereon.

2 Local metric learning for kNN classifiers

Assume data X = {~x1, . . . , ~xm} ⊂ Rn are given, with label yi for data point
~xi, where labels are element of a finite number of L different labels. Assume a
number k > 0 is fixed. A kNN classifier crucially depends on a distance measure
d : Rn × Rn → R. Given a data point ~x ∈ Rn, the neighborhood N(~x) of ~x in X
is defined as the set of k points ~xi in X where d(~xi, ~x) is smallest. A weighted
kNN classifier computes the support S for label y given input ~x

S(y | ~x) =
∑

~xi∈N(~x)
yi=y

1

d(~xi, ~x)

and outputs the label y with maximum support. This definition relies on a
global distance measure d such as the squared Euclidean distance measure
d(~xi, ~x) = (~xi − ~x)T(~xi − ~x). Metric learning such as LMNN [9] substitutes the
Euclidean distance by a parameterized quadratic form

dΛ(~xi, ~x) = (~xi − ~x)TΛ (~xi − ~x)

with positive semi-definite (p. s. d.) matrix Λ, which is determined based on given
data. LMNN relies on the objective to change the distance such that intruders,
i.e. points ~xi in N(~x) which do not have the same label as ~x, are moved outside
N(~x) with a margin. This problem can be phrased as a semi-convex constraint
optimization problem for the metric parameters Λ [9]. LMNN uses a global
distance measure, which does not necessarily resemble the relevance of input
features for the local decision f(~x).

In the following, we want to ask and answer, whether it is possible to (i) learn
local metrics without a fixed prior decomposition of the space, and (ii) develop
an online learning scheme, which carries the potential of an integration into
streaming and incremental scenarios such as the self-adjusting-memory kNN [14].
We assume a local distance measure

dΛi(~x
i, ~x) = (~xi − ~x)TΛi (~x

i − ~x)

where dΛi
is attached to the data point ~xi and it is used whenever the distance

measure from ~xi to another data point is computed. Here, Λi is an adaptive
p. s. d. matrix, which can be parameterized as Λi = (Ωi)(Ωi)T with possibly
low-rank matrix Ωi ∈ Rn×n′ for some n′ 6 n or even diagonal form Λi =
diag

(
(λi1)2, . . . , (λin)2

)
.



Given an input ~x with desired output y, we can derive a stochastic gradient
scheme to adapt these metric parameters online as follows: We approximate the
output of a weighted kNN using the softmax function with parameter β > 0,
which yields a probability distribution over all possible output labels 1, . . . , L:

P (y | ~x) :=

(
exp(S(y | ~x)/β)∑
y′ exp(S(y′ | ~x)/β)

)
y=1,...,L

∈ [0, 1]L

where local metrics dΛi
are used to evaluate the support S(y | ~x), which indicates

the vector of probabilities of the L output labels. Assume a desired output y = l
is given, this induces a probability distribution over the labels by its one-hot
encoding in {0, 1}L, which we denote by P (y | l).

Then, a suitable loss function is offered by the Kullback-Leibler-Divergence,
resulting in the overall error

E =

m∑
i=1

E(~xi, yi) =

m∑
i=1

KL
(
P (y | yi)

∥∥ P (y | ~xi)
)

= −
m∑
i=1

L∑
l=1

P (y = l | yi) · log
P (y = l | ~xi)
P (y = l | yi)

= −
m∑
i=1

logP (y = yi | ~xi) = −
m∑
i=1

log

(
exp(S(yi | ~xi)/β)∑
y′ exp(S(y′ | ~xi)/β)

)

since P (y = l | yi) = δl,yi (the Kronecker delta), where we use the identity
0 · log 0 = 0. For stochastic gradient descent, we consider the derivative of a
summand w. r. t. metric parameters Ωjkl for a matrix Λj = (Ωj)(Ωj)T. This yields

∂

∂Ωjkl

(
− log

(
exp(S(yi | ~xi)/β)

)
+ log

(∑
y′

exp(S(y′ | ~xi)/β)

))

= − 1

β
· ∂S(yi | ~xi)

∂Ωjkl

+
1

β
· 1∑

y′ exp(S(y′ | ~xi)/β)
·
∑
y′

(
1

β
· exp(S(y′ | ~xi)/β) · ∂S(y′ | ~xi)

∂Ωjkl

)
Further,

∂S(y′ | ~xi)
∂Ωjkl

=
∂

∂Ωjkl

∑
~xo∈N(~xi),yo=y′

1

dΛo
(~xo, ~xi)

=

{
−1/dΛj

(~xj , ~xi)2 · ∂dΛj
(~xj ,~xi)

∂Ωj
kl

if ~xj ∈ N(~xi), yj = y′

0 otherwise



Table 1: Accuracies (cross validation averages) for all algorithms and datasets
considered in our experiments. The last four constitute real-world data.
Dataset kNN LMNN LANN LGMLVQ
Art. Classification 0.95 ± 0.0029 0.97 ± 0.0042 0.99 ± 0.0018 0.99 ± 0.0017
Breast Cancer 0.95 ± 0.0079 0.95 ± 0.0113 0.94 ± 0.0077 0.92 ± 0.0155
Adrenal 0.82 ± 0.0293 0.81 ± 0.0550 0.88 ± 0.0171 0.77 ± 0.0391
Image Segmentation 0.93 ± 0.0039 0.95 ± 0.0064 0.95 ± 0.0041 0.94 ± 0.0051
Outdoor Objects 0.80 ± 0.0070 0.83 ± 0.0084 0.87 ± 0.0085 0.83 ± 0.0117

yields the derivative 0 for all Λj where ~xj 6∈ N(~xi). For neighbors ~xj ∈ N(~xi) we
obtain

∂E(~xi, yi)

∂Ωjkl
=


1

β·dΛj
(~xj ,~xi)2 ·

(
1− exp(S(yi|~xi)/β)∑

y′ exp(S(y′|~xi)/β)

)
· ∂dΛj

(~xj ,~xi)

∂Ωj
kl

if yj = yi

− 1
β·dΛj

(~xj ,~xi)2 ·
(

exp(S(yj |~xi)/β)∑
y′ exp(S(y′|~xi)/β)

)
· ∂dΛj

(~xj ,~xi)

∂Ωj
kl

if yj 6= yi

It is necessary to add a regularization step to prevent divergence of the parameters,
e.g. a soft or hard constraint for det Λj or a restriction of the norm of the
diagonal of the matrices. If we chose the metrics in the form of diagonal matrices
Λ = diag(λ2

1, . . . , λ
2
n), the derivative yields ∂dΛ(~x, ~x′)/∂λl = 2λl · (xl − x′l)

2.
In this case, a stochastic gradient descent directly corresponds to a Hebbian
scheme: for yj = yi, diagonal terms for those dimensions l are enhanced (after
normalization) which correspond to small values (xjl − xil)

2; for yj 6= yi, we
find the opposite. This behavior resembles popular metric learning schemes
as proposed in the context of prototype-based classifiers [10, 7]. Yet, while
these technologies restrict metric forms to receptive fields of prototypes, we are
able to learn an individual weighting scheme for every data point of the kNN
classifier. Apart from the different objective, this fact – a local weighting scheme
– is the most distinguishing feature of the proposed method when compared to
alternatives such as LMNN.

3 Experiments

We have implemented our proposed algorithm (henceforth referred to as LANN)
in Python 3.7 within the scikit-learn1 [15] framework, restricting the metrics
to diagonal matrices as discussed above. We compare its performance against
a standard kNN classifier (as provided by scikit-learn), against LMNN with a
global adaptive metric (via the implementation PyLMNN2 by John Chiotellis)
– we keep k = 5 fixed for all three algorithms to facilitate comparability – and
against Localized Generalized Matrix Learning Vector Quantization (LGMLVQ –
using the open implementation3 for scikit-learn). Each algorithm is fitted and
evaluated on a number of datasets:

• Artificial Classification: An artificial dataset provided by scikit-learn that
contains strongly relevant features, weakly relevant features, as well as
redundant features. We sample 2000 data points according to the default
parameters, which results in 2 classes, 20 features, of which 2 are strongly
relevant, and 2 are weakly relevant.

1https://scikit-learn.org/
2https://github.com/johny-c/pylmnn
3https://github.com/MrNuggelz/sklearn-lvq

https://scikit-learn.org/
https://github.com/johny-c/pylmnn
https://github.com/MrNuggelz/sklearn-lvq
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Figure 1: Aggregated per-class relevances for the Wisconsin Breast Cancer
dataset, as determined by our proposed algorithm. The two different colors
indicate the two classes benign and malignant.

• Wisconsin Breast Cancer : Classic dataset of 569 data points in 2 classes
(benign and malignant) described by 30 features that relate to the properties
of cells visible under a microscope.

• Adrenal [16]: Results from an analysis of adrenal gland metabolomics. The
dataset contains 147 data points in 2 classes (adrenocortical carcinoma and
adenoma), described by 32 features that relate to the underlying metabolic
processes.

• Image Segmentation [17]: In this dataset, 2306 data points fall into 7 classes
and are described by 16 features that encode several attributes of image
regions. We leave out three near-constant features, as proposed by Schneider
et al. [7].

• Outdoor Objects [18]: Here, 4000 data points correspond to images that
belong to one of 40 classes, depending on objects visible in the images. Its
21 features constitute normalized color histograms.

For each algorithm and dataset we perform a 10-fold, stratified, randomly
shuffled cross validation and include a z-score transformation as the only prepro-
cessing step. We report the averaged accuracies together with their standard
deviations in Table 1. LANN obtains an improvmenet as compared to LMNN
in four out of five cases, yielding a smaller variation in all cases. Interestingly,
local metric learning seams particularly profitable for the outdoor objects data,
a setting with a large number of classes and comparably high degree of noise.

LANN yields an indication of relevance for each feature with respect to
each individual data point. We can use these to develop a local understanding
of feature relevance. For the Wisconsin Breast Cancer dataset, we aggregate
these relevances class-wise. Our findings, presented in Figure 1, align with
those previously discovered and discussed in the literature [19]. In particular, it
becomes apparent that different averages result for the two classes.

4 Conclusions

We have proposed a metric learning scheme which assigns a separate relevance
weighting vector to every data point of a kNN classifier, leading to different local
relevances of the decision function. Even restricted to local diagonal matrices,
the technology is as good as or surpasses popular metric learning schemes such as
LNMM. More importantly, the method provides a local explanation of a specific
decision of the model given an input ~x rather than a global metric, and it enables
online update rules in the form of a stochastic gradient. It is subject to future
work to integrate this scheme into kNN methods for streaming data and to
investigate the suitability to build a reject option based on this representation,



as investigated in [14, 20] for the standard Euclidean metric.
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