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Abstract— The contribution of this paper is twofold. First,
we present a new conceptual framework for modeling incre-
mental hierarchical behavior control systems for humanoids.
The biological motivation and the key elements are discussed.
Second, we show our current instance of such a behavior control
system, called ALIS. It is designed according to the concepts
presented within the framework. The system is integrated with
the humanoid ASIMO and comprises visual saliency computation
and auditory source localization for gaze selection, a visual proto-
object based fixation and short term memory of the current
visual field of view, the online learning of visual appearances
of such proto-objects and an interaction oriented control of the
humanoid body including walking. Humans can freely interact
with the system in real-time. Experiments show the feasibility of
the chosen ansatz.

I. INTRODUCTION

Research about intelligent systems interacting in the real

world is gaining momentum due to the recent advances in

computing technology and the availability of research plat-

forms like humanoid robots. Some of the most important

research issues are architectural concepts for the overall be-

havior organization of the artifacts. The spectrum spans from

mechanisms for action selection in a direct fashion [1] towards

research with the target of creating cognitive architectures [2].

The long-term goal of the research presented in this paper is

aiming at incrementally creating an autonomously behaving

system that learns and develops in interaction with a human

user as well as based on internal needs and motivations. The

concrete system presented in this paper is called ALIS, an

acronym for “Autonomous Learning and Interacting System”.

It is our current design of an incremental hierarchical control

system for the humanoid robot ASIMO comprising several

sensing and control elements. Those elements are visual

saliency computation and gaze selection, auditory source lo-

calization for providing information on the most prominent

auditory signals, a visual proto-object based fixation and short

term memory of the current visual field of view, the online

learning of visual appearances of such proto-objects and an

interaction-oriented control of the humanoid body. The whole

system interacts in real-time with users. The focus of the

paper is not on single functional elements of the system but

rather on its overall organization and key properties of the

architecture. We will describe the architecture by means of a

conceptual framework that we developed. The clear focus of

this framework is to have a general but not arbitrary means

for describing incremental architectures, focusing on the hier-

archical organization and on the relations and communication

between hierarchically arranged units when they are being

created layer by layer. We are convinced that researching more

complex intelligent systems without such a kind of framework

is infeasible.

To our knowledge, ALIS represents the first system in-

tegrated with a full size biped humanoid robot that inter-

acts freely with a human user including walking and non-

preprogrammed whole body motions, in addition to learning

and recognizing visually defined object appearances and gen-

erating corresponding behaviors.

Our architectural concepts point in a similar direction as

presented in [3], where a subpart of a mammalian brain has

exemplarily been modeled as a hierarchical architecture. We

share the view that such kinds of hierarchical organizations

are promising for modeling biological brains. We go beyond

the arguments presented there by considering explicitly the

internal representation and the dependencies in the sensory

and behavioral spaces. This is the main difference to classical

subsumption-like architectures as summarized in [4]. The ap-

proach we pursue is incremental w.r.t. the overall architecture,

which goes beyond an incremental local addition of new

capabilities within already existing layers. This is the main

difference to the state of art in comprehensive humanoid

control architectures including learning as presented in [5],

[6], [7] and [8]. A similar reasoning applies to the comparison

to classical three-layer architectures [9]. The hierarchies we

are considering are not fixed to the common categories of

deliberation, sequencing and control.

In the next section (II), we will introduce the framework

and discuss the biological motivation. Subsequently, we will

present the realized system in more detail. In section IV we

will report on experiments performed in interaction with the

system. Section V concludes with a discussion and a summary

of the presented work.



Fig. 1. Schematics of SYSTEMATICA.

II. SYSTEMATICA

We call the proposed framework “SYSTEMATICA”. It was

devised for describing incremental hierarchical control archi-

tectures in a homogeneous and abstract way. Here, we will

limit ourselves to introduce the notation that is necessary for

making the points of the concrete system instance presented in

this paper. One future target of our research are comparative

studies of different kinds of hierarchical control architectures

by means of the presented framework.

Each identifiable processing unit or loop n is described by

the following features (see figure 1 for reference):

• it may process independently from all the other units;

• it has an internal process or dynamics Dn;

• its full input space X is spanned by exteroception and

proprioception;

• it can create some system-wide publicly accessible rep-

resentations Rn used by itself and other units within the

system. The indices may be extended in order to denote

the units that are reading from the representation, e.g.

Rn;m,o,... means that representation Rn is read by units

m and o;

• it may use a subspace Sn(X) of the complete input space

X as well as the representations R1, . . . , Rn−1;

• it can be modulated by top-down information Tm,n for

m > n;

• it can send top-down information / modulation Tn,l for

n > l;

• it may emit autonomously some behaviors on the be-

havior space Bn by issuing motor commands Mn with

weight / priority Pn and / or by providing top-down

modulation Tn,l;

• the value of the priority Pn is not necessarily coupled to

level n, see for example underlying stabilizing processes

like balance control etc.;

• a unit n can choose to work solely based on the input

space X without other representations Rm 6=n;

• the coupling between the units is such that the behavioral

space covered by the system is
⊕

n Bn, denoting the

vector product or direct sum of the individual behavior

spaces;

• the behaviors Bn may have different semantics Zj de-

pending on the current situation or context Ci, i.e. the

behaviors Bn represent skills or actions from the system’s

point of view rather than observer dependent quantities;

• the motor commands of different units may be compatible

or incompatible. In the case of concurrently commanded

incompatible motor commands a conflict resolution de-

cides based on the priorities;

• all entities describing a unit may be time dependent.

The index n represents the index of creation in an incre-

mental system. Therefore, units with a lower index n cannot

observe the representations Rm of units with a higher index m.

The combination and conflict resolution is not to be understood

as the primary instance for such cases but rather as the last

resort. Conflicts and combinations must be treated as major

issues between and inside of the units of the architecture,

e.g. according to the biological principles of inhibition and

disinhibition. The sensory space Sn(X) can be split into

several aspects for clearer reference. The aspects that are

concerned with the location of the corresponding entity in the

world are termed SL
n (X), and the features are termed SF

n (X).
Correspondingly, the behavior space Bn can be split into parts

concerned with the potential location of the actions (termed

BL
n ), and the qualitative skills or motions (termed BS

n ).

We use the term behavior in the meaning of an externally

observable state change of the system. This comprises actions

and motion as well as speech and communication. The behav-

ior space BS
n is spanned by the effective degrees of freedom

or order parameters of the dynamical system Dn of the unit.

In a wider sense, it is spanned by the parameters that are

governing changes in the stereotypical actions controlled by

the respective unit.

The presented framework allows to characterize the ar-

chitecture of such systems with respect to the follow-

ing issues: Find a system’s decomposition or a proce-

dure to decompose or construct units n consisting of

Sn(x),Dn, Bn, Rn,Mn, Pn, Tm,n such that

• an incremental and learning system can be built;

• the system is always able to act, even if the level of

performance may vary;

• lower level units n provide representations and decom-

positions that

– are suited to show a certain behavior at level n,

– are suited to serve as auxiliary decompositions for

higher levels m > n, i.e. make the situation treatable

for others, provide an ”internal platform” so that

higher levels can learn to treat the situation.

In our understanding, a necessary condition for achieving

the abovementioned system properties is a hierarchical ar-

rangement of sensory and behavioral subspaces, the represen-



tations and top-down information. Another crucial aspect is the

separation of behaviors from the semantics of the behaviors

in a certain context. We will discuss this aspect in more detail

in section III.

Due to space limitations we forbear from a further in-depth

mathematical definition and treatment of the presented terms.

The concrete system presented in section III should elucidate

the underlying concepts in a graspable fashion.

If the goal is to research brain-like intelligent systems,

the creation of a fixed hierarchy with units stacked on top

of each other is not sufficient: the interplay of the units

is the crucial issue. In the classical subsumption paradigm

the interplay within a hierarchy is modeled as inhibition

of sensory signals and motor commands. We argue that a

deeper communication between the units is biologically more

plausible and beneficial, because it is more efficient in terms

of (re-)using already established representations and processes.

The biological motivation of a sensory space X that is in

principle accessible for all levels of the hierarchy has already

been discussed in [3]. The individual subspaces Sn(X) may

of course differ. The same applies to the direct access from

higher levels of the hierarchy to the motors and actuators, with

additional evidence given in [10]. This may not correspond to

the predominant signal flows, but is in some cases necessary

for the acquisition of completely new motions. The difference

between lower and higher levels is mainly that lower levels

act on a coarser level of the sensory signals and do not allow

for a fine control of actuators. A very fine analysis of sensory

signals and a corresponding fine control of e.g. finger motions

is subject to cortical and not sub-cortical regions of the brain

[11]. What is mainly not addressed in the technical literature is

the synergistic interplay of the different levels of the hierarchy.

The main issues are the following:

a) underlying control processes in the brain perform a basic

stabilization and allow higher areas to modulate those stabi-

lizations according to some semantics. This is e.g. the case for

the balance and the upright standing of the human body that

is maintained by the brain stem (mid brain, hind brain and

medulla oblongata) [12]. The higher areas in the brain rely on

those functional loops.

b) Specific structures in the brain maintain representations

Rn for their own purposes, but those representations are also

observed and used by areas created later in evolution. This

is e.g. the case for the superior colliculus. The target for the

next gaze direction is observed by the cortex [13]. A similar

reasoning applies to the area AIP, where the coarse information

about graspable objects is maintained, which is observed by

the Premotor Cortex and used for configuring and target setting

of the motor cortex [14].

c) Lower level structures can autonomously perform certain

actions but can be modulated from higher level structures

by top-down information (Tn,m). An example is here again

the superior colliculus. In reptiles it directly controls sensory

based behaviors as the highest level of control. In humans, it

can control the gaze direction based on visual and auditory

signals if “permitted” by the cortex. If the cortex is damaged,

the superior colliculus can take over control again.

The presented SYSTEMATICA serves to organize such a

kind of incremental design in a way that the resulting com-

plexity and cross dependencies are still treatable. Compared

to so-called cognitively oriented architectures, the approach

presented here is de-central with respect to processes and

representations involved. The incremental direction is here

to be understood in a developmental sense with a number

of levels, less as incrementally adding more functionality at

already existing levels in the system.

III. ALIS

Based on the presented SYSTEMATICA we will now de-

scribe the current state of our intelligent systems hypothesis

called ALIS (Autonomous Learning and Interaction System)

and discuss its characteristics. ALIS represents an incremen-

tally integrated system including visual and auditory saliency,

proto-object based vision and interactive learning, object de-

pendent autonomous behavior generation, whole body motion

and self collision avoidance on the humanoid robot ASIMO.

The elements of the overall architecture are arranged in

hierarchical units that produce the overall observable behavior,

see figure 2.

The first unit with dynamics D1 is the whole body motion

control of the robot, including a basic conflict resolution for

different target commands and a self collision avoidance of

the robot’s body. It receives the current robot posture as

sensory data. The top-down information Tn,1 providable to

the unit is in the form of targets for the right and left hand

respectively, the head and the walking. Any other unit can

provide such kind of targets. Without top-down information,

the robot is standing in a rest position with a predefined

posture at a predefined position. The posture and the position

are controlled, i.e. if the top-down information is switched

off, the robot walks back to the predefined home position

while compensating for external disturbances. The behavior

subspace B1 comprises target reaching motions including the

whole body while avoiding self collisions. The subspace BS
1 is

spanned by variables controlling the choice of the respective

actuator group: mainly the gaze, the hands and the body’s

position and orientation in 3D. The subspace BL
1 comprises the

area that is covered by walking and that can be reached by both

hands. Many different kinds of semantics Zj can be attributed

to those motions like “pointing”, “pushing”, “poking” and

“approaching” etc. The representation R1 used and provided

is a copy of the overall posture of the robot. Details of the task

space based whole body motion control can be found in [15].

Unit 1 provides motor commands M1 to the different joints

of the robot and establishes the body control level many other

units can incrementally build upon. It unloads much of the

tedious control from higher level units.

The second unit with D2 comprises a visual saliency

computation based on contrast measures for different cues

and gaze selection. Based on the incoming image, visually

salient locations in the current field of view are computed

and fixated by providing gaze target positions as top-down



Fig. 2. Schematics of ALIS formulated in the framework SYSTEMATICA. For explanation please refer to section III.

information T2,1 to unit 1. The spatial component SL
2 (X) of

the sensory space comprises the field of view covered by the

moving cameras.

The representation R2 comprises the saliency maps, their

modulations and the corresponding weights. As top-down

information Tn,2, the modulations and the corresponding

weights can be set. Depending on this information, different

kinds of semantics Zj like “visual search”, “visual explore”

and “fixate” can be attributed to the behavior space B2 emitted

by this unit. The subspace BS
2 is spanned by the weights of the

different cues, the time constant of the fixation and the time

constant for inhibition of return as described in [16]. The unit

performs an autonomous gaze control that can be modulated

by top-down information. It builds on unit 1 in order to employ

the whole body for achieving the commanded gaze direction.

The unit with D3 computes an auditory localization or

saliency map R3. It is provided as top-down information T3,2

for unit 2, where the auditory component is higher weighted

than the visual. The behavior space B3 comprises the fixation

of prominent auditory stimuli, which could semantically be

interpreted as “fixating a person that is calling the robot”.

The space is spanned by the weight balancing the auditory

versus the visual saliency maps. The sensory space SF
3 (X) is

spanned by binaural time series, the spatial component SL
3 (X)

is the area all around the robot. The corresponding auditory

processing is described in [17]. Unit 3 builds on and employs

the gaze selection mechanism of unit 2. The combination

of both units 2 and 3 corresponds to an autonomous gaze

selection based on visually and auditory salient stimuli.

Unit 4 extracts proto-objects from the current visual scene

and performs a temporal stabilization of those in a short term

memory (PO-STM). The computation of the proto-objects is

purely based on depth and peripersonal space (see below), i.e.

SL
4 (X) is a range limited subpart of SL

2 (X). The PO-STM and

the information which proto-object is currently selected and

fixated forms the representation R4. The top-down information

T4,1 provided to unit 1 are gaze targets with a higher priority

than the visual gaze selection, yielding as behaviors B4 the

fixation of proto-objects in the current view. The unit accepts

top-down information Tn,4 for deselecting the currently fixated

proto-object or for directly selecting a specific proto-object.

The concept of the proto-object as we employ it for behavior

generation is explained in more detail in [18]. The main

difference between the approach described there and this one

is the extraction of the proto-objects from the scene. Here we

are extracting three dimensional descriptions of approximately



convex three dimensional blobs within a certain distance range

from the robot. We call this range the peripersonal space,

which corresponds roughly to the space in which the robot

can manipulate objects without walking.

The combination of the units 1-4 autonomously realizes the

framework for the interaction with the robot. Seen from the

robots point of view, the “far-field” interaction is governed

by the visual and auditory saliency computation and gaze

selection computations. The close-to-the-body or peripersonal

interaction is governed by the proto-object fixation. Those

processes run continously without an explicit task and take

over control depending on the location of the interaction w.r.t.

the robot’s body.

Unit 5 is based on the incrementally established interaction

framework. It performs a visual recognition or interactive

learning of the currently fixated proto-object without own

control of the robot. The sensory input space SL
5 (X) is the

same as SL
4 (X), the feature space SF

5 (X) is the full color

image and the corresponding depth map. The unit relies on

the representation R4 for extracting the corresponding sub-

part of the information from S5(X). The three-dimensional

information of the currently fixated proto-object is used to

extract the corresponding segment from the high resolution

color image space. The segments are being classified w.r.t.

the object identity O-ID. For newly learned objects, the target

identity has to be provided as top-down information Tn,5. The

representation R5 is the object identity O-ID of the currently

fixated proto-object. The motor commands M5 emitted by the

unit are speech labels corresponding to the object identity. The

unit described here corresponds mainly to our work described

in [19], [20]. The object identity O-ID is the first instance of

fixed semantics, since we use user-specified labels like “blue

cup” or “toy car”. From the incremental architecture point of

view, we now have a system that additionally classifies or

learns the objects it is currently fixating.

Unit 6 performs an association of the representations R4

and R5, i.e. it maintains an association R6 between the PO-

STM and the O-IDs based on the identifier of the currently

selected PO. This representation can provide the identity of

all classified proto-objects in the current view. Except for the

representations it has no other inputs or outputs. From the

incremental point of view we have now an additional memory

of all classified proto-objects in the current view.

Unit 7 with D7 builds on the sensory processing and control

capabilities of many of the underlying units. It governs the

control of the robot’s body except for the gaze direction.

This is achieved by deriving targets from the proto-object

representation R4 and sending them as top-down information

T7,1 for the right and the left hand as well as for walking

to unit 1. Additional top-down information T7,4 can be sent

to the proto-object fixating unit 4 for requesting the selection

of another proto-object. Details of the internal dynamics D7

can be found in [21]. Here, it is based on the evaluation of

the current scene as represented by R4 (proto-object short term

memory) and R6 (association object identifier and proto-object

identifier) and the top-down information Tn,7 concerning the

current assignment. An assignment is an identifier for a global

mode of the internal dynamics of unit 7. The first realized

assignment (A1) is pointing once with the most appropriate

hand or both hands to the fixated and classified proto-object.

The second assignment (A2) differs from the first one in the

respect that pointing is continuous and immediate to the fixated

and not yet classified proto-object. Whether the pointing is

done using a single hand or both arms depends on the currently

arbitrarily defined category of the classified object: both-

handed pointing for toys, single handed pointing for non-toys.

The definition is currently associated with the labels of the

objects. During both assignments, the distance to the currently

fixed proto-object can autonomously be adjusted by walking.

Additionally, the autonomous selection of a new proto-object

is requested (T7,4) from the proto-fixation if the currently

fixated one has been classified successfully two times. This

allows for a first autonomous scene exploration. The third

assignment (A3) is pointing with each hand at a proto-object

irrespective of the classification result and without walking.

The behavioral space spanned by this unit is a subspace or

a sub-manifold of B1. The semantics of the behaviors are

currently fixed by design, like “both handed pointing to toys”

etc. From the incremental design point of view unit 7 is a

thin layer controlling different kinds of interaction semantics

for the body based on the sensory processing and control

capabilities provided by the underlying system.

The last unit 8 works on another audio stream S8(X) and

processes speech input. The results are currently provided as

object labels for the recognizer (T8,5) and as assignments for

unit 7 (T8,7). It serves for establishing verbal interaction with

the user in the current setting.

In summary, the presented system consists of several in-

dependently defined units that build on each other in an

incremental way for yielding the combined performance. Due

to the incremental nature of the architecture, the units can be

implemented, tested and integrated one after the other, which is

an important means for dealing with the increasing complexity

of the targeted system.

The described system, except some parts of unit 1, is imple-

mented in our framework for distributed real-time applications

[22] and runs with 10Hz for the command generation in

interaction. The implementation consists of 288 processing

components. The workload is distributed across 10 standard

CPUs in 6 computers without any further optimization.

IV. EXPERIMENTS

Users can freely interact with the running ALIS. The behav-

ior of the system is governed mainly by the interaction. Figure

3 shows the measurements of a recorded experiment. The bot-

tom most graph shows the measured minimal distance between

the arms, because the self collision of the arms constitutes in

this experiment the highest risk. The next higher graph depicts

which of the possible top-down feedback T4,1 (proto-fixation),

T3,2 (auditory saliency) or T2,1 (visual saliency) is controlling

the gaze direction. The graph with the label “activity T7,4”
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Fig. 3. Measurements from the interactive experiment. In the time range from sec. 0 until sec. 32, ALIS is mainly driven by saliency based interaction with
the world. From sec. 32 until sec. 47 the human is presenting a known object, from sec. 54 until sec. 81 the system is learning an unknown object. From
sec. 86 until sec. 118 two objects are presented by the human, sequentially attended and recognized. From sec. 135 on two objects are being presented by
the human and continously pointed at by the robot. Please refer to section IV for further explanations.

shows the occurrence of the request for fixating a new proto-

object by the proto-fixation unit 4. The graphs with the labels

“L hand activity (T7,1)”, “R hand activity (T7,1)” and “leg

activity (T7,1)” depict the active control of the respective

effector group by unit 7. The topmost graph with the label

T8,7 shows the currently valid assignment, namely A1, A2

and A3 in a sequence.

The following time course is shown in figure 3. From the

beginning until second 32, ASIMO is mainly interacting with

its environment by gazing at far distance visual and auditory

stimuli. Beginning with second 32, the user presents an object

in the peripersonal space, which is immediately fixated by

means of the control of unit 4. At second 37, the object is

successfully recognized as a “toy-tiger” and pointed at once

with both hands since it belongs to the category “toys”. After

pointing, the object is still fixated and the distance is adjusted

by walking until second 47. After termination of the close

interaction by the human, ASIMO returns autonomously to the

rest position. At second 52 the assignment is switched to A2,

and starting with second 54 ASIMO fixates and continuously

points to the presented proto-object. It is unknown and learned

in interaction as “cell phone” until second 81 when ASIMO

returns back to the home position. At second 86 the previously

trained “cell phone” is presented together with the “toy-tiger”.

The cell phone is fixated and pointed at, and successfully

recognized at second 91. At second 98 it is successfully

recognized for the second time and the fixation of a new

proto-object is requested from unit 7 to unit 4 by the activity

of T7,4. At second 105 the toy-tiger is first misclassified,

but subsequently recognized at second 111 and second 117.

At second 127 the assignment is changed to A3, and at

second 135 ASIMO starts pointing at two objects with both

hands. The user tries to force a self collision crossing the

arms with the fixated proto-objects until the arms touch each

other. This is depicted in the arm distance plot, which comes

close to the limit of a self-collision but never reaches it. The

self collision is prevented by the continously running self

collision avoidance of unit 1. After the termination of the close

interaction, ASIMO returns to the rest posture. Figure 4 shows

some snapshots from the running experiment. The paper is

accompanied by a small video of the experiment.

The sequence of the interaction is just an example, the

resulting behavior as well as all motions of the robot are

computed online and depend on the interaction of the user

with the robot.

V. DISCUSSION AND SUMMARY

After the presentation of the conceptual framework (SYS-

TEMATICA), the instance (ALIS) and the experiments we

would like to point out some of the key features.

• Units run autonomously and without explicit synchro-

nization mechanisms in parallel. The undirected publi-

cation of the representations Rn and the directed top-

down information Tn,m establish a data driven way of

synchronization depending on activity.

• The top-down information flow is not restricted to the

communication between two adjacent layers but can

project from any higher to any lower level.



Fig. 4. Image series from the interactive experiment. From top left row-wise to bottom right. Rest position (sec. 6), saliency based interaction (sec. 21),
proto-object fixation (sec. 32), fixation and both handed pointing after recognition (sec. 39), learning of a new object (sec. 76), fixation and pointing to first
object of two (sec. 93), fixation and pointing to second object of two (sec. 100), return to rest position (sec. 121), pointing to two proto-objects (sec. 143).
For further explanation see section IV.

• Unit 1 provides the basis for higher level units to control

the robot’s hands, head and steps positions including

the avoidance of self collisions. It “unloads” a lot of

detailed knowledge about the robots kinematics of the

higher level units. This kind of unloading allows for an

easier incremental design or development of the system.

• The space SL
3 (X) covered by the audio saliency is the

largest one: it includes the space SL
2 (X) covered by the

visual saliency, which again includes the sensory space

SL
4 (X) of the current implementation of the peripersonal

space. The arrangements of these spaces and the corre-

sponding behavior space serve as the basis for getting

and staying in interaction with the system.

• The lower level units are to a large extent free of specific

semantics. Higher-level units like 5 and 7 temporarily

define the semantics for the lower units.

• The same physical entity can be represented / perceived

by different sensory spaces. The proto-object extraction

of unit 4 is based on grey value stereo image pairs

on a low resolution for extracting the three-dimensional

information. The visual recognition of unit 5 is based on

a high resolution color image segment. The segment is

extracted from this color image based on the information

from the currently fixated proto-object. The segment is

extracted at the time of the classification, not at the

time of the extraction of the proto-object. Based on this

arrangement, the classifier can easily be combined with

the proto-object fixation loop. The feature part of the

sensory space of unit 4 is more coarsely resolved than

the feature space of unit 5.

• The location part of the behavior space of one unit may

dynamically extend the location part of the sensory space

of another unit. This is, for example, the case for the

peripersonal space SL
4 (X) that is dynamically extended

by adjusting the distance by unit 7.

The presented system has already a certain complexity and

shows some important features, but the question of scalability

has to be addressed. ALIS is already working in the real

world in real-time interaction, which covers the aspect of

scaling / bringing a concept to the real world. Asking about

the scalability to more complex and prospective behaviors is a

crucial point. We are confident to be on the right track because



of the following reasons: Each of the hierarchical layers

individually already performs some meaningful behavior, and

some of them additionally serve as building blocks for more

complex systems. This is facilitated via the coupling of the

units by the publicly observable representations and directed

top-down information, for us a key issue in successful scaling.

A more loose argument for now but subject to current research

is the following: Biology seems to have taken a similar route

in evolving the brains of animals towards the brains of hu-

mans by phylogenetically adding structures on top of existing

structures, and maybe mildly changing the existing structures.

The communication between the “older” and the “newer”

structures can be seen as providing existing representations

and sending top-down information from the “newer” structures

to the “older” ones. Does the presented approach scale in

the direction of learning and development? We consider the

visual object learning as a successful start in this direction.

Nevertheless, the step towards learning is currently done only

on the perceptive side. The learning on the behavior generation

side is not explicitly addressed here, but in [23] we showed our

approach towards using general developmental principles for

the adaptation of reactive behaviors. Transferring this work

into the presented architecture would formally require the

addition of another unit and some changes in existing ones.

This argument is of course made irrespective of the many open

scientific questions involved in actually doing this step because

the system considered in [23] is considerably simpler than the

one discussed here. Nonetheless, it makes us confident about

the scalability of the proposed architecture.

Summarizing our contribution, we have presented the con-

ceptual framework SYSTEMATICA for describing and design-

ing incremental hierarchical behavior generation systems. A

framework like this is crucial for researching more complex

intelligent systems. On the one hand, it provides the concepts

handling the growing complexity, on the other hand it estab-

lishes a necessary common language for the collaboration of

several researchers. Within this framework we have created

the system ALIS, integrated with ASIMO. ALIS allows for

the first time the free interaction of a human with a full size

biped humanoid including non-preprogrammed whole body

motions, interactive behavior generation, visual recognition

and learning.
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