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Abstract—The field of advanced driver assistance systems
(ADAS) has matured towards more and more complex assistance
functions, applied with wider scope and a strongly increasing
number of possible users due to wider market penetration. To
deal with such a large variety of use conditions and usage
patterns, personalization methods have been developed to ensure
optimal user experience and supplied system function. In this pa-
per we review personalization approaches for ADAS systems that
target an adaptation to the drivers’ preferences, driving styles,
skills and driving patterns. We discuss the general assumptions
on which personalization in the automotive context is based, the
general design of personalized ADAS, the current approaches,
and their practical realization and point out open issues in the
design and implementation of a personalized driving experience.

I. INTRODUCTION

Personalization of products and services in the sense of “to
change or design (something) for a particular person” is not a
new concept but has gained considerable interest from various
disciplines over the last 20 years [1], [2] when advances in
information and web technologies have made it possible for
service and product providers to scale personalization from the
basis of a one-to-one personal relationship to an individual
customer or user to an automatized service based on the
analysis of data collected on the individual preferences and
behaviors of a huge number of users or customers.

While the general concept of personalization is intuitive,
the understanding and goals of personalization differ between
various disciplines and researchers [3], [4]. Here we will focus
on personalization from the perspective of human-machine
interaction and view it as a means to make technologies both
more acceptable and useful for people. This is especially
important in the area of advanced driver assistance systems
whose goal it is not only to improve the driving experience but
also to improve driving safety and to prevent accidents caused
by human error. Since these systems can only take effect
when they are actually used they must gain the drivers’ trust,
match their expectations with respect to driving behavior and
avoid annoying the drivers with irrelevant recommendations
and precautions. The drivers’ expectations, however, differ
from driver to driver as well as within individual drivers
depending on their state and the driving situation. Hence driver
assistance and related systems seem to be particularly suited
to personalization.

Generally, personalization is categorized into explicit and
implicit personalization. Explicit personalization requires users
to state their preferences and to explicitly change the system
by choosing a particular system setting that suits them best.
Such an adaptable system restricts the user’s choice to the
system’s offer but leaves them in direct control. The main
drawback is the limitation to settings that the user can under-
stand intuitively. For a more complex assistance function it is
very difficult to design settings that e.g. go beyond a simple
sporty/relaxed driving mode. Also the possible coupling effect
of setting multiple parameters at the same time is very opaque
to the user. Implicit personalization, in contrast, does not ask
users directly for their preferences, but observes their behavior
and derives a user model for the prediction of user preferences
or behavior based on these user data. This review will mainly
focus on approaches to personalization in ADAS that fall into
the category of implicit personalization and learn a user model
from the observation of driver behavior.

Driver modeling has been the subject of intense research in
the past years, cf. [5] and [6] for recent surveys of the topic.
Driver models have been used to predict driving maneuvers,
driver intent, and driver state, among other things, usually
with the goal to ultimately incorporate them into some driver
assistance system. In this review we are not so much interested
in driver models as such but rather aim at approaches that
design personalized driver assistance systems by integrating
the driver model with vehicle control.

The paper is organized as follows: In the next section,
Sec. II, we outline the application areas of personalization in
the automobile sector. In Sec. III, we discuss personalization
in advanced driver assistance systems. We will start by lining
out the general personalization process that is used in most
approaches today. In the following we will review the state of
the art in concrete approaches to the personalization of ADAS
(Sec. IV) and of driving style in autonomous vehicles (Sec. V)
against this background. Sec. VI briefly discusses open issues
and Sec. VII concludes the paper.

II. PERSONALIZATION IN THE AUTOMOBILE SECTOR

Personalization in the automobile sector that goes beyond
the customization of color and accessories and a memory
function for the driver’s seat, side mirror, and steering column
positions, is still a relatively recent trend. In current vehicles



there are two main application areas of personalization: the
personalization of the user interface of the in-vehicle info-
tainment systems and the personalization of driver assistance
systems. A third application area in hybrid electric vehicles
(HEV) is the prediction of the driving range.

A. Infotainment

The main target of personalization in vehicles has been
the infotainment area. Based on the work by Langley [7],
[8] on adaptive user interfaces, an early example is a driving
route recommendation system [9], [10] that generates routes
with the help of the driver, builds a model of the driver’s
preferences and refines this model through interaction with
the driver. Along the same lines, but more recently, Letchner
et al. [11] propose a route planner that incorporates traits of
a recommender system to achieve personalization. They use
a database of GPS traces to learn time-variant traffic speeds
and include a driver’s past GPS logs to propose routes that
are suited to the driver’s individual driving preferences. These
ideas are taken a step further by Rodriguez Garzon [12] who
proposes to include situation awareness into personalization:
here the interactive user interface observes the user’s situation-
dependent interaction behavior and changes according to their
situation-dependent preferences. The approach aims at real-
time predictions of attainability of all destinations in a map
and continuously adapts to user preferences using inverse
reinforcement learning.

Another example of a personalized situation aware in-
vehicle infotainment system is presented by Árnason et al.
[13]. This system proactively recommends personalized audio
content and uses car sensors to determine when to present this
information in order to minimize distraction from the driving
task. In [14] a personalized prediction system is introduced
that makes adaptive suggestions to limit the necessary effort
for standard infotainment operations.

B. Driver assistance systems

The personalization of advanced driver assistance systems
(ADAS) is a more recent development than the personalization
of infotainment systems. This may be due to the fact that the
underlying technology only recently reached a sufficient level
of maturity and availability to afford personalization. Addition-
ally, safety and usability issues play a much more important
role in ADAS if the system assumes control of the vehicle.
We will give a more detailed discussion of personalization
in ADAS with a focus on adaptive cruise control in the next
section.

C. Hybrid Electric Vehicles

A different application area of personalization in the au-
tomotive context are hybrid electric vehicles (HEVs). HEV
operation and driving range depend crucially on the actual
driving behavior, i.e. speed and acceleration, and the road
profile. Hence the prediction accuracy of the driving range
can be expected to benefit from personalization. Li et al. [15]

present a personalized driving behavior monitoring and anal-
ysis system for HEVs. Ondrúška and Posner [16] predict the
attainable range of HEVs based on the driver’s generalized
route preferences. Their approach significantly reduces the rel-
ative error in energy prediction as compared to driver-agnostic
heuristics such as shortest-path or shortest-time routes.

III. PERSONALIZED ADAS AND PERSONALIZED DRIVING
STYLE IN AUTONOMOUS VEHICLES

Advanced driver assistance systems (ADAS), such as adap-
tive cruise control, forward collision warning, lane departure
warning, and lane change assistance, have become more and
more common in the recent years and are no longer only
available in upper-class vehicles. While the aim of these
systems is to improve driving comfort and safety by relieving
the driver of routine tasks and alerting them to potential prob-
lems, the driver’s acceptance of ADAS interventions strongly
depends on their skill, needs, and preferences. The goal in
the personalization of ADAS is to make ADAS interventions
more efficient and to improve the driving experience, and
hence the usability of ADAS, by adapting the systems to the
individual preferences of the driver. The same applies to the
closely related field of autonomous driving: to be comfortable
for different drivers, the driving style of an autonomous vehicle
should be adapted to the individual driver’s preferences.

In the following sections we will review the state of the
art in the personalization of ADAS and of driving style in
autonomous vehicles. We will start by lining out the general
personalization process that is used in most approaches today
and then discuss concrete approaches to personalized ADAS
and personalized autonomous driving against this background.

A. Personalization Process

Current personalization approaches in the automotive field
are mainly concerned with the technical implementation of
a personalized functionality. Typically, they are data driven
approaches, i.e. a model of the driver is learned from driving
data. This model is either used to directly control the vehicle
or to parameterize a controller. The main steps in the person-
alization process are:

1) Observe the driving behavior.
The basic, albeit tacit, assumption in personalization is
that the driver is most comfortable with a driving style
that is similar to their own driving style. Consequently,
driving data are collected in a field study from a group
of drivers using an instrumented vehicle.

2) Build a model of human driving behavior.
A driver model is learned from the data of an individual
driver and directly used as part of the controller. Often
the controller is divided into two parts: a high level
controller, that models the driving behavior and whose
parameters are adapted to the specific driver during
personalization, and a low level controller, that is re-
sponsible for the actuation of the vehicle according to
the input from the high level controller.



3) Validate the model.
Finally the resulting personalized system is validated
and compared to a standard system to show that it
actually adapts to different driving styles. Depending on
the maturity of the approach this is done in 3 steps:

a) Off-line playback.
Here recorded driving data are fed into the per-
sonalized controller to verify that the controller
correctly reproduces the observed driving behavior.

b) Simulation in a traffic simulator.
The personalized controller is tested in controlled
traffic situations and often compared with a stan-
dard controller.

c) Field test.
Finally the personalized controller is implemented
in a vehicle and tested in real traffic.

B. Driver Models

Driver models play a central role in personalized ADAS.
They represent the driver and process information on the driv-
ing situation into actions on the vehicle’s actuators. In ADAS
they are used to mimic or to predict the driver intent and
behavior to assist in a relevant manner. Currently most driver
models represent the average driver, their parameters are fixed
and they cannot adapt to different drivers. As human behavior
is stochastic by nature and characterized by a high degree
of inter- and intra-driver variability, the accurate modeling of
driver behavior is a challenging task that has been studied
in various disciplines. A recent review on driver models for
ADAS from the control point of view is given by Wang et
al. [5]. Lin et al. [6] review and discuss methods for modeling
driver behavior characteristics.

IV. PERSONALIZED ADAS

The general approach in advanced driver assistance systems
is to design the system for the average driver. While this is
a reasonable design rationale, it ignores that drivers differ in
their preferences. There are considerable interpersonal differ-
ences in driver preferences as well as there are intra-personal
differences. Preferences of the same driver depend on their
state and mood and may change over time and with experience.
Especially with respect to safety and warning systems it is
important to develop ADAS that do not annoy the driver
with irrelevant recommendations and precautions so that they
ignore or disable the system. The potential of personalization
or adaptation to the driver in driver assistance systems has
been realized early [17] but has become feasible only recently
due to progress in sensory systems and increasing computa-
tional power on board of modern vehicles. Below we discuss
approaches to the personalization of current driver assistance
systems.

A. ACC

Adaptive cruise control (ACC) is a driving comfort system
for the longitudinal control of the vehicle: it maintains a steady
speed as set by the driver while keeping a desired time gap

with the leading vehicle. The driver is free to choose a set
speed but can only choose between a number of pre-defined
time gaps which they adjust manually. ACC is generally
perceived as a useful and comfortable system [18]–[20]. It is
known since the introduction of ACC that drivers appreciate
the freedom to choose different time gaps [17] according to
their preferences.

In the personalization of ACC we can distinguish between
group-based and individual-based approaches to personaliza-
tion. In the former case drivers are assigned to one of a small
number of representative driving styles for which an ACC
control strategy is implemented. In the latter case, the ACC
control strategy tries to best reproduce the driving style of an
individual driver.

Rosenfeld et al. [21] present a group-based approach to the
prediction of the driver’s preferred ACC gap setting and when
they tend to engage and disengage ACC. They cluster drivers
who participated in a field test of driving behavior with ACC
to create three general driver profiles and use these together
with demographic information to predict the gap setting. The
emphasis is on the analysis of the data using a regression
model and decision trees and not on the practical application
of the derived models. The models are not validated.

Another, more comprehensive, group-based approach to the
personalization of adaptive cruise control with stop and go
is proposed by Canale et al. [22]. The drivers are assigned
to one of three pre-defined clusters based on the observation
of their driving style. The cluster membership determines the
parameters of a reference acceleration profile that serves as
input to the low level controller of the ACC. The approach is
based on data from field experiments and validated by off-line
playback.

In the work by Bifulco et al. [23], [24], ACC is adapted in
real-time to an individual driver based on the observation of
their driving style. They propose an ACC controller framework
based on a linear car following model that is solved by a
recursive least squares filter (RLS) [25] to reproduce the time
gaps observed in a short manual driving session. The vehicle
trajectory is calculated from this personalized car following
model using a linear, time-invariant dynamic system with
acceleration and jerk as state variables. The vehicle actuation is
then delegated to a low level controller. The personalized ACC
is validated in off-line playback with satisfactory results. This
approach distinguishes between two modes to achieve person-
alization: a “learning mode”, that is activated on-demand by
the driver, in which the current driving style is observed and
the corresponding parameters of the car following model are
learned, and a “running mode” in which the newly learned car
following model is deployed to the controller.

Lefèvre et al. [26], [27] choose a different approach to
controller design. They combine a learning based driver model
that imitates the individual driving style observed from the
driver with model predictive control [28] to create personalized
driving assistance. The driver model consists of a hidden
Markov model that represents human control strategies during
car following, and Gaussian mixture regression to predict



the driver’s most likely acceleration sequence. The model
predictive controller then uses this acceleration sequence as a
reference together with a confidence estimation and generates
a safe acceleration sequence that complies with state and input
constraints. The controller is evaluated by off-line playback
and is able to reproduce different driving styles.

Wang et al. [29] develop a prototype of a longitudinal
driving-assistance system, including ACC, that is personalized
to an individual driver. They propose a linear driver model
that, given the time gap to the lead vehicle and the inverse
time to collision, simulates the driver’s throttle and breaking
pedal operations. Again the system operates in either a learning
mode, in which the driver model parameters are identified
by RLS [25] with a forgetting factor from the observation
of manual driving behavior, or a running mode, in which
the learned parameters are applied to the controller. Learning
or identification of the driver model parameters takes place
whenever the driver controls the vehicle manually and is
following a lead vehicle. Once the parameters pass a sanity
check and the process is converged, the new parameters are
ready to be used by system control. This approach is the most
advanced among the ACC personalization approaches: it has
been implemented in a vehicle and validated by tests in real
traffic.

B. Forward collision warning/ Brake assistance

Forward collision warning systems alert drivers of an im-
pending collision with a slower moving or stationary car in
front of them. The goal in personalized forward collision
warning is to decrease the false alarm rate of the system and to
increase the warning time to give the driver a longer reaction
time. Muehlfeld et al. [30] present a statistical behavior
modeling approach that estimates a driver specific probability
distribution of the danger level of a situation to determine
the activation threshold for a driver warning algorithm. The
model is developed on driving simulator data and results in
significantly earlier activation of the safety system than a
similar, earlier model [31], [32]. Wang et al. [33] present a
real time identification algorithm for warning thresholds by
recursive least squares along the lines of their approach [29]
to personalized ACC discussed in Sec. IV-A. Their approach
is validated by off-line playback, reduces the false warning
rate, adjusts its warning thresholds online and thus adapts not
only to individual drivers but also to behavioral fluctuations
in the same driver.

C. Lane Keeping

Lefèvre et at. [26] also apply their framework outlined in
Sec. IV-A to lane keeping assistance (LKA) whose task it is
to alert the driver when the system detects that the vehicle is
about to deviate from a traffic lane. Here again the aim is to
detect the lane departures early and to minimize the false alarm
rate of the system. In this application of their personalization
framework, the driver model is used to predict lane departures,
i.e. it predicts steering as well as accelerations, and the model
predictive controller keeps the vehicle in the lane. When it

is likely that the vehicle is in lane change mode and the
blinker is not set, the upcoming lane change is considered
as unintentional and the controller takes charge of steering.
The system is shown to be less intrusive and more effective at
preventing lane departures than systems based on the standard
Time to Line Crossing approach.

D. Cooperative Assistance

The concept of cooperative automation [34] in ADAS has
been suggested as an approach to provide selective assis-
tance functions based on direct requests, typically by speech
commands. An example is an overtaking assistant [35] that
answers naturally spoken information requests about relevant
cars on neighboring and own lanes during a highway over-
taking maneuver. Pacaux-Lemoine et al. [36] have discussed
the importance of an adaptation of a cooperative ADAS to
the personal competences and capacities of its human user.
Schömig et al. [37] demonstrated in a simulator study that a
speech-based assistance-on-demand, emulating an attentive co-
driver, is preferred by the majority of drivers over visual head-
up-display of information. They considered an intersection
scenario where the driver has to observe multiple directions
for performing a left turn into a major road. Recently Orth
et al. [38] showed that the acceptance of the assistance
on demand system can further be enhanced by estimating
the acceptable gaps for each driver individually. The system
combines both active and adaptive personalization by allowing
the driver to control the situation-dependent activation of
the assistant system and automatically tune the parameters
according to the personally preferred driver behavior pattern.

E. Lane Change

Butakov et al. [39] develop a methodology for modeling
individual driver behavior in lane changes. The method is en-
visioned as the basis of a possible lane change driver assistance
system that may support the driver in assessing whether a lane
change maneuver is feasible and safe considering their individ-
ual driving style. Lane changes are considerably more complex
than the driving maneuvers discussed before. The driver needs
to take into account three vehicles to judge whether a lane
change is safe and comfortable: the leading vehicle in the own
lane and the leading and following vehicle in the destination
lane. The gap acceptance, the longitudinal adjustments to find
an acceptable gap and the way the lane change maneuver
itself is performed characterize the individual driving style
and all three aspects are modeled by the authors. Avoidance
of forward collisions is not considered. The approach uses
a sinusoidal lane change kinematic model and a Gaussian
mixture model to adjust the kinematic model parameters to
the individual driving style. The models are intended to work
in real time and to be updated continuously during driving to
improve the accuracy. Data are collected from a field study
and the models are validated against a test set from the same
data to show the effectiveness of the approach.



V. PERSONALIZED AUTONOMOUS VEHICLES

While the approaches discussed above are mainly motivated
from the control point of view and directly aim at designing
the control systems necessary to implement driver assistance
systems, recently a second point of view emerged that aims at
autonomous driving and that considers longitudinal and lateral
control as building blocks for autonomous vehicle control.
Those approaches often originate in robot control and the
methods developed in that area, notably learning by demon-
stration [40]. Here the goal is to derive a suitable controller
from the observation of human behavior. This approach is
especially appropriate in tasks like vehicle control which can
be easily demonstrated but for which it is difficult to state
a cost or reward function explicitly. For learning often some
variant of inverse reinforcement learning [41] is used which
assumes that the human demonstrator follows an optimal
policy with respect to an unknown reward function. Once the
reward function is recovered, reinforcement learning can be
used to find a policy that imitates the expert. Abbeel and
Ng [41] show that their approach to apprenticeship learning
can learn different driving styles in a stylized simulation of
highway driving involving 3 lanes and 5 possible driving
actions. Kuderer et al. [42] recently consider a more realistic
scenario and stress the importance of driving style for user
acceptance in the area of autonomous driving. They use a
learning from demonstration approach to model individual
driving styles. The driving styles are encoded by a cost
function that consists of a linear combination of hand-crafted
features, such as acceleration, jerk, following distance, desired
speed, and that is derived by inverse reinforcement learning
form observed data. The learning approach is embedded in
a planning framework for an autonomous vehicle and results
in optimized trajectories that are represented by 2D quintic
splines in a continuous state space. For a viability test of their
approach the authors focus on acceleration and lane change
maneuvers. Data is collected from a field test and the ability of
the approach to model different driving styles is demonstrated
in simulation by off-line playback and the imputation of an
off-line learned policy.

VI. OPEN ISSUES

So far we have discussed the emerging field of personal-
ization in assisted driving. The field has gained interest in the
recent years and a number of papers have been published that
present approaches to the design of personalized assistance
systems with tangible results, mostly in simulation but first
steps towards prototypical implementations have been made.
These approaches focus mainly on the technical side of per-
sonalization. However, since personalization is located at the
interface between human driver and vehicle and is supposed
to better adapt assistance systems or automated driving to the
drivers’ needs and expectations, the interaction between human
and personalized system will require more attention. Below we
outline some open issues that deserve further attention.

A. Driving style preferences in automated driving

The general assumption of personalization approaches is
that the driver feels most comfortable with a system adopting a
driving style that is similar to their own driving style. However,
there is little empirical evidence to support this assumption.
A discussion of the issue of driving style preferences in auto-
mated driving has only started recently. Scherer et al. [43] and
Hartwich et al. [44] investigate the relation between manual
driving style and automated driving preferences in a simulator
study without motion feedback in both older (> 65 yrs) and
younger drivers (< 45 yrs). They find that younger drivers tend
to prefer their own driving style over other styles, while older
drivers experienced their own driving style applied to highly
automated driving as less comfortable and less enjoyable than
other driving styles.

Yusof et al. [45] focus on differences between assertive
drivers, who like to drive at or above the speed limit and
enjoy high accelerations, and defensive drivers, who prefer
a less risky driving style in manual driving. They simulated
automated driving in a Wizard approach in real road conditions
in which the participants were placed in the back seat. They
found that both assertive and defensive driver groups preferred
a defensive automated driving style. Basu et al. [46] conducted
a similar study in a driving simulator without motion feedback
and confirmed these results: Drivers typically prefer a more
defensive driving style when they are passengers. Additionally,
they found that while there was little correlation between the
drivers’ actual manual driving style and what they thought was
their driving style in automated driving, there was a correlation
between the automated driving style that drivers perceived
as closest to their manual driving style and their preferred
automated driving style.

These first empirical results indicate that finding an optimal
driving style for individual drivers in automated driving is
more complex than it may seem at first sight. Generally drivers
will not be able to demonstrate their preferences to automated
driving systems, but an additional interactive training phase
will be necessary in which the driver will need to correct
the system to find the driving style they perceive as most
comfortable.

B. Personalization as a continuous process

Another aspect that is not yet fully covered is the treatment
of personalization as a continuous process. Often personaliza-
tion is viewed as a process that is finished once a personalized
system is achieved. A personalized system that is continuously
updated and improved using cues from driver interaction and
thus implements personalization as a cyclic iterative process
instead of a linear process is only realized by Wang [29]. Other
authors [24], [26] are aware of variations in driver preferences
and propose to consider on-demand re-calibration of the
personalization parameters [24] to accommodate changes in
driver preferences.



C. Driver assessment of personalized ADAS

Adomavicius [47] formalizes personalization as an iterative
cyclic process that, transferred to the automotive context,
consists of a cycle of (i) understanding the driver, i.e. ob-
serving their behavior, (ii) making available the personalized
functionality to the driver, and (iii) measuring the impact and
adjusting the personalization strategy if necessary. Comparing
this understand-deliver-measure cycle with the current state of
the art in the automotive personalization process as outlined
in Sec. III-A, it becomes clear that this field is still quite
young: while there are a number of approaches that envision
the use of driver models for personalization in ADAS, only few
studies actually implement a personalized controller for ADAS
in simulation [24], [26], [33], [42] and only one study reports
a prototype of a personalized controller [29] that may even be
continuously updated by driver interaction. The authors state
that they collected their subjects’ opinion on the personalized
system, thus almost closing the personalization circle, but do
not report the results of the questionnaire study. Summarizing,
personalized ADAS is generally not available yet to drivers
and consequently a driver assessment of personalized ADAS
is still missing.

D. The human machine interface in automotive personaliza-
tion

Another important aspect in personalization, that has not
been investigated yet, is the effect of the interface design be-
tween personalized vehicle and driver. Apart from the technical
quality of the personalized system per se, the realization of
the interaction between driver and vehicle will play a decisive
role in the success of personalized systems since unintended
usability problems may outweigh any benefit of personaliza-
tion. Jameson [48] gives an overview over such problems, as
e.g. the need to teach the system, unsatisfactory timing, the
need for learning by the user, and inadequate predictability
and comprehensibility, and outlines possible countermeasures.
He stresses that these usability side effects need to be taken
into account from the very start of the system design.

VII. CONCLUSION

In this paper, we review the current state of the art of
personalization in advanced driver assistance systems and in
autonomous driving. Our focus is on approaches that com-
bine individualized driver models and controllers to design
personalized systems. The primary goal in the personalization
of ADAS is to improve the usability and hence the driver
acceptance of the systems. This is especially important in
safety relevant applications where alerts and their timing
should be adapted to the driver’s skills and needs in order to
prevent disuse of the system. Furthermore personalization may
contribute to improving the safety of assistance systems, e. g.
by offering the possibility to increase warning times based on
the observation of the individual driver. Finally, it is a means
to improve comfort systems like ACC that can be adapted to
preferred driving styles. Personalized systems are realized by
learning driver models from the observation of driver behavior

and designing vehicle controllers that can be parameterized to
adapt to specific driving styles using these models. Providing
this technical basis for personalization has been the main
focus in the field so far. Approaches to the personalization
of ACC, forward collision warning, lane keeping, lane change,
and autonomous driving have been published. They are mostly
demonstrated in simulation based on field data. Work towards
prototypes is in progress. The field is still relatively young and
there are a number of open questions both with respect to the
technical realization of personalization as well as with respect
to the interaction between driver and personalized vehicle.
Currently personalization is rather viewed as something that is
done once at the beginning of a drive, or that can be requested
repeatedly by the driver. Only few approaches take cues from
the interaction with the driver for continuous improvement of
the personalized system. With increasing availability of per-
sonalized driving assistance systems and autonomous vehicles
the driver and their interaction with the vehicle will come more
into focus. Studies of the drivers’ assessment of personalized
systems can be expected and the design of the human machine
interface to personalized systems and the adaptation of this
interface to individual driver preferences will become more
important.
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