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Abstract. Inspired by biological findings, we present a system that is
able to robustly identify a large number of pre-trained objects in real-
time. In contrast to related work, we do not restrict the objects’ pose
to characteristic views but rotate them freely in hand in front of a clut-
tered background. We describe the essential system’s ingredients, like
prototype-based figure-ground segmentation, extraction of brain-like an-
alytic features, and a simple classifier on top. Finally we analyze the
performance of the system using databases of varying difficulty.

1 Introduction

The recognition of objects under real-world conditions is a difficult problem.
Because of this, most approaches limit the complexity by using only few objects,
restricting the pose to canonical views, or by providing controlled background
conditions. In contrast to this, we freely rotated the objects in hand in front of a
cluttered background. For this unconstrained setting, we describe a system that
can robustly identify a large number of objects in real-time.

The recognition task and the given setting define the generalization capa-

bilities the system requires. These have to be achieved by the interplay of the
system components, but most strongly by the chosen type of object representa-
tion. On the one hand, the representation must be specific, i.e contain enough
details to distinguish the objects. On the other hand, it must be general to yield
invariance to the expected variations.
A main distinction with regard to representations can be made between holistic
and parts-based approaches. Both types differ in the way they handle spatial
information. Holistic approaches look at the whole image and represent global
patterns in fixed relation to the image frame. All features are bound to a cer-
tain image location. Such representations are very specific and break down if the
constellation of features changes strongly as it is the case for occlusion and 3D
rotation. A simple holistic method might use the images directly as templates,
or learn simple global features [1]. A more advanced processing is described in
[2]. Here a hierarchical processing related to the ventral visual pathway is used,
where stages of local spatial pooling soften the rigid coding of patterns. We will
use this approach to provide a baseline for our results.



In contrast to holistic processing, parts-based methods have in common that
they detect the presence of features or parts independent of their position in
the image. The relative position between the parts of an object can be handled
differently.

Some approaches store the constellation of parts on a reduced resolution [3] or
by explicitly modeling there position by means of a Gaussian distribution. If
multiple objects are in an image, this information is necessary to bind features
to the corresponding object models. The handling of spatial information is less
specific than for holistic coding but still leads to problems when the constellation
undergoes strong changes as it is the case for 3D rotation. Additionally, these
approaches often extract features at so-called keypoints only. Keypoints are de-
termined by saliency detectors that favor parts whose position is not ambiguous
(like vertices or highly textured regions, but not parallel lines or shadings). This
is a limitation since meaningful information might be neglected.

Other parts-based approaches, like the one we use here, leave out spatial infor-
mation by determining only the maximum response of an alphabet of features to
an image [4, 5]. The use of such an alphabet is motivated by biological findings.
The experiments in [6] revealed that columns in inferotemporal cortex repre-
sent a large set of complex features that can be recognized invariant to position
and other transformations. Combinations of activated columns then code for the
presence of an object [7]. The maximum step can also be interpreted by means of
neural latency coding where the highest activations provoke the fastest response
and non-optimal local responses are delayed and usually do not contribute to
further feed-forward processing.

Leaving out spatial information, these approaches implicitly assume that only
a single object is in view so that no binding is necessary. To balance this more
general type of representation the parts themselves have to be more specific and
meaningful. This can be achieved in different ways. The work in [5] uses a similar
hierarchical processing like the holistic framework in [2]. But on the highest fea-
ture layer a maximum step is performed using an alphabet with millions of local
features that were randomly selected. Finally a support vector machine (SVM)
is trained to separate the classes in this high-dimensional space. Here the final
SVM learns which parts of the large set are meaningful. In contrast to this, we
use a much smaller alphabet of so-called analytic features, which are optimized
using the supervised selection method described in [4], which will be explained
later. Because of this smaller subset our system runs in real-time.

Besides feature selection and handling of spatial information, also the coding
of the parts is important. For our analytic approach we describe the parts by
means of SIFT descriptors [3]. A SIFT descriptor is made up of a grid of local
gradient histograms. Thus it shows similarity to the response properties of neu-
rons in primary visual cortex. Gray-scale gradients are a very simple form of edge
detectors found in the so-called simple cells, while building of local histograms
is comparable to spatial pooling which is attributed to so-called complex cells.
Simple cells of a higher visual area respond to activation patterns of these com-
plex cells. Such patterns can be interpreted as a grid.
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Fig. 1. Basic system architecture. Using a depth criterion a region of interest is cropped
from the input image. After computing an improved mask, the response to an alphabet
of parts is calculated together with a histogram in RGB color-space. The resulting
activations are presented to the final classifier.

Previous experiments in [4] revealed that SIFT descriptors outperform the use
of gray-scale patches, which are too specific, and also patches from the output
of the hierarchy in [2], which are too general. Please note, that instead of using
the whole framework usually associated with SIFT, we use the simple maximum
step as outlined before. Additionally, we omit the use of keypoint detectors to
avoid restrictions on the parts that can be learned.

With regard to the recognition task and the system architecture, the work of
[8] is quite similar to ours. But they use a rather large alphabet of features which
is trained in an unsupervised fashion and they represent spatial relations. This
more complex and slower processing is not reflected in a gain in performance as
we report a similar performance for an even higher number of objects.

We describe the building blocks of our system in Sect. 2 with a special focus
on the learning and use of the analytic features. Later we investigate and discuss
its performance in Sect. 3 and present our conclusions in Sect. 4.

2 System

In this section we describe the essential building blocks of the system, whose
overall architecture is shown in Fig. 1.

Attention. When performing recognition tasks in unconstrained environments
(presence of background clutter and variation in object position), the system
has to decide which part of the input image should be processed. Here we use
the concept of peri-personal space [9] to generate such a hypothesis. This concept
defines an image region in close distance range to the camera as being relevant. In



each input image a square region of interest (ROI) is defined around the current
hypothesis, whose size depends on the estimated distance. This ROI is scaled to
a fixed output resolution of 144x144 pixels. In this way, we normalize object size
variation caused by different viewing distances. We obtain the necessary depth
information from stereo disparity and employ a pan-tilt unit to actively track
the hypothesis until it violates the peri-personal constraints.

Segmentation. The size-normalized region contains the object, but also a sub-
stantial amount of background clutter. Since we do not represent spatial infor-
mation, features detected on the background would be wrongly associated to
the object. This would harden the task of the classifier and therefore we need to
segment the object from its background. Following the peri-personal concept, a
first foreground hypothesis can be derived by binarizing the depth image. Since
the depth information based on stereo disparity usually wears out at the ob-
ject’s border and cannot be estimated for non-textured regions, we apply the
segmentation method proposed by [10]. As pre-processing, this method removes
all skin-colored pixels from the foreground hypothesis, because otherwise the
hand holding the object would have a systematic influence on the result. Second,
based on color and position information a prototype-based model for foreground
(i.e. everything activated in the initial hypothesis) is learned and a model for
background correspondingly. Finally, these models are used to classify each pixel
as being figure or ground, where the learned prototype-specific distance metrics
leads to a good generalization performance at the border of an object. In the
following, features are extracted only at locations marked as foreground.

Feature extraction. The feature extraction is the most important part of the
system. In this work we extract features for texture and color. Texture is repre-
sented by means of analytic features as proposed in [4] which are a preselected
alphabet of SIFT-descriptors. These descriptors are widely used for coding local
texture with invariance to lighting and planar rotation [3]. For a given input
image 4 the response of a feature w,, is determined by r,,; = max,, (W, - Pin),
where the p;, are SIFT-descriptors from all image locations n, and - denotes
the dot product. Keeping only the maximum response of each analytic feature
over the image, we measure the pure presence of a certain object part and do
not represent their spatial constellation. This yields invariance to translation
of parts together with a strong reduction of dimensionality. In contrast to this,
the standard SIFT framework calculates descriptors at interesting keypoints and
their constellation is then matched to those of the training images. In Sect. 3 we
show that this has shortcomings for several reasons.

The alphabet of analytic features is optimized for the scenario at hand using the
selection method proposed in [4]. Starting from a large set of candidate SIFT-
descriptors, this method first evaluates how well each element m can separate
views from a single class. This is done by assigning scores s,,,; for each combina-
tion of feature and image as shown in Fig. 2. After that, out of the candidates
a subset M is selected that can separate most of the views among the training
images. This subset has a predefined cardinality (usually several hundreds) and
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Fig. 2. Score table of single feature. For visualization the images are sorted on their
response T'm;. The threshold t,, separates views of a single class (here smiley cup) from
all other images. To these views a score s,,; = 1 is assigned.

maximizes >, f (3°,,cas Smi) with f(z) = H_e%,ﬂz and k = 3. Because trying all
possible subsets M is intractable, a greedy iterative selection method is used in-
stead. The described method is dynamic in the way that it selects more features
for objects with strong variation in appearance.

To represent color we calculate a histogram in RGB color-space (62626 = 216
bins) and normalize it by dividing by the highest entry. Histograms combine
robustness against view and scale changes with computational efficiency [11].
Before the calculation, we apply the color constancy method proposed by [12].
The activation of the RGB histogram bins are combined with the responses of

the analytic features to form the final feature vector.

Classification. To associate an object label to the current input image we use
simple classifiers as a nearest neighbor classifier (NNC) or a single layer per-
ceptron (SLP). The NNC stores the feature vectors of the training images as
representatives and determines the object label for a test image based on closest
Euclidean distance. The SLP has a neuron for each object. Using the training
data, the weights of one neuron are adapted to produce a strong response for the
corresponding object and a low response for views of other objects. The object
label of a test image is determined by the highest activated neuron.

For the real-time system we use the SLP because it consumes drastically less
memory and CPU time, and also has a slightly higher performance for the com-
bined use of analytic and color features.

As outlined before, the usual platform is a stereo camera head mounted on
a pan-tilt unit. When using our humanoid robot ASIMO instead, its degrees of
freedom are used to track but also follow the current peri-personal hypothesis
[13]. The proposed system runs in real-time with a frame-rate of 6Hz. The lim-
iting factor is the calculation of the analytic feature response for each possible
location in the size-normalized region of interest.

3 Results

In this section we first present results for an object database which has been
acquired to train and optimize the final real-time recognition system. Using a
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Fig. 3. HRI126 database. Database contains 126 objects with 1200 views each. Objects
were rotated in hand in front of a cluttered background.

simpler database, we later distinguish the analytic feature approach from the
standard SIFT framework.

The HRI126 database which corresponds to the scenario for the real-time
system is shown in Fig. 3. It contains 126 objects with 1200 views each. The
objects were freely rotated in hand in front of a cluttered background. Because
of this unconstrained setting the database is very difficult compared to ones used
in related work. In the following we evaluate the recognition performance and
scalability of the proposed approach and test the necessity of the segmentation
step. All training was done on the first 1000 views per object while the offline
performance was evaluated on the remaining 200 views.

In the first training step we selected 441 analytic features (see Fig. 4a) us-
ing the algorithm proposed in [4]. Combined with the 216 RGB histogram bins,
this yields a 657 dimensional feature vector for each view. Although in the fi-
nal system an SLP is used, Fig. 4b gives the result of some NNC experiments
using different representations and varying the number of representatives. Here
especially the result of two holistic approaches GRAY and C2 is important to
judge the difficulty of the database. GRAY simply uses the holistic gray-scale
images as representatives while the so-called C2-activation is the output of the
biologically inspired, edge-based, feed-forward hierarchy proposed in [2]. Both
holistic methods show a very weak performance. With many training views C2
outperforms GRAY but still does not generalize as well as the analytic approach
using few training views. One reason for this is that the coding of spatial infor-
mation is too rigid. Additionally, the local features underlying C2 are too coarse
to separate certain objects in the database, e.g. individual mobile phones. In
contrast to this ANALYTIC uses very specific features while neglecting spatial
information completely. ANALYTIC also outperform the color histograms while
the concatenation of both complementary feature types yields the best result.
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Fig. 4. a) Selected 441 analytic features. Most of the features are quite object specific.
E.g., different versions of keypads and wheels are necessary to distinguish individual
mobile phones and cars respectively. The set contains features that would not have
passed usual keypoint criteria (e.g. several versions of parallel lines). For visualization
the features are arranged using a self organizing map. b) Results of NNC experiments.
Error rate over number of training views. For GRAY not all views could be used because
of the required memory.

Similar conclusions can be drawn from the SLP experiments shown in Fig.
5a. Here the error rates of recognition are given depending on the number of
used objects. This should help to predict the scalability of the approach towards
larger number of objects. The value for 126 objects is directly the performance
of the SLP on the test images. The performance for less objects was determined
by choosing a random subset of objects and removing their test-views and SLP
neurons from the experiment. The SLP was not retrained on the remaining ob-
jects. Interestingly, this yields better results because the SLP profits from a high
number of negative training examples. The curves show the average of 100 runs.
In general, the order from the NNC experiment is preserved. Only for ANA-
LYTIC+COLOR the SLP is better than the NNC, because it finds a better
weighting between both feature types than the simple concatenation used for
the NNC experiment. The selective use of ANALYTIC and especially COLOR
prevents the SLP from finding a good separation because of the low input di-
mensionality. In contrast to this we observed some over-fitting for C2.

For a given error rate much more objects can be distinguished by means of an-
alytic features than by C2. The combination ANALYTIC+COLOR again pro-
vides the best result with an error rate of only 10.35% for 126 objects. Taken
the difficulty of the database into account this is a very high performance and
a big step towards invariant 3D object recognition. In the real-time system we
accumulate the classification results over 10 successive frames and only output
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Fig.5. a) Error rate of SLP over the number of objects. The symbol e denotes the
performance of the corresponding NNC experiments. b) Error rates for differently sized
square masks. For 1.0 the whole region is used for feature extraction (no masking) while
for decreasing values only a smaller square inner part contributes.

the most voted object label. This removes outliers and thus leads to further
improvement and stability.

After having investigated the contribution of the feature extraction, Fig. 5b
sheds light on the importance of the segmentation step. The horizontal line is
the reference performance for 126 objects when using the prototype-based seg-
mentation proposed in [10], while the other curve gives the results when simply
placing differently sized, square masks in the center of the region. Even in the
best case such a simple mask has a 4% higher error rate. Using no mask gives a
15% higher error rate. For too small masks there is an even higher loss in perfor-
mance. These results confirm that our position invariant object representation
requires a good segmentation to counteract the binding problem.

In Sect. 2 we shortly compared the basics of the analytic feature approach
with the standard SIFT framework. The effect of the differences become clear in
the results in Fig. 6. For this experiment we used the simple COIL100 database
[14]. Because of the non-cluttered background we did not use a mask and we
also abandoned the color features to get a fair comparison. Fig. 6b shows the
result of different nearest neighbor classifications where we varied the number
of stored representatives (out of 72 available ones per object) for different ap-
proaches. For the analytic approach we used the same set of 441 features that
was selected for the HRI126 database. This was done because of the low number
of available training views in the COIL100 database and the strong similarity
in the types of objects in both databases. For the SIFT framework we applied
the visual pattern recognition system (ViPR) by Evolution Robotics (see [15],
www.evolution.com) which is claimed to be the “gold standard” implementation
of the SIFT approach. We optimized the parameters of this software for best
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Fig. 6. a) COIL100 database. b) Error rates of NNC over number of training views. For
9 representatives the analytic approach has an error rate of 1% while the standard SIFT
approach has 28%. The objects in a) are sorted in ascending order on their individual
probability of being misclassified using the SIFT approach with 9 representatives.

performance. As a baseline we again provide results for the use of holistic gray-
scale images and for C2.

For few training views, the analytic approach generalizes well while the SIFT
framework shows a very weak performance. A reason for this is the different
handling of spatial information. SIF'T tries to re-detect the rigid constellation
of parts that was present in the training images, which usually changes strongly
under rotation in depth. Additionally, there are several objects for which the
SIFT framework completely fails, as shown by the bad convergence towards
larger numbers of training views. A reason for this is the dependency on the
(re-)detection of interesting keypoints. This breaks down for objects with little
texture, which is underlined by the order of objects in Fig. 6a. Both holistic
approaches show good convergence and an intermediate capability to generalize
from few training views, as they also use a rigid spatial representation. This
rigidness is a little softened by the hierarchical processing underlying C2.

To also compare our approach to that in [5], we trained a set of 300 ana-
lytic features for an animal vs. non-animal separation task. On the test data we
reached an error rate of 20% compared to 18% reported in [5]. This small differ-
ence makes it questionable if the hierarchical processing and the use of millions
of local features do provide a gain over our simpler and much faster method.

4 Conclusion

On the basis of a biologically motivated, parts-based representation, we devel-
oped a real-time system capable of robustly recognizing a large number of ar-
bitrary objects under 3D rotation. We evaluated the scalability of the approach



and showed the necessity of a good object segmentation to deal with back-
ground clutter. The shown performance marks a major step towards invariant
object recognition, especially in comparison to existing work where mostly more
complex processing is used to solve easier tasks.

Using the presented pre-trained architecture as a starting point, we target
at a flexible, life-long learning system. Therefore we investigate in hierarchical
classifiers to deal with the increasing complexity of the scenario and in an incre-
mental build-up of the visual alphabet.
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