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ABSTRACT: In this paper, we present our recently introduced “assistance on demand (AOD)” concept, which allows the 

driver to request assistance via speech whenever he or she deems it appropriate. The target scenario we currently investigate 

is turning left from a subordinate road in dense urban traffic. We first compare our system in a driving simulator study to 

driving without assistance or with visual assistance. The results show that drivers clearly prefer our speech-based AOD 

approach. Next, we investigate the differences between drivers’ left-turn behaviour in a driving simulator. The results of this 

investigation show that there are large inter-individual differences. Based on these results, we present another driving 

simulator study, where participants can compare manual driving to driving with a default and a personalized AOD system. 

The results of this second study show that the personalization very notably improves the acceptance of the system. Given the 

choice between driving with any of the AOD variants and manual driving, 87.5% of the participants preferred driving with 

the AOD. Finally, we present an evaluation of the AOD system in a prototype vehicle in real urban traffic.  

KEY WORDS: electronics and control, advanced driver assistance system (ADAS), speech-based system, on-demand, 

user study, critical gap, personalization [E1]

1. Introduction

In recent years, many new advanced driver assistance 

systems (ADAS) have been presented. These systems aim to 

support the driver in the driving task and to reduce her cognitive 

load. However, as these systems usually do not work flawlessly, 

they can also lead to distractions and may even annoy the driver 

with undesired and unnecessary warnings. In an attempt to 

overcome these limitations, we recently developed the concept of 

“assistance on demand (AOD)” (1), (2). This describes an ADAS 

which supports a driver only if she asks for assistance. The two 

key elements of this concept are, on one hand, the control of the 

ADAS via speech, and on the other hand, the personalization of 

the system to the individual driver. The speech-based control 

allows the driver to flexibly formulate her requests for assistance 

while the situation develops. The personalization will help to 

adapt the interaction of the system to the driver’s individual 

preferences and skills. In the context of ADAS, personalization 

has not yet been investigated thoroughly but the number of studies 

has been increasing quickly in recent years (3).  

In this paper we will give an overview of the AOD concept 

and its implementations. We will present the results of two user 

studies, in which we investigated the AOD concept and also show 

results of an evaluation of the AOD concept in a prototype vehicle 

in urban traffic. 

2. The Assistance On Demand Concept

Driving in urban traffic can be highly demanding. In 

particular, turning left at an unsignalized intersection from a 

subordinate road into a superordinate road with high traffic 

density is one of the most challenging tasks for drivers (e.g. (4), 

(5)). Therefore significant effort is invested in the  research of 

assistance systems which support the driver in such left-turn 

scenarios  with  crossing traffic(6) and also for the less challenging 

task of only oncoming traffic (7), (8). To further improve these 

systems, in particular the participants’ manoeuver and intention 

prediction is investigated (9), (10), (11). These systems provide 

collision avoidance functionality, which prevents safety-critical 

situations. Yet, in many cases the driver might also benefit from 

support in the monitoring and decision making process before 

entering an intersection. In (12) information on safe gaps was 

presented via a HUD in a driving simulator. However, the system 

rather led to a focus of the driver’s attention to the centre instead 

of to the left and right and to a more risky driving behaviour. 

From observing drivers’ natural behaviour we derived an 

alternative approach for assistance. When driving with a front-

seat passenger, they often use the opportunity to ask her for 
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support while managing a difficult intersection. In particular, 

when turning left, they transfer the task of monitoring the traffic 

on the right-hand side to the passenger and request feedback on 

suitable time gaps to enter the intersection1. These considerations 

led to the development of our system as an assistant for urban 

intersections, that acts like a co-pilot, with which the driver can 

interact via speech (1), (2). The system helps to find suitable time 

gaps to turn left comfortably and safely. The system is not always 

active, but the driver activates the system in situations where she 

wants to have support. Hence it is based on our “assistance on 

demand” (AOD) concept. With this on-demand concept, we aim 

to increase the driver acceptance and reduce any possible 

annoyance due to the system. In (13) a very similar approach for 

the use case “turning left at a rural intersection with oncoming 

traffic” was applied with positive results for the system. In 

contrast to his approach, the presented AOD approach strongly 

pronounces the collaborative sharing of tasks between the driver 

and the system in a more demanding use case. The system is 

intended as a comfort system, which should support the driver 

while waiting at an intersection and monitoring the traffic. It takes 

over only the monitoring of one direction, namely the traffic from 

the right-hand side. Furthermore, it assists in manoeuvre decisions 

by announcing suitable gaps in traffic for turning or crossing the 

intersection. The driver is still responsible for the final decision 

and manoeuvre execution. We have chosen speech as the 

modality for interaction between the driver and the system as 

speech is thought to be the most flexible, natural, and interactive 

way of communication between the two agents.  

2.1. Intersection Assistant Scenario 

In a first step we have implemented our AOD concept in a 

speech-based intersection assistant. After the driver has activated 

the system via a speech command, it monitors the traffic on the 

right-hand side and informs the driver about suitable gaps to enter 

the intersection, just like a co-driver would do. A typical 

interaction with the system might look like this: 

• Driver: “Please watch right!”

• System: “Okay, I’m watching.”

• …

• System: “Vehicle from the right.”

• …

• System: “Gap after next vehicle.”

The system does not provide direct action recommendations 

and we expect that the driver uses the system information only as 

support and does not fully rely on it for making the turn. 

3. Initial User Acceptance

In a first user study, we have evaluated the user acceptance 

of the AOD concept in comparison to driving without any 

assistance and to a system that gives visual information in a 

virtual head-up display (HUD) (1), (2)  

1 Throughout the paper we only consider right-hand traffic. Yet, the 

results can easily be transferred to turning right in left-hand traffic.  

3.1. Methodology 

3.1.1. Participants 

N=24 drivers took part in the study; half of them were 

female. They all had participated at least in a 2.5 h training 

session in the simulator prior to this particular experiment. Their 

mean age was 49.1 years (SD = 19.3 years), with ages ranging 

from 25 to 77 years. Their mean mileage driven in the last 12 

months was 15408 km (SD= 9851 km). 

3.1.2. Study Environment 

The study took place in the static driving simulator of the 

Würzburg Institute for Traffic Sciences (WIVW; see Fig. 1). The 

simulator is based on a full-car mock-up of an Opel Insignia, for 

which outside rear-view mirrors are replaced with LCD displays. 

The scenery is projected onto five screens. The steering wheel has 

an integrated steering force simulator. The mock-up interior 

includes two integrated LCD-displays, one replacing the 

speedometer, while the other, in the centre console, can display 

optional additional information.  

3.1.3. System Specification 

The functionality of the AOD system was restricted to the 

monitoring of traffic arriving from the right. Therefore, all system 

outputs only refer to traffic from the right-hand side, so that traffic 

from the left still has to be monitored by the drivers themselves. 

While the driver is approaching the intersection, the driver’s 

request (e.g. “Please watch right”) activates the system. In the 

simulator study, the final activation of the system was triggered 

by a button pressed by the experimenter (this was the only manual 

action of the experimenter). The system confirms the successful 

activation by answering "Okay - I will watch." When the driver 

reaches the intersection, the AOD system starts giving 

recommendations. If the time distance of the closest vehicle from 

the right to the centre of the intersection is above 10s, the system 

will interpret this as no vehicle being present and it triggers the 

output “no vehicle from the right.” It was deliberately decided not 

to announce “right is free,” as this could be interpreted as a 

permission to drive without further monitoring the actual traffic. 

This could lead to hazardous situations. If a vehicle is 

approaching from the right and the time distance of this vehicle to 

Figure 1: Static driving simulator at the Würzburg Institute for 

Traffic Sciences (WIVW), used for the user study. 
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the intersection falls below the assumed suitable time distance for 

entering the intersection the linked speech output is “vehicle from 

the right.” If a vehicle from the right is expected to reach the 

intersection within 2.5 s and if the time gap to the next oncoming 

vehicle is larger than or equal to the suitable time gap, the system 

will inform the driver of this suitable gap. The system output is 

given before the first vehicle has passed the intersection, in order 

to create a certain preparation time. Hence, the speech output is 

“gap after approaching vehicle.” If the time gap has elapsed and 

the next vehicle is approaching under the same conditions, the 

output is replaced by: “Gap after next vehicle.” In this user study 

we assumed a time gap of 6.5 s as suitable for entering the 

intersection. 

To evaluate the AOD system and in lack of a suitable 

intersection assistant system, we also created a reference system. 

To contrast it with the AOD system, the reference system is 

always active and uses the visual modality to give feedback on 

oncoming traffic at the intersection. We implemented it via 

coloured arrows displayed in a virtual head-up display HUD 

(compare Fig. 2).  

Figure 2: Simulated HUD display in the driving simulator with 

the coloured arrows visualizing traffic information from the left 

and right direction at an urban intersection 

This system is able to monitor traffic from both directions 

(i.e. left and right). Comparable system states, comparable 

conditions and identical parameter specifications as in the AOD 

system were used with the exception that traffic from the left was 

also included. The speech output “vehicle from right” in the AOD 

system was replaced by a red arrow either from the right or the 

left or both directions, depending on the approaching vehicles. 

The system state connected with the speech output “gap after 

approaching vehicle” was replaced by a yellow arrow either from 

the right or left or both. The decision for entering the intersection 

has to be made by the driver by combining the information from 

both directions (e.g. a yellow and a red arrow means it is not 

possible to enter the intersection). It was deliberately decided not 

to display a green arrow in the system state when no vehicles are 

in the sensor range of the system (in contrast to the system 

described in (13)), for the same reasons that led to the decision 

against announcing “right is free.” Instead, the red or yellow 

arrow simply disappears, if the respective condition is valid. 

3.1.4. Scenarios 

Each experimental drive consisted of a set of several 

scenarios, all containing an urban intersection. As the basic layout 

for this scenario, a four-way intersection was chosen with the ego 

vehicle approaching from the subordinate road. For one drive, 13 

different scenarios were put together into one driving course, 

meaning that the driver drove from one intersection to the next by 

always turning left. Yield signs were placed at the roadside. A 

stop line nudged all drivers to stop at a comparable distance from 

the entrance of the intersection. The surroundings at the 

intersection were created in such a way that the drivers could not 

see the arriving vehicles on the superordinate road when they 

approached the intersection. Having stopped at the intersection, 

the line-of-sight was about 8 s to the right and 

10 s to the left (taking 50 km h-1 as a basis). The instruction asked 

the driver to turn left at the intersection. The participants were 

asked to drive under three conditions: a “manual drive” where no 

system was activated, an AOD system drive where the 

communication with the driver was realized via speech and a 

head-up display (HUD) system drive where arrows were 

presented to the driver.   

3.1.5. Experimental Plan 

 All 24 participants had an introductory drive to familiarize 

themselves with the driving simulation and the simulation 

environment. Then, the manual drive without any assistance was 

performed. Before conducting the drives with the activated AOD 

system, the participants had an introduction into the AOD 

functionality following a practice drive with the activated AOD 

system. After this, they performed the AOD drive. We proceeded 

in the same way for the HUD drive. The sequence of the AOD 

system drive and the HUD system drive was permuted and 

counterbalanced and drivers were assigned at random to one of 

the two sequence orders. The participants filled different 

questionnaires after the individual drives and once they had 

finished all drives. 

3.1.6 Measures 

Here we will only report the results of the questionnaire 

administered after all three drives, where participants were asked 

to rank the different drives.  

3.2. Results 

Figure 3 displays which of these three drives the drivers 

preferred. The results show that most drivers prefer our speech-

based AOD system (14 out of 24). Only 3 drivers favoured the 

HUD system. Our speech-based system allowed the drivers to 

focus visually on that part of the environment which they 

currently considered the most relevant, while still receiving input 

from the system via the unoccupied acoustic channel. The HUD 

system, on the other hand, required them to divert their gaze to 

see the system response. We assume that this difference is at the 

heart of the clear preference for the AOD system. The remaining 

7 drivers preferred to drive without any assistance.   
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Figure 3: Preferred drive of the 24 participants of the first user 

study. Without assistance (manual), with speech-based ”assistance 

on demand” (AOD) or visual assistance via a head-up display 

(HUD). 

 

This high acceptance of the AOD system by the drivers 

might be due to different unique aspects of the system. In a 

questionnaire they stated that they considered the interaction as 

natural and the use of speech as meaningful and specific enough 
(1), (2). In particular, they highly appreciated the on-demand 

concept. Furthermore, they considered the system the more useful 

the more difficult the scenario was. 

 

4. Personalized Left-turn Prediction 

One result of the first user study described above was that 

drivers mentioned that the gaps recommended by the system did 

not suit their driving behaviour: for some drivers the gaps were 

too short and for others they were too long. Based on this 

outcome, we have performed a new user study, in which we 

investigated the variation between different drivers with respect to 

what constitutes a suitable gap in traffic to make the turn. 

 

4.1. Critical Gap Estimation 

 

The so-called critical gap is often used to calculate the 

capacity and delay of a minor road, especially for unsignalized T-

intersections. It signifies how large a gap minimally has to be for 

the driver to accept it and take the turn, thus vacating the minor 

road. Previously, this value was primarily used to measure the 

capacity of a specific intersection and hence was calculated from 

a large pool of drivers all passing this intersection (14). In our case, 

however, we use it as a criterion to predict the behaviour of one 

individual driver. To facilitate this, for the moment, we assume 

that the layout of the intersections and the traffic density at the 

intersections are all identical. 

 

A method often used to estimate critical gaps was proposed 

by Troutbeck (15). Troutbeck assumes that a driver's critical gap 

lies somewhere between the largest rejected gap and the gap 

accepted by the driver. To model the behaviour of the drivers, he 

uses a log-normal distribution for the critical gaps. The 

transformation of the observed gaps in the logarithmic domain 

allows using the normal distribution for the core computations. In 

(16), Brilon recently motivated the approach of Troutbeck by 

analogies to a classical problem in survival theory. More 

concretely, he argues that it corresponds to the failure time 

estimation of interval censored data (16), (17). The critical gap, i. e. 

the failure event, cannot be observed directly. It can only be 

observed that it lies in the semi-closed interval (𝑟𝑖 , 𝑎𝑖] when 𝑟𝑖 

indicates the logarithm of the largest gap rejected by the 𝑖 -th 

driver at the intersection and 𝑎𝑖 the logarithm of the gap accepted 

by this driver. The hidden parameters 𝜇 and 𝜎 of the distribution 

of the critical gap  𝜇𝑐 can then be found by maximizing the log-

likelihood: 

 

∑ ln 𝑝(𝑟𝑖 < μ ≤ 𝑎𝑖|𝜇, 𝜎) ,

𝑁

𝑖=1

 

 

for all observations N. Following the argumentation in (16) we 

can rewrite this as: 

  

∑ ln[𝐹𝑐(𝑎𝑖) − 𝐹𝑐(𝑟𝑖)] ,

𝑁

𝑖=1

 

 

where 𝐹𝑐( )  denotes the cumulative distribution function of the 

normal distribution with parameters 𝜇 and 𝜎 . Hence the 

parameters can be determined via: 

 

(𝜇𝑐 , 𝜎𝑐) = arg max
𝜇,𝜎

∑ ln[𝐹𝑐(𝑎𝑖) − 𝐹𝑐(𝑟𝑖)] .

𝑁

𝑖=1

 

 

As a final step, we go back from the logarithm domain and 

the critical gap 𝑡𝑐  and variance 𝑠2  in linear scale are computed 

according to 

 

𝑡𝑐 = 𝑒 
𝜇𝑐+0.5𝜎𝑐

2
,    𝑠2 = 𝑡𝑐

2(𝑒𝜎𝑐
2

− 1). 
 

 In contrast to [8], in our case, the index 𝑖 in the equations 

above is not used to indicate a tuple (𝑟𝑖 ,  𝑎𝑖) of the i-th driver but 

of the i-th intersection. 

 

The failure time estimation of interval censored data requires 

that 𝑟𝑖 <  𝑎𝑖. Consequently, the method of Troutbeck assumes a 

consistent and homogeneous driver. This means that the largest 

rejected gap 𝑟𝑖  recorded at intersection pass 𝑖  must always be 

smaller than the corresponding accepted gap 𝑎𝑖. This is, however, 

often not fulfilled. To overcome this limitation, we have recently 

introduced a novel maximum likelihood approach to critical gap 

estimation (18). By extending it to a maximum-a-posteriori 

approach via the introduction of a prior on the expected critical 

gap, we were also able to significantly increase the estimation 

accuracy when only few observations from a given driver are 

available (19).   

 

4.2. Methodology of the Initial Personalization Study 

 

4.2.1. Participants 

 

N=9 participants (two female) with a mean age of 32 years 

and a standard deviation of 4 years took part in this study. Their 

driving experience ranged from 3 to 18 years, while their travelled 

distance per year lay between 7.000 km and 40.000 km. 
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4.2.2. Study Environment 

 

As simulation software, we have used IPG CarMaker 4.5, 

which is a simulation environment mainly intended for the 

physical simulation of cars. We used three displays to render the 

traffic environment. The drivers interacted with the simulation via 

a Logitech G27 steering wheel and corresponding pedals, but 

there was no force-feedback support for this software in 

conjunction with the Linux operating system.  

 

4.2.3. System Specification 

 

With this initial personalization study, we wanted to 

investigate the participants’ normal left-turn behaviour. Hence 

they were driving without any system support. 

 

4.2.4. Scenario 

 

To test the hypothesis that there are differences in the critical 

gaps different drivers accept, we have built an inner-city 

intersection scenario in our driving simulator. We have set up a 

road layout with four consecutive T-intersections, which allows 

the participants to drive through a potentially infinite number of 

successive intersections. The buildings have been placed in such a 

way that the participants are forced to stop at the intersection, in 

order to see if there are cars approaching from the left or right. 

The layout of all intersections was identical, as the goal was to 

observe the behaviour of an individual driver in many identical 

situations. The only difference between the intersections is the 

arrangement of the buildings. Nevertheless, the visibility of the 

driver onto the crossing traffic is identical for the different 

intersections. 

 

4.2.5. Experimental Plan 

 

 After some initial simulator training, each participant drove 

3 scenarios with 16 intersections each. The distribution of the 

presented gaps was different for each intersection and simulated 

medium to high traffic density from the left and right. The gap 

sizes presented to the participants were between two and eight 

seconds. All traffic cars were driving at 50 km h-1. Hence the 

scenario simulated typical urban traffic. Each participant drove 

the same scenario, i.e. the traffic was controlled in a fully 

deterministic way. Variations occurred as participants approached 

the intersections at different speeds, stopped at different points in 

front of the intersections and decided to take different gaps. After 

each of the 3 scenarios, there was a short break. With this setting 

we have obtained up to 48 (largest rejected gap, accepted gap) 

tuples per participant from the recordings. To ensure that no 

habituation effects to the observed gap sizes could occur, different 

gap sizes were used in the three scenarios. After the experiment, 

the critical gap 𝜇𝑐  and the corresponding variance 𝜎𝑐 were 

calculated. Due to violations of the assumption in Troutbeck’s 

algorithm of a consistently behaving driver, it was not possible to 

use the gap recordings from all 48 intersections of each 

participant. The average number of used intersections for a 

participant was 44.9 with a standard deviation of 2.9. 

 

4.3. Results 

 

In this section, we analyse the inter-individual differences of 

the estimated critical gap. Figure 3 shows the estimated critical 

gap 𝑡𝑐  and the corresponding standard deviation 𝑠  for every 

participant. The red line shows the estimated critical gap when 

jointly using the recordings of all participants. One can see that 

there are clear differences between the critical gaps of the nine 

participants. A one-way ANOVA of the results of both methods 

has also confirmed that there is a significant inter-individual 

difference in the critical gaps of the different participants. Note 

that the explanatory power of the ANOVA result is reduced due 

to the fact that we are forced to use the estimated means and 

corresponding variances of the critical gaps, since we don't 

possess any observations of the latter.  

5. User Acceptance of Personalized AOD 

We saw in the previous section that different drivers chose 

different gaps in traffic. This motivated us to carry out a third 

study, investigating whether a personalization of the gap 

suggestions of the AOD system to the individual driver will 

further increase its acceptance (20), (21).  

 

5.1. Methodology 

 

This personalization study was similar to the first AOD study 

in Section 3 in many aspects. In particular, it was also performed 

in the same static driving simulator using a very similar scenario. 

In the following we will only highlight the differences.  

 

5.1.1. Participants 

 

A total of N=25 participants took part in this study, 12 of 

them were male. The mean age was 42 years (SD=13.1 years) 

with driver ages ranging from 22 to 64 years. The mean number 

of years of driving experience was 22.8 with a standard deviation 

of 12.0. The mean number of kilometres driven in the previous 

year was 18660 km (SD=12375 km).  
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Figure 4: Critical gap for each participant (blue bars), standard 

deviation of critical gap (black lines) and critical gap using 

data of all participants for estimation (red line). 
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5.1.2. Study Environment 

 

This study also took place in the static driving simulator of 

the Würzburg Institute for Traffic Sciences described in Section 

3.1.2.  

 

5.1.3. System Specification 

 

The AOD system was implemented as described in Section 

3.1.3. The only difference was that the gaps suggested to the 

drivers were different. Details on how these gaps were modified 

will be given below. Furthermore, there was no visual system 

variant in this study.  

 

5.1.4. Scenario 

 

The layout of the scenarios was identical to the one described 

in Section 3.1.4. The participants were asked to drive under three 

conditions: a “manual drive” where the AOD system was not 

activated, a “default AOD” system drive and the “personalized 

AOD” drive. In the default AOD system drive, a fixed critical gap 

of 5.5 s was set in the system. For the personalized AOD system 

drive, an individual critical gap was calculated from the recorded 

data of the manual drive, according to the algorithm detailed in 

Section 4.1, and then used in the system. 

 

5.1.5. Experimental Plan 

 

 The experimental plan was identical to the one described in 

Section 3.1.5 in large parts. The main differences were that now, 

in addition to the manual drive, the participants performed a 

“default AOD” and a “personalized AOD” system drive. The 

sequence of the default AOD system drive and personalized AOD 

system drive was also permuted and counterbalanced and drivers 

were assigned at random to one of the two sequence orders. The 

participants were not informed on the differences between them. 

The participants again filled in different questionnaires, once after 

each individual drive, and once more after they had finished all 

drives. 

 

5.1.6 Measures 

 

For this experiment, we again only report the results of the 

final questionnaire, in which participants ranked the different 

drives.  

 

5.2. Results 

 
Figure 3 displays which of these three drives the drivers 

preferred. Most drivers preferred the personalized AOD system. 

Some preferred the default AOD system and only a few preferred 

driving without AOD support. More precisely, 87.5% preferred 

driving with any of the two AOD variants compared to 12.5% 

who preferred driving manually. This clear preference for the 

personalized AOD system remained, when we split the drivers 

into two groups according to their individual critical gap. Both 

groups, with an individual critical gap smaller or larger than the 

5.5 s default, clearly preferred the personalized system variant.  

From this we conclude that the personalization of the gap 

suggestions to the individual driver very notably improves the 

acceptance of the AOD system.  

Out of the 25 drivers, 16 considered the gap 

recommendations of the personalized system as more appropriate 

for them (20), 21). Only 3 preferred the default gaps and 6 

considered both as comparable. They also felt that the 

personalized system was more reliable and facilitated the decision 

of entering the intersection further. 

6. AOD Prototype System 

After the very positive results from the user studies, we 

implemented an AOD prototype system and evaluated it in real 

urban traffic (22), (23).  

 

6.1. Prototype system layout 

 

The prototype system consists of the following main building 

blocks: sensor data acquisition, scene understanding, dialog 

manager and system output (compare Fig. 6). The sensor data 

acquisition block receives the data from the vehicle’s IBEO laser 

scanners, CAN bus and microphone array. The laser data is pre-

processed, i.e. it yields objects with their position and speed. The 

scene understanding component processes and analyses this data 

for the dialog manager, the component controlling the behaviour 

of the system. In particular it extends the IBEO tracking such that 

it can also cope with occlusions of vehicles arriving from the right 

by vehicles from the left (22). Based on this data it then calculates 

the lengths of the gaps between the vehicles arriving from the 

right. Furthermore, based on the CAN data it determines if the 

ego vehicle is arriving at the intersection, standing at the 

intersection or leaving the intersection (22). It also analyses the 

microphone input to infer the driver’s commands. The dialog 

manager then uses this information to decide on the appropriate 
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Figure 5: Preferred drive of the 25 participants of the user study. 

Without assistance (manual), with speech-based Assistance On 

Demand using a default gap (default AOD) or a personalized, 

driver-dependent gap (personalized AOD). The reason for the 

occurrence of the non-integer values is that some participants 

rated both the personalized AOD and the default AOD as equally 

good. These votes were split between the two alternatives. 
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speech feedback which is then generated by the Text to Speech 

module (compare Table 1 for some exemplary system 

announcements). After the driver activates the system via a wake-

up word and the corresponding speech command, the system 

gives feedback on the traffic from the right while the ego vehicle 

is standing at the intersection and until the driver starts leaving the 

intersection (15). 

 

6.2. Prototype System Hardware 

 

To implement the AOD prototype we used a modified 2012 

model year Honda CR-V (compare Fig. 7). In addition to the 

standard equipment, it features 360° sensing via an Ibeo 

Automotive Systems laser sensor and cameras. Furthermore, the 

trunk hosts computing hardware to store and process the sensor 

data. We acquire the speech commands from the driver via an 

XCore 7-channel microphone array and use the standard audio 

equipment of the vehicle for speech feedback. Wake-up word 

detection, speech recognition and synthesis are accomplished via 

the VoCon™ and Vocalizer™ software respectively, both from 

Nuance.  

 

6.3. Evaluation in Urban Traffic 

 

 Using our prototype vehicle, we have made recordings at an 

unsignalized urban intersection in the Frankfurt Rhine-Main area 
(23). These recordings contain 115 vehicles arriving from the right 

side, which we could use to evaluate the performance of our AOD 

prototype. We assume traffic with a speed of 50 km h-1, the 

maximum allowed speed for many German urban streets. Based 

on a critical gap 𝑡𝑐 = 6 s and another 2.5 s preparation time (in 

which the driver is informed and is able to process the 

information), the system has to make its decision 8.5s before the 

relevant vehicle arrives at the intersection. This means that the 

system has to detect vehicles at least at a distance of 125 m to be 

able to decide if a gap is suitable for the driver to make the turn. 

For the evaluation of the system, we consider all announcements 

of the system as equivalent if they lead to the identical behaviour 

of the driver. E.g. if the system announces “no vehicle after the 

next vehicle” the driver will assume that there might be an option 

to make the turn after the next vehicle. If in the meantime a new 

vehicle will enter the perception range of the system the 

announcement will no longer be correct at the time the system has 

finished it but the distance to this vehicle will still be large enough 

for the driver to make the turn, we count this announcement as 

valid. In Fig. 8 we depict the results of our evaluation broken 

down into the different conditions present when the system made 

the announcement and when the corresponding vehicle passed in 

front of the ego vehicle. Overall, the evaluation shows that the 

system has a high performance and, despite the challenging 

setting, it made correct announcements in 103 out of the 115 cases 

(89.6%) (23).  

Table 1: Examples of system announcements. 

  Vehicle in the distance 

  Vehicle from the right 

  Gap after the next vehicle 

  No vehicle after the next two vehicles 

Scene  
Understanding 

System Output 

Dialog Manager 

Sensor  

Data  
Acquisition 

Ego Vehicle  
State Estimation 

NLU 

Gap Estimation 

Vehicle 
CAN Data 

Speech  
Recognition 

Text to Speech 

IBEO Data 

Vehicle  
Tracking 

Dialog 
Manager 

Microphone 
Data 

Wake-up Word 
Detection 

Figure 6: AOD system layout. 

0 20 40 60

𝑡𝑔𝑎𝑝 < 𝑡𝑐 

𝑡𝑔𝑎𝑝 < 𝑡𝑐 

𝑡𝑔𝑎𝑝 ≥ 𝑡𝑐 

𝑡𝑔𝑎𝑝 ≥ 𝑡𝑐 

  No veh.  

𝑡𝑔𝑎𝑝 ≥ 𝑡𝑐 

No veh. 

No veh. 

0 1 2 3 4

𝑡𝑔𝑎𝑝 < 𝑡𝑐 

𝑡𝑔𝑎𝑝 ≥ 𝑡𝑐 

𝑡𝑔𝑎𝑝 ≥ 𝑡𝑐 

𝑡𝑔𝑎𝑝 < 𝑡𝑐 

 𝑡𝑔𝑎𝑝 ≥ 𝑡𝑐   

ID switch 

No veh. 

𝑡𝑔𝑎𝑝 < 𝑡𝑐 

Figure 8: Comparison of the correct (left) and incorrect (right) 

announcements of the system (in absolute numbers). tgap is the 

gap measured by the system and tc the critical gap needed by the 

driver to make the turn. In each pairs the top condition refers to 

the condition which was present when the system made the 

announcement and the bottom one when the corresponding 

vehicle passed in front of the ego vehicle. “No veh.” indicates 

that the system did announce no vehicle, “ID switch” indicates 

that the object ID had changed between the announcement and 

the passing of the vehicle, i.e. a new vehicle appeared or one was 

lost.  

Figure 7: The prototype vehicle. 

181

Martin Heckmann et al. / International Jaurnal of Automotive Engineering 
Vol.10, No.2 (2019) pp.175-183



Copyright  2019   Society of Automotive Engineers of Japan, Inc. All rights reserved 

7. Conclusion

In this paper, we have first presented our recently introduced 

Assistance On Demand (AOD) concept. It allows the driver to 

request assistance via speech whenever she deems it appropriate. 

We have investigated the benefits of this approach in different 

driving simulator studies. As the scenario, we have chosen turning 

left from a subordinate road in dense urban traffic. In the first 

study, we were able to show that drivers clearly prefer our 

proposed speech-based interaction to a visual assistance system or 

to not having an assistance system at all. One further result was 

that participants mentioned that they felt that the gaps, announced 

by the system, did not always fit to their driving behaviour. Hence, 

in a follow-up study we have investigated the left-turn behaviour 

of different drivers. The results have shown that there is a large 

variation in the gaps that individual drivers prefer to take. This 

confirms our hypothesis that a personalization of the intersection 

assistant has a high potential to further improve usability and 

driver acceptance. We have tested this in a third user study. Here 

drivers compared manual driving to driving with the assistance of 

AOD, either with a system using a default critical gap setting or 

personalized critical gaps adjusted to the individual driver. The 

results show that the personalization very significantly improves 

the acceptance of the system. Given the choice between driving 

with any of the AOD variants and manual driving, 87.5% of the 

participants preferred driving with an AOD. Finally, we have 

presented our AOD prototype and its evaluation in urban traffic. 

The results show that the system is able to make correct 

announcements in 90% of the cases. This is a very promising 

outcome and shows that the system can provide valuable support 

to the driver despite the strong limitations of the LIDAR sensing 

of our prototype vehicle and the fact that it has to predict the 

traffic situation more than 8 s into the future in highly dynamic 

urban traffic. Nevertheless, in its current form, the system is not 

able to provide correct announcements in all cases. Yet, this is 

also not required for the system to be safe and useful. The 

following usage pattern is ideal in our view when the system 

announces an approaching vehicle from the right, the driver relies 

on it. When the system announces a gap in traffic, the driver only 

considers this as a potential gap. She then looks to the right and 

assesses the situation for herself. Hence, the driver is relieved 

from regularly confirming that it is still not possible for her to 

enter the intersection while at the same time maintaining adequate 

situation awareness before starting the manoeuvre. When a driver 

follows this usage pattern, she will look to the right less 

frequently but still perform a control glance to the right before 

entering the intersection. In our user studies we observed that 

drivers naturally and without instruction to do so, adapt to such a 

usage pattern (2), (21). 
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