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Object representation in the inferior temporal cortex (IT), an area of visual cortex 
critical for object recognition in the primate, exhibits two prominent properties; 
(1)  objects  are  represented  by  the  combined  activity  of  columnar  clusters  of  
neurons, each cluster represents component features or parts of objects, and (2) 
closely related features are continuously represented along the tangential direction 
of individual columnar clusters. Here we propose a learning model that reflects 
these properties of parts-based representation and topographic organization in a 
unified framework. This model is based on a non-negative matrix factorization 
(NMF) basis-decomposition method. NMF alone provides a parts-based 
representation where non-negative inputs are approximated by additive 
combinations of non-negative basis functions. Our proposed model of topographic 
NMF (TNMF) incorporates neighborhood connections between NMF basis 
functions arranged on a topographic map and attains the topographic property 
without losing the parts-based property of the NMF. The TNMF represents an 
input by multiple activity peaks to describe diverse information whereas 
conventional topographic models, such as self-organizing map (SOM), represent 
an input by a single activity peak in a topographic map. We demonstrate the 
parts-based and topographic properties of the TNMF by constructing a 
hierarchical  model  for  object  recognition  where  the  TNMF  is  at  the  top  tier  for  
learning high-level object features. The TNMF showed better generalization 
performance over NMF for a data set of continuous view change of an image, with 
more robustly preserving the continuity of the view change in its object 
representation. Comparison of the outputs of our model with actual neural 
responses recorded in the IT indicates that the TNMF reconstructs the neuronal 
responses better than the SOM, giving plausibility to the parts-based learning of 
the model. 
 
 
1 Introduction 
 
In the ventral pathway of the primate visual cortex, object features are gradually 
extracted with increasing specificity and invariance by a network of cortical areas. The 
inferior temporal cortex (IT) subserves a critical component of visual processing of 
objects at later stages of this pathway (Mishkin, Ungerleider, & Macko, 1983; Gross, 
1994). How object images are represented in the IT has been investigated intensively 
with both theoretical and experimental approaches. Object representation in the IT has 
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been proposed to include two distinct properties. One is the parts-based representation 
in which objects are represented by combinations of redundant component features 
rather than by objects themselves or by fully distributed components like Fourier 
descriptors (Tanaka, Saito, Fukada, & Moriya, 1991; Fujita, Tanaka, Ito, & Cheng, 
1992). Optical imaging of neural population activity in the IT demonstrates that a single 
object elicits multiple patches of activity across cortex; these appear to represent 
component features of the object (Tsunoda, Yamane, Nishizaki, & Tanifuji, 2001). 
Another property is that parametrically related object features are orderly represented 
along the cortical surface within each cortical patch (Tanaka, 2003). When the image of 
an object, such as face, is systematically transformed (e.g., successively rotated in 
depth), activity spots gradually shift their positions on IT cortex (Wang, Tanifuji, & 
Tanaka, 1998). Although these two representation properties have important functional 
implications (Fujita, 2002; Tanaka, 2003), how they are established has not been 
determined. 

The self-organizing map (SOM) has been used widely to model the topographic 
organization of cortex (Kohonen, 1988; Durbin & Mitchison, 1990; Obermayer, Ritter, 
& Schulten, 1990; Swindale, 1991; Yu, Farley, Jin, & Sur, 2005). A SOM represents a 
high-dimensional input with a single point in a low-dimensional network that 
maximizes proximity relations between different inputs. If an input is parametrically 
changed, then the activity peak shifts in position. A SOM does not provide the property 
of parts-based representation because each of the mapped points reflects a holistic 
aspect of the input. 

In this study, we propose a learning model that explains both of the parts-based and 
topographic properties of IT. This model is based on a non-negative matrix factorization 
(NMF) basis-decomposition method (Lee & Seung, 1999). In general, basis 
decomposition methods derive basis functions and coefficients from input data, and 
reconstruct the inputs by weighted combinations of these basis functions. Principal 
component analysis (PCA), a standard basis decomposition method, maximizes this 
reconstruction and derives fully distributed representations. Vector quantization (VQ), 
another method for basis decomposition, imposes the constraint that each input is 
represented by only one basis function. While all basis functions and coefficients in 
PCA and all basis functions in VQ may take both positive and negative values, the NMF 
requires all entries to be non-negative. The NMF has been demonstrated to yield 
intuitive parts-based representations for non-negative data (Lee & Seung, 1999; 
Buchsbaum & Bloch, 2002; Xu, Liu, & Gong, 2003; Cho & Choi, 2005). 

Our model of topographic NMF (TNMF) extends the original NMF by introducing 



4 
 

neighborhood functions between NMF basis functions placed evenly in a 
low-dimensional space. With this extension, the non-negative constraint inherited from 
the NMF leads to an overlapping of basis functions along neighboring structures.  
Having been trained (i.e., having searched for the best set of basis functions and 
coefficients), a topographic organization or a map is formed of parts-based 
representation. Just as the SOM is a topographic extension of VQ, the TNMF is a 
topographic extension of the NMF.  

As a statistical model, this topographic extension involves the a priori assumption 
that latent features embedded in the inputs are smoothly distributed. Given this 
assumption, the TNMF can learn latent features that are not apparent in training inputs, 
by interpolation through topographic neighborhood cooperation. Especially, the TNMF 
can smoothly embed and interpolate values of a variable encoded in a group of neurons 
by a population coding (Pouget, Zemel, & Dayan, 2000), in which neural responses are 
correlated with a Gaussian function representing a value. We first demonstrate this 
generalizing  capability  of  the  TNMF  with  artificial  data  which  consisted  of  neural  
responses under a population coding.  

To show the TNMF properties as a cortical learning model, we then applied the 
TNMF to a hierarchical model of neural computation by the ventral pathway (Wersing 
& Körner, 2003). The hierarchical model extracts visual features with increasing 
specificity and invariance based on alternating feature detection and integration 
processes, as in the neocognitron (Fukushima, 1980) and the HMAX model 
(Riesenhuber & Poggio, 1999). Progressive processing is biologically plausible and can 
explain some aspects of neural responses in the ventral pathway (Serre, Kouh, Cadieu, 
Knoblich, Kreiman, & Poggio, 2005; Serre, 2006; Zoccolan, Kouh, Poggio, & DiCarlo, 
2007). In our model, the TNMF was used for training the highest layer of the hierarchy. 
The lower layers of the model are highly competitive with other current recognition 
algorithms (Wersing & Körner, 2003). We show that the hierarchical model with the 
TNMF captures the parts-based and topographic properties of object representation in 
IT. We first examine the topographic-induced generalizing capability of the TNMF for 
model responses to rotating views of an object. We then assessed the biological 
plausibility of this model at the single neuron level by comparing the model outputs 
with the responses of the monkey IT neurons we reported previously (Tamura, Kaneko, 
Kawasaki, & Fujita, 2004; Tamura, Kaneko, & Fujita, 2005). We also evaluated 
performance of models generated with SOM and the original NMF. 
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2 Methods 
 

2.1 Proposed Model. The original NMF approximates a non-negative input vector v 
by an additive combination of r non-negative basis vectors wa (a = 1, ...,r): 
 

Whwv r
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where h =  (h1,h2,...,hr)T is a non-negative coefficient vector. The input vector v is 
represented by the coefficient vector h via the basis matrix W = (w1,w2, ...,wr). During 
training, basis functions and coefficients are iteratively updated to minimize errors 
between inputs and approximations with non-negative constraints on all entries. 

The TNMF incorporates neighborhood connections between NMF basis functions 
arranged on a topographic map (see Figure 1): 
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where v, W, h are a non-negative input vector, a non-negative basis matrix, and a 
coefficient vector, respectively, as in the original NMF. The new term M =  (Mab)  is  a  
non-negative r×r dimensional matrix that defines neighborhood connections between r 
basis functions. Choosing M as the identity matrix reduces the TNMF to the NMF. We 
arranged basis functions on a two-dimensional square-lattice topographic map, and set 
neighborhood connection weights to be normal distribution (Gaussian) functions on the 
map: 
 

)2/exp( 22
baabM pp , 

 
where pa and pb are positions of basis functions ‘a’ and  ‘b’ on the map, respectively. 
The Gaussian radius  is a user-defined variable. In training, the neighborhood function 
M is fixed, while the basis W and coefficient h are updated to reconstruct the input v 
optimally under the non-negative constraint. 

The data approximation is achieved by maximizing the following objective 
function: 
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where V = (v1,v2, ...,vm) = (Vij) indicates m input vectors and H = (h1,h2, ...,hm) = (Hbj) 
indicates corresponding m coefficient vectors. The function F can be interpreted as a log 
likelihood in a model in which each input entry Vij is generated by adding Poisson noise 
to the approximation (WMH)ij (Lee & Seung, 1999). The maximization of F is achieved 
by the following multiplicative updates: 
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These updates monotonically maximize the function F along with satisfying the 
non-negative constraint (Lee & Seung, 2001). We also normalized the coefficient matrix 
H together with these updates:  
 

j bjbjbj HHH / . 

 
This normalization eliminates the indefiniteness of WMH under the transformation W 

 *W and H  H/ , where  is scalar. The algorithm reaches a local maximum in 
the objective function by repeating these updates, and it does not always attain the 
global maximum. Therefore, we employed an exhaustive search in which the most 
optimal solution is selected from sufficient multiple solutions starting from random 
initial conditions, and an annealing method in which the neighborhood radius  is 
narrowed with the number of iteration as in SOM algorithms (Kohonen, 1988). 
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Figure 1: A diagram of the proposed TNMF model where v indicates an input vector, W 
indicates basis functions, M indicates neighborhood functions, and h indicates a 
coefficient vector. Shading of nodes represents magnitudes of input and coefficient 
entries. All the entries are restricted to be non-negative. If M is the identity matrix, this 
model reduces to the original NMF. TNMF approximates v by WMH updating W and 
h. 
 
 

2.2 Hierarchical Visual Model. The  hierarchical  model  of  the  ventral  pathway  
comprises multiple layers. The proposed TNMF algorithm is used for training the 
highest layer (Figure 2). The lower layers S1, C1, S2, S3 perform processing of visual 
form starting from edge detection, which has been described in detail in Wersing and 
Körner (2003). In this model, the S and C layers are alternately structured (Fukushima, 
1980). The S layers increase specificity and the C layers increase invariance of input 
representations. 

First the image vector v is processed in the S1 layer that extracts edge components 
through Gabor filters of 4 orientations in the retinotopic coordinate: 
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where ql
(1)(x, y) is a neural response in the S1 layer, and wl

(1)(x, y) is a Gabor filter of the 
orientation l at the retinotopic position (x, y) vectorized in the same way as v. The ql

(1)(x, 
y) is then modified by winner-take-most competition, suppressing suboptimal responses, 
over all orientation preferences at the position (x, y): 
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where M =  max k (qk

(1)(x, y)  + (<<1)). The response is rectified by a threshold function 
with a threshold  which is common over the S1 layer:  
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where H(x) = 1 if x > 0 and H(x) = 0 else and sl

 (1) (x, y) is the final S1 response. 
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Figure 2: Architecture of the hierarchical model. In the form path, S and C layers are 
alternately structured. This feature increases specificity and invariance of input 
representations, respectively. The proposed TNMF was used for training the S3 layer. An 
additional luminance layer processes white and black images of lower-resolution. 
 
 

The  S1  outputs  are  then  pooled  over  a  range  of  the  retinotopic  coordinate  with  an  
OR-operation in the C1 layer: 
 

)).,(tanh(),( )1()1(
ll syxgyxc , 

 
where g(x, y) is a normalized Gaussian kernel with radius  that integrates a local array 
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of S1 outputs with the same orientation preference. The function tanh is the hyperbolic 
tangent sigmoid transfer function and implements a smooth spatial OR-operation by the 
saturating nonlinearity. S1 neurons respond selectively to edges at specific orientation 
and location, and C1 neurons respond selectively to edges with a specific orientation 
across a larger area of the visual field, as observed for single and complex cells in the 
primary visual cortex (V1), respectively (Hubel & Wiesel, 1962). 

Next the image signals are passed through the S2 and C2 layers. The S2 layer codes 
50 types of local image features wlk

(2)(x, y) (l = 1, .., 50; k = 1, …, 4) for each retinotopic 
position (x, y), such as corners and elongated edges. The 50 types of features are a 
product of sparse invariant basis decomposition (Wersing & Körner, 2003). Briefly, the 
“learning” by this layer is based on sets of C1 outputs within the 4×4 retinotopic patch 
across all four orientation preferences. The C1 data are approximated by weight-sharing 
basis functions representing the 50 types of features, allowing spatial shifts. The 
approximation is performed under a sparse and non-negative constraint that yields 
parts-based representations. The obtained basis functions represented more complex 
features than simple oriented edges. 

The S2 layer then combines C1 outputs within local retinotopic patches across all 
orientation preferences: 
 

)1()2()2( .),(),( k
k

lkl yxyxq cw . 

 
The S2 response ql

(2)(x, y) is again modified by the winner-take-most competition as in 
the S1 layer. The S2 outputs are then pooled over a range of the retinotopic coordinate 
with an OR-operation in the C2 layer in the same way as in the C1 layer. 

Model parameters such as the competition selectivity , threshold , and Gaussian 
radius  are optimized for an object recognition task (Wersing & Körner, 2003):  = 0.7, 
 = 0.3,  = 4.0 for the level 1 hierarchy (i.e., S1 and C1);  = 0.9,  = 1.0,  = 2.0 for 

the level 2 hierarchy. The retinotopic resolution is set to be 14×14 for the C1 layer and 
5×5 for the C2 layer, starting from 64×64 image pixels. 

Finally, the C2 outputs are fed into the S3 layer under the TNMF model. The outputs 
of the S3 layer are basis coefficients H.  In  the  experiment  in  Section  3.4,  S3  neurons  
were trained with an image set consisting of five views (0 , 15 , 30 , 45 , 60 ) of 50 
objects (Figure 3). While the C2 layer and below have topographic maps of a priori 
retinotopic coordinates (Figure 2), the S3 layer acquires a topographic map explicitly 
representing latent object transformation parameters in the image set. The number of 
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basis functions was 32×32, and the Gaussian radius  in the neighborhood function M 
was 1 (1/32 of map size). 

For comparison between the model output and biological data, we also incorporated 
an additional luminance-processing layer to the hierarchical model. Some IT neurons 
are less selective for shape but respond to many stimuli either darker or brighter than 
background (Ito, Fujita, Tamura, & Tanaka, 1994; Tamura, Kaneko, & Fujita, 2005). 
The aim of including the luminance layer is to alleviate the influence of such IT neurons 
on the evaluation of shape processing by the model. This layer codes luminance 
polarities (white and black) at each pixel on lower-resolution images: 
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where v’(x, y) indicates the intensity of the lower-resolution image at the position (x, y), 
and u1(x, y) and u2(x, y) represent respectively the whiteness and blackness of v’(x, y) in 
a graded manner. 
 
 

 
 
Figure 3: Examples of object images for consecutive views used to train the S3 layer. 
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2.3 Neuron Data. The neuron data for comparison with the results of our model 
were obtained from the experiments described in Tamura et al. (2004, 2005). Using a 
multi-probe electrode, extracellular spikes were recorded from neurons (n = 497) in the 
dorsal part of anterior IT (cytoarchitectonic area TE) of the right hemisphere of four 
anesthetized Japanese monkeys (Macaca fuscata). Neural responses to complex shapes 
were examined by using 64 visual stimuli (Figure 4). The stimuli were individually 
presented for one second at the center of the receptive field with 10 repetitions for each 
recording site. The response rate was calculated by computing the mean firing rate 
during stimulus presentation, subtracting the spontaneous firing rate, and truncating 
negative values. In this study, we only consider excitatory neural responses in 
comparison to non-negative model outputs. 
 
 

 
 

Figure 4: A set of 64 stimulus images used to examine responses of IT neurons (Tamura 
et al., 2004, 2005). 
 
 

2.4 Self-organizing Maps. The SOM was implemented with the following 
batch-learning algorithm (Kohonen, 1988): 
 

j j ajijajia MHVMHW )(/)( , 

 
where W =  (Wia), M =  (Mab), and H =  (Hbj) are basis functions arranged on a 

two-dimensional topographic map, neighborhood functions, and coefficients (map 
outputs), respectively, as in the TNMF. Unlike the TNMF, H is determined by a 
winner-take-all mechanism, and there is no non-negative constraint on W. We used the 
same Gaussian neighborhood function as in the TNMF analysis with an annealing 
method that gradually narrows neighborhood radius. The initial state was set to a 
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two-dimensional map obtained by PCA (Kohonen, 1988). After training, we further 
modified SOM outputs by convolving with neighborhood functions M (  = 1) to blur 
the all-or-nothing (0, 1) outputs along the map. 

 
2.5 Sparseness Measure. We measured the sparseness of the model representation. 

The sparseness of a data vector x with entries xi is defined as follows (Hoyer, 2004): 
 

1

/)||(
)(

2

n

xxn
sparseness i ii ix , 

 

where n is the dimensionality of x.  The sparseness ranges from 0 to 1.  The value zero 
means all entries of x are equal,  while the value one means only a single entry of x is 
non-zero and all the other entries are zeros like a winner-take-all representation. 
Intermediate values represent other cases between the two extremes. 
 
3 Results  
 

3.1 Basic Properties of TNMF. How do the added cooperation weights in the 
TNMF affect the representation and coding efficiency when compared to the NMF? 
Basically the added neighborhood cooperation induces a regularization condition for the 
set of learned basis functions. This regularization is useful, if the amount of training 
data is small compared to the latent data complexity. The summation of basis functions 
over local neighbors leads the network to form new basis functions that are 
superpositions of input vectors. Therefore, if this a priori assumption on the latent data 
structure is correct, the network can learn faster and better generalizable representations 
from less training data. 

We tested this prediction with a toy data set. We prepared input vectors each of 
which was generated by a Gaussian component underlying one dimensional space as in 
a population coding model (Pouget, Zemel, & Dayan, 2000). Specifically, 32 input 
neurons were arrayed on a line, and their activity distribution on the array formed a 
Gaussian hill with Poisson noise (Figure 5A): 

 

))2/()2/(exp( 22 ssqPoissonv ii , 
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where vi (i=1, …,32) is an activity of i-th input neuron placed at qi = (i/32) on the linear 
array. The function Poisson (*) returns a non-negative integer (count) under Poisson 
noise with mean * count. The variables  and s are the peak position and the radius of 
the Gaussian component respectively. The radius s was set to 1/16 (0.0625). The 
position  was random, but ranged in 0-0.4 and 0.6-1.0 for training data, and in 
0.45-0.55 for test data. Thus, the test data did not contain input patterns in the training 
data. 

The  TNMF  with  a  one-dimensional  map  and  the  NMF  were  first  applied  to  the  
training data (sample size = 400). The test data (sample size = 50) were then fed into the 
learned model and are reconstructed by the models. We evaluated similarity between the 
test inputs and their reconstructions by the TNMF or NMF model (1), based on 
Pearson’s correlation coefficient. 

We also evaluated similarity between Gaussian components of the test inputs and 
the reconstructions by the TNMF or NMF model (2), to show how the model learns the 
latent input structure. These evaluations were performed with changing the number of 
basis functions of each model.  

The results are summarized in Figure 5B. Clearly, the TNMF results surpassed the 
NMF results in certain optimal model sizes. Moreover, the TNMF model consistently 
gave better reconstructions for latent Gaussian components (2) than test inputs 
themselves (1), while the NMF model did not show such a generalizing capability. The 
reconstructions by the NMF were unstable. This is because the NMF model likely 
became trapped at a local optimum in an ill-posed problem (note that optimal solution is 
selected from same number of multiple solutions starting from random initial conditions 
for both TNMF and NMF). 

If TNMF basis functions appropriately capture latent features, their outputs will be 
sparser than when they do not (provided that the occurrence distribution of latent 
features is sparse. Figure 5C plots the sparseness (see Methods) of model outputs 
(vectorized H) to the test data against the number of basis functions. In almost every 
case, TNMF outputs are sparser than those of NMF for each number of basis functions. 

Figure 5D shows examples of learned basis functions (columns of WM) by the 
TNMF using 32 basis functions. Each basis function forms a Gaussian-like hill on the 
input array, and its peak position is smoothly changed with the map topography. More 
noteworthy is that the middle basis function on the map is elevated around 0.5 on the 
linear input array coordinate, the missing area of the Gaussian component in the training 
data. 

Although, in this toy problem, only a single Gaussian component appeared in each 
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input, the TNMF can learn proper latent features from training inputs, each of which is 
generated by multiple Gaussian components. The TNMF can represent such 
multi-peaked inputs by multi-peaked outputs on a map, while the SOM derives only 
single-peaked outputs.  
 

 

 
Figure 5: A toy experiment to illustrate the computational advantage of TNMF over 
NMF. (A) The left graph shows an example of input data. The input neurons are arrayed 
in a line and activated by a Gaussian component on the input array with Poisson noise. 
The position of the Gaussian component ranged in 0-0.4 and 0.6-1.0 for training data, 
and ranged in 0.45-0.55 for test data. The map architecture of the TNMF was one 
dimensional as in the right diagram. (B) The correlation between test inputs and their 
reconstructions by the TNMF or NMF model, as a function of the number of basis 
functions (1:TNMF, 1:NMF), and that of between the latent Gaussian components and 
the reconstructions (2:TNMF, 2:NMF). (C) The sparseness of model outputs (vectorized 
H) to test data. (D) Examples of learned basis functions (columns of WM) by the TNMF 
using 32 basis functions. Each plot shows weights of each basis function to input 
neurons, and these plots form a row in order of the one dimensional map topography of 
the TNMF. 
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3.2 TNMF for Rotating Views. We then examined the interpolation property in a 
situation similar to the toy experiment, except for using real object images. As an input 
data set, we prepared C2 outputs of the hierarchical model responding to successive 
views of an object (Figure 6A; 0 to 180 degrees with an interval of 5 degrees). We used 
the outputs for 0 to 80 degrees and those for 105 to 180 degrees as a training data set, 
and those for 85 to 100 degrees as a test data set. We then applied the TNMF and NMF 
to the training data to let them to learn basis functions, and to the test data to evaluate 
the reconstruction performance. We constructed the TNMF map topography to be a 
circular ring; we set positions of basis functions to be evenly arranged in the (0, 1) 
interval, and defined the distance between x and y in the interval as min(x-y, x-y-1, 
x-y+1). 

Figure 6A shows the input data (V=[Vtraining, Vtest])  and  reconstructions  (WMHtest) 
for  the  test  data  (Vtest) by the TNMF and NMF with 38 basis functions, visualized by 
principal component analysis (PCA). In this figure, the input data points are circularly 
distributed in the PC space as corresponding to the object rotation. Here, we only show 
the data points of model reconstruction for the test data set, since we see a nearly 
complete overlap for the training data set to the input in both models. The 
reconstruction  data  points  of  the  TNMF are  closer  to  the  target  points  of  the  test  data  
than those of the NMF. In this case, the mean of Pearson’s correlations between test 
input vectors and their reconstruction vectors was 0.893 for the TNMF and 0.866 for the 
NMF. The reconstruction data points of the NMF are distributed on the straight line 
joining points for views of 80 and 105 degrees at the ends of the view changes in the 
training  data.  On the  contrary,  the  TNMF reconstruction  points  run  out  of  the  straight  
line, but follows tangential lines around the view ends of the training data points, as 
with  the  test  data  points.  The  difference  suggests  that  while  the  NMF reconstructs  the  
test data by linear interpolation within the training data vectors, the TNMF reconstructs 
them with nontrivial features capturing non-linear continuity underlying the object 
images. 

Figure  6B  shows  the  mean  of  correlations  between  test  input  vectors  and  their  
reconstruction  vectors  of  the  TNMF  and  NMF  against  the  number  of  basis  functions.  
The mean correlations for the TNMF exceed those for the NMF when the number of 
basis functions was 15 or larger. This result is similar to the result for the population 
coded artificial dataset in that the TNMF shows better reconstructions in certain optimal 
model sizes, and further indicates that the unique interpolation property of the TNMF 
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also works in a realistic situation. Note that we choose the relative size of sigma in 
matrix M as inversely changing with the number of basis functions. The plot in Figure 
6B therefore demonstrates the dependency of the reconstruction error on the chosen 
value of . We also note that the NMF has smaller reconstruction errors than the TNMF 
for the number of basis function smaller than 15. This is because model parameters of 
the NMF have a larger degree of freedom than those of the TNMF under the same 
number of basis functions, and therefore shows only smaller reconstruction errors when 
the TNMF does not exhibit its distinctive characteristics. 

 
 

 

 
Figure 6: (A) A PCA visualization for C2 outputs responding to successive views of an 
object, and their reconstructions obtained by TNMF and NMF analyses for test data. 
The views in the 0-to-80 and 105-to-180 degrees were the training images. The views in 
the 85-to-100 degrees were the test images. The map of TNMF was constructed to form 
a circular ring. In the PC space, the C2 output vectors are represented by circular 
points connected with black thin lines where lines indicate view changes. The 
reconstruction vectors of the TNMF and NMF are represented by square points with 
black thick lines and triangle points with gray thick lines respectively. (B) Mean of 
correlations between the test data and their reconstructions of the TNMF (black) and 
NMF (gray) against the number of basis functions. 
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3.3 Evaluation of Topological Preservation. To evaluate the functional advantages of 
the unique interpolation property of TNMF over conventional NMF, we analyzed the 
degree of topological preservation for view angle parameters when model inputs are 
affected  by  noise  (see  below  for  details).  Specifically,  we  assessed  the  consistency  
between the order of view angles of input images and the spatial relations of the final 
output vectors. It is beneficial for higher layers to acquire object representations that 
best preserves view point topology.  

As in the previous analysis, the training images were views of an object chosen from 
0 to 80 and 105 to 180 degrees with an interval of 5 degrees. The test images were 
views of the same object in the 90 to 95 degrees with an interval of 1 degree (see Figure 
7A). Then, C2 outputs for the test images were modified by adding Poisson noise with 
the mean of 1 in a multiplicative fashion: 

)1(Poissonvv ii  
where vi is the response of an i-th C2 neuron, and v’i is the noise-added response.  

The TNMF and NMF models were trained based on the C2 outputs of the training 
images. Then, their performance of topological preservation was tested based on 
noise-added C2 outputs. The map topology of the TNMF was set to be circular as in the 
previous analysis.  

For each of the TNMF and NMF models, we matched a test output vector with other 
test output vectors. Specifically, the nearest test output vector with the minimum 
Euclidean distance was selected for each test output vector. If a view angle for a test 
output vector is adjacent to the view angle for the nearest one (e.g., 92 and 93 degrees), 
it means that the model preserves the view topology in its object representation. We 
refer  to  this  situation  as  "hit".  We calculated  the  hit  rate  by  100  repetitions  of  the  test  
phase generating the noise-added C2 outputs, and by 20 repetitions of the training phase 
changing the initial conditions of the learning model. 

The hit rate for each example object is plotted against the number of basis functions 
(Figure 7B). The peak hit rate of the TNMF significantly surpassed that of the NMF for 
the object 1, 2 and 3. The hit rates directly calculated on the noise-added C2 outputs for 
the object 1, 2 and 3 were 0.42, 0.38 and 0.52 respectively, all of which were lower than 
the peak hit rates for both TNMF and NMF. These results provide evidence that the 
TNMF can preserve the view topology more robustly than the NMF for simpler training 
conditions. 
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Figure 7: View angle topological preservation of the TNMF and the NMF models when 
inputs of the model are affected by noise. The map topology of the TNMF was set to be 
circular as in Figure 6. (A) Object images for training and testing the models (train: 0 
to 80 and 105 to 180 degrees with an interval of 5 degrees; test: 90 to 95 degrees with 
an interval of 1 degree). (B) The hit rate indicated by the vertical axes is a measure for 
a consistency between the order of view angles of input images and the spatial relations 
of final output vectors. The hit rate for each object is plotted against the number of basis 
functions, where the object is shown in the left side in the same row of the figure.  
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3.4 Response Properties of S3 Neurons.  Next,  we  applied  the  TNMF  with  a  
32×32 square map to the hierarchical model to train the highest layer (S3 layer). The 
image set for training the S3 layer consists of a set of 250 grey-level photographs (50 
objects × 5 views, see Figure 3 for example images). Figure 8A-F shows the map of the 
S3 layer responses (rows of H) to images of three objects, each successively rotated in 
depth.  Spots  of  different  colors  indicate  the  location  of  the  strongest  responses  to  five  
viewing angles of each object (upper photographs) underlined by bars with the 
corresponding colors. The distribution of response peaks exhibits several conspicuous 
features. Each object image elicits multiple, spatially separate, peaks of activity. 
Response peaks to one view often abut response peaks to other views. Thus, an object 
with various viewing angles elicits activity in clustered patches. Importantly, activity 
peaks continuously shift their position within many of these patches (e.g., regions 
indicated  by  arrows)  as  objects  are  rotated  in  depth.  For  example  in  Figure  8A-D,  the  
cup elicits two gradually shifted patches, the duck elicits one largely changing patch, 
and the car and the animal elicit several continuously changing patches with different 
robustness. Other patches do not show this gradual shift or comprise responses to only 
one or two views.  

Each response peak appears to represent a component feature or a part of the image. 
For example, region 1 was activated by three different views of a cup with an elaborate 
surface pattern (Figure 8A). These responses disappeared when stimuli were switched to 
images of a cup with nearly the same shape but a much simpler surface pattern (Figure 
8E, dashed circle). We conclude from these results that the responses at region 1 are 
evoked by the texture pattern on the surface of the cup shown in A. Similarly, masking 
the left half of the images in Figure 8A eliminated the activities at region 2 evoked by 
the entire image of the cup (Figure 8F, dashed circle). Even if images of the entire cup 
were provided to the model, region 2 did not respond when the cup was rotated and the 
handle  was  occluded;  the  patch  at  region  2  consists  of  yellow,  orange,  and  pink,  but  
lacks purple and indigo (Figure 8A, D). Therefore, activity at region 2 is evoked by the 
handle of the cup. 
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Figure 8: Object representations (H) in the S3 layer trained with the TNMF. Active 
neurons defined by a common threshold are colored for a corresponding trigger image, 
but only for the highest activation. If the presented image is changed along the arrow in 
the top of A or B, some active spots (e.g., regions indicated by arrows) continuously 
shift their position along the arrows in the map. These results reflect the parts-based 
and topographic properties of the map. 
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We then quantitatively evaluated how the active patches are distributed. First, we 
computed positions of activity peaks for each map response (each row of H). A peak is 
defined by the maximal element that locally dominates its surroundings, where we only 
select local maxima, that are larger than 1/10 of the overall global maximum. Figure 9A 
shows the histogram of the number of peaks for each map response. This figure 
indicates that about three peaks on average are invoked by a stimulus under a 
Poisson-like distribution. 

Next, we evaluated how far the response peaks continuously shift their position as 
objects are rotated. First, we chose a set of stimulus pairs, where each pair consists of 
views  of  an  object  being  different  by   degree.  Then  for  each  stimulus  pair,  the  
minimum distance was measured between each peak responding to one view and peaks 
responding to another view. Figure 9B shows the distributions of the minimum peak 
distance for each set of stimulus pairs whose angle distance ( ) is 15°, 30°, 45°, or 60° 
(solid, dash, dot-dash, or dot lines respectively), and for other random stimulus pairs 
(thick solid line). As can be seen, the peak distance distribution gradually shifts with the 
angle distance for stimulus pairs. Note that the distance distribution for random pairs 
also  has  a  tendency  to  shift  toward  considerably  shorter  distance.  This  is  because  we  
used object sets each of which consists of similar objects, for obtaining the stimulus 
images. These results reveal that certain number of activity peaks continuously shift 
their position with object rotation. 

 

 
 

Figure 9: (A) The histogram of the number of peaks for each map response (each row of 
H). (B) The distributions of the minimum peak distance for each set of stimulus pairs 
whose view angle distance is d , and for other random stimulus pairs. The minimum 
peak distance is defined for each stimulus pair as a minimum distance between each 
peak responding to one view and peaks responding to another view. 
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3.5 Basis Functions of S3 Neurons. The  response  map  in  the  S3  layer  is  
parts-based and locally topographic in a similar fashion as in IT cortex. When we look 
at the structure of the S3 basis functions convolved with neighborhood functions 
(columns of WM) (Figure 10), adjacent S3 neurons have similar connection weights to 
C2  neurons  (r =  0.89  ±  0.04  for  all  adjacent  pairs,  and  r =  0.15  ±  0.15  for  all  pairs),  
indicating continuous encoding. For each S3 neuron, each of 5×10 arrays in Figure 10, 
where C2 neurons with same feature type are arranged on the retinotopic location of 
their receptive fields, connection weights are spatially localized. Therefore, S3 neurons 
code spatially localized object features, not a holistic pattern of objects. Moreover, 
connection weights to C2 neurons were spread over a wide area of the 5×10 arrays, 
consistent with S3 neurons building more complex features than C2 neurons. 
 

Connection weights 
to C2 layer 

S3 layer

Adjacent
neurons

Connection weights 
to C2 layer 

S3 layer

Adjacent
neurons

 

 
Figure 10: Connection weights of example adjacent S3 neurons to C2 layer (columns of 
WM). For each S3 neuron, each of 5×10 arrays represents connection weights to C2 
neurons that code each of 50 feature types. The coordinate within each array 
corresponds to the retinotopy of receptive fields of C2 neurons. Brighter entries indicate 
stronger magnitudes of the connection weights. 
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3.6 Sparseness of S3 Representation. The original NMF has an ability to derive a 
localized or sparse representation. However, the NMF sometimes derives more global 
representation than desirable, and some extended models had been proposed to impose 
explicit  sparseness  constraints  on  the  NMF  (Li,  Hou,  Zhang,  &  Cheng,  2001;  Hoyer,  
2004; Heiler, & Schn rr, 2006). To  clarify  if  additional  sparsity  constraints  could  be  
beneficial for our TNMF setting, we measured the sparseness (see Methods) of the 
obtained map components.  

In the study by Hoyer (2004), the sparseness of each row of H or each column of W 
was fixed to 0.75-0.85 for yielding a local representation. In Heiler et al. (2006), the 
sparseness was imposed to be greater than 0.6 for a strong sparseness constraint. In our 
experiments, the sparseness of each column of H was 0.84 ± 0.07, and the sparseness of 
each row of WM was 0.68 ± 0.07 (The basis functions in Figure 10 show 0.83, 0.79, 
and 0.74 sparseness in order, from the top). So, at least in our dataset, the TNMF can 
derive a comparatively sufficient sparse representation.  
 

3.7 Comparison with IT neurons. In order to examine the biological plausibility of 
the TNMF learning and the hierarchical model, we compared neuronal responses 
predicted by the model with those of monkey IT neurons to the 64 object images shown 
in  Figure  4.  Importantly,  the  test  figures  used  for  IT  neurons  (Figure  4)  were  not  
presented to the model during training.  

For  each  IT  neuron,  we  selected  a  model  neuron  from each  layer  (C1,  C2 and  S3)  
that has the most similar stimulus selectivity: 
 

)),(cor(maxarg),(Best )IT( X
ji

j
Xi zz , 

 
where Best(i,X) is the index of the best-fit model neuron in the layer X to  the  i-th IT 
neuron, and the vectors of zi

(IT) and zj
(X) are, respectively, response patterns of the i-th IT 

and the j-th model neuron to the 64 images. The function cor(*,*) calculates the 
Pearson’s correlation coefficient. For convenience we define the “best-fit correlation” 
for each IT neuron: 
 

),(cor),(BestCor ),(Best
)IT( X

XiiXi zz . 
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Figure 11A-D show four examples of IT neurons, with their most similar 

counterparts  in  the  C1,  C2,  and  S3  layers.  In  the  examples  A  and  B,  the  S3  model  
neurons  display  more  similar  selectivity  to  the  IT  neurons  than  the  C2  and  C1  model  
neurons, showing more specific selectivity to star shapes (A) or concentric circles (B). 
In  the  example  C,  both  S3  and  C2  neurons  show  selectivity  similar  to  that  of  the  IT  
neuron  preferring  shapes  with  vertical  or  horizontal  lines,  while  the  best-fitting  C1  
shows poor similarity. In the example D, all S3, C2 and C1 neuron respond selectively 
to  shapes  with  a  small  protrusion  and  a  base  as  a  target  IT  neuron.  This  example  also  
implies that the higher layers still preserve resolution of coded features despite the 
increasing of receptive field size. Figure 11 E and F show luminance-contrast selective 
IT neurons, with the most similar counterparts in the luminance layer (see Methods). 
Although the luminance layer is strongly simplified, the luminance layer provides better 
reconstruction to the luminance-contrast selective IT neurons than other shape selective 
layers.   

 

 

 
Figure 11: Examples of selected model neurons of each layer (A-D: from the C1, C2 
and S3 layers; E-F: from the Luminance layer) displaying the most similar stimulus 
selectivity to the IT neurons. Each image sequence indicates the selectivity pattern of 
each neuron where image size indicates the response magnitude normalized by the 
maximum and ordered descending. 



26 
 

We then measured how well the model neurons in different layers reconstruct the 
stimulus selectivity of IT neurons. The best-fit correlation coefficient used to select the 
best model neurons is not an appropriate index for comparing different layers, because 
the response variability across neurons may differ among the model layers. For example, 
even in cases where model neurons randomly respond to stimuli, if the number of such 
neurons increases, the best-fit correlation will stochastically increase. 

We therefore computed a probabilistic index that measures, for each IT neuron (i), 
the probability of obtaining the best-fit correlation of each target layer (X) or higher 
from that layer with a random stimulus-permutation (Xpermute):   
 

  ]),(BestCorPr[
1

),(BestCor

permute drrXiP
Xi

i , 

 
where Pr[*] is the occurrence probability of an event *. Random stimulus permutation 
was performed by shuffling the stimulus order of the original model responses. Stimulus 
permutation was applied at the layer level, rather than the single neuron level, because 
the latter increases the response variability of the model layer.  

Such surrogate layers were generated through many repetitions, and the probabilistic 
index was calculated as the percentile of the original best-fit correlation for a set of 
surrogate best-fit correlations to each IT neuron. A lower probabilistic index indicates a 
better  reconstruction  of  responses  of  an  IT  neuron.  For  a  population  comparison,  we  
defined  whether  the  IT  neuron  was  reconstructed  to  an  arbitrary  threshold  level  of  the  
probabilistic index. We then counted the number of IT neurons out of 497 IT neurons 
that met two thresholds, 0.1 (strict threshold) and 0.2 (moderate threshold) of the 
probabilistic index. The higher the number, the more similar object representation of the 
model layer is to that of IT cortex. Although the evaluation depends on the threshold, it 
is sufficient and critical to select an appropriate threshold which yields most dissociable 
results between different target layers. 

Figure 12 shows the number of well-reconstructed neurons for different model 
layers.  First,  we  evaluated  a  random  layer  that  is  a  set  of  IT  neural  responses  with  
random stimulus-permutation. The performance of the random layer was worse than the 
other layers with preserved stimulus information. The number for the luminance layer 
(see Methods) was much higher than that for the random layer, but lower than that for 
the other layers described below. The C1, C2 and S3 layers were evaluated with 
incorporating neurons of the luminance layer. This feature alleviates the influence of 
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luminance-contrast selective IT neurons on the evaluation of shape processing. If an IT 
neuron exhibits strong selectivity for luminance, the best-fit model neuron was selected 
from the luminance layer. The number of IT neurons reconstructed by the C2 layer was 
significantly higher than that by the C1 layer under the strict threshold (Figure 12a) (p < 
0.05, binomial test). The S3 layer trained by the TNMF exhibited a significantly higher 
reconstructed number than the C2 score under the moderate threshold (Figure 12b) (p < 
0.05, binomial test). Thus, higher layers performed better in reconstructing responses of 
IT neurons than lower layers.  

Last, we compared the performance of SOM and NMF for training the S3 layer with 
the  performance  of  the  TNMF (see  Figure  12,  two bottom bars).  The  number  of  basis  
functions  for  the  TNMF,  SOM or  NMF analysis  was  chosen  to  have  an  optimal  score  
(TNMF: 32×32, SOM: 24×24, NMF: 1000). Although no significant difference was 
found between the TNMF- and the NMF-trained layers in this evaluation, the 
SOM-trained layer displayed a considerably lower number of well-reconstructed 
neurons than the layers trained by the TNMF or the NMF under both strict and 
moderate threshold (p < 0.01: binomial test). The results indicate the significance of the 
parts-based property for a biologically plausible model.  
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Figure 12: The number of neurons among 497 IT neurons that are well-reconstructed 
by each model layer with criteria of strict and moderate thresholds of a probabilistic 
index that measures the degree of the reconstruction for each IT neuron. The gray and 
white bars are the number of well-reconstructed neurons assessed with strict and 
moderate thresholds, respectively. Error bars indicate the standard deviation based on 
population proportion. Double-headed arrows indicate significant difference between 
the pointed values (p < 0.05; binomial test). 
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4 Discussion 
 

In  this  study,  we  propose  a  learning  model,  TNMF,  that  accounts  for  both  the  
parts-based representation and the locally topographic organization of IT in a unified 
framework. The initial analysis showed the generalizing capability of the TNMF 
relevant to the topographic extension. Next, we constructed a multi-layer model for 
visual processing in the ventral pathway, and applied the TNMF to training of the 
highest layer. The generalizing capability of the TNMF with topographic-induced 
non-linear interpolation was also confirmed based on hierarchical model responses 
expressing continuous change of an image. Especially, we showed that the TNMF can 
generalize objects with more robust topological preservation for a view angle parameter 
than  the  NMF.  We  then  showed  that  the  TNMF  qualitatively  captures  the  parts-based  
and topographic properties. Comparison of model neurons with IT neurons at the single 
neuron level revealed that the higher layers in the model contain more neurons with 
similar stimulus selectivity to IT neurons than the lower layers. In the highest layer, S3, 
the TNMF and NMF trained the model neurons to be similar to IT neurons equally well, 
whereas no positive effect was found with SOM training, indicating the significance of 
the parts-based representation. 
 

4.1 Structural Features of TNMF. The TNMF is a generative model. A generative 
model is based on an assumption that observed inputs are generated from a latent 
structure with noise, and refines the approximation of the latent structure to better 
represent  the  inputs.  The  TNMF as  well  as  the  NMF assume that  observed  inputs  are  
generated by combinations of parts-based elements with noise. An important component 
in generative models is backward signals used for calculating differences or errors 
between the actual and reconstructed inputs. In the cortex, forward and backward 
processing can be performed by interactions between cortical regions and/or between 
layers. Rao and Ballard (1999) have designed a generative model assuming cortical 
inter-layer interactions. In the TNMF learning rule, there is also an operation that 
measures errors between inputs and reconstructions: (Vij/(WMH)ij).  If  the  brain  uses  a  
learning rule similar to the TNMF, the activity of input neuron i (Vij) might be 
suppressed by the activities of output neurons (H) via the internal networks (the i-th row 
of WM) in a multiplicative fashion to calculate residual errors. 

A principal feature of the TNMF is the non-negative constraint. In the original NMF, 
the non-negative constraint prevents mutual cancellation between basis functions, and 
yields parts-based representations (Lee & Seung, 1999). The non-negative constraint is 
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also critical in the TNMF. If the non-negative constraint is not present, the optimal basis 
functions for the TNMF objective function (V  WMH) is W’M-1 where W’ are the 
optimal basis functions for the objective function without the neighborhood functions M 
(V  WH). This circumstance means that basis functions W negate the learning effect 
of the neighborhood functions M, while preserving the degree of freedom in the data 
reconstruction.  

Non-negativity of the NMF has been related to the network properties such as firing 
rate representation and signed synaptic weight (Lee & Seung, 1999). However, one 
might argue that there are ubiquitous inhibitory interactions in cortex, which could be 
modeled as negative entries in the basis W. The NMF and TNMF algorithms provide an 
alternative hypothesis that inhibitory interactions play a role in performing division 
processes in the iterative dynamics, while non-negative synaptic weights build the basis 
W. Specifically, the division processes can be found in the operation that calculate 
residual errors (Rij=Vij/(WMH)ij), and in the subsequent competitive normalization 

j(MH) aj*Rij / j(MH)aj) for updating W, and that for updating H.   
Another important component of the TNMF is the set of neighborhood functions M. 

An equivalent of the neighborhood functions in the brain might be intra-area horizontal 
connections within cortex. Cortical horizontal connections include local recurrent axons 
forming a dense halo around the origin and long-range horizontal axons with patchy 
terminal arborization (for IT, see Fujita & Fujita, 1996; Tanigawa, Wang, & Fujita, 
2005). The neighborhood functions of the model may be more closely related to local 
recurrent axons because these axons project in a radially symmetric fashion, similar to 
the circular neighborhood functions in the TNMF. Long-range horizontal axons might 
contribute to other functional roles in visual processing, although the rule that dictates 
their highly irregular, seemingly specific, connections is still unknown (Fujita, 2002). 
The range of local recurrent axons is larger in IT than in V1 (Tanigawa, Wang, & Fujita, 
2005). In the TNMF, the range of neighborhood functions ( ) controls the continuity 
and resolution of features over the map. If inputs deviate or are more sparsely 
distributed from their latent continuous structure, it is better to use a larger 
neighborhood range for accurately capturing the latent continuous structure. Therefore, 
the range of local recurrent axons in each cortical region may be correlated with the 
intrinsic difficulty of extracting the latent continuous structure of the underlying inputs. 
 

4.2 Topographic Representations by Other Learning Models. In  addition  to  
TNMF, computational models have been proposed to derive distributed input 
representations with a topographic organization. Among them is a topographic 
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extension of Independent Component Analysis (ICA) (Hyvärinen & Hoyer, 2001). The 
classic ICA approximates input signals by linear combinations of signal components 
that are independent of each other. The topographic ICA relaxes the assumption of the 
independence among components, and instead assumes that components from adjacent 
basis functions on a topographic map are dependent on each other under the 
second-order correlation (correlation on squared components). However, this model still 
imposes a strong assumption that there should be no first-order correlation between 
components (normal correlation). This is not the case for IT neurons that display a 
modest degree of first-order correlation between neighboring neurons (Fujita, Tanaka, 
Ito, & Cheng, 1992; Gawne & Richmond, 1993; Gochin, Colombo, Dorfman, Gerstein, 
& Gross, 1994; Wang, Fujita, & Murayama, 2000; Tamura, Kaneko, & Fujita, 2005). 
Another model is a multi-winner SOM (Schulz & Reggia, 2004, 2005) that narrows the 
competition range in the SOM. In this model, a region within a competition range has 
approximately one active peak (winner neuron) regardless of inputs, and thus the total 
number of active peaks on the topographic map is almost constant across inputs. 
However,  optical  imaging  of  activity  in  IT  reveals  that  the  number  of  active  cortical  
patches increases with the complexity of the presented stimulus (Tsunoda, Yamane, 
Nishizaki, & Tanifuji, 2001). 

Experimental evidence for locally continuous representation in IT is available only 
for face-responding columns (Wang, Tanifuji, & Tanaka, 1998). Given this paucity of 
evidence, Wada and his colleagues (2004) view IT as organized in a globally continuous 
and locally distributed manner. They proposed an extension of the SOM, and explained 
the patchy organization and the positive but low first-order correlation between 
neighboring IT neurons. However, because the model did not consider the parts-based 
representation of objects, activated neurons were restricted to a single columnar region. 

 
4.3 Role of Topographic Organization. The topographic organization of cortex 

may reflect the minimization of wiring length in cortical networks (Hubel & Wiesel, 
1963; Koulakov & Chklovskii, 2001). Does the topographic organization play any 
computational or functional role beyond this reason for wiring economy? One possible 
role would be to allow a population decoding along a topographic map and handle 
non-negative responses on the map in a population-coding framework (Pouget, Zemel, 
& Dayan, 2000). In particular, pooling neural responses along a topographic map and 
estimating the response peak on the map with interpolation would provide more reliable 
input information than the activity of single neurons. This estimation requires a 
population-coding framework that permits multiple response peaks (Zemel, Dayan, & 
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Pouget, 1998; Pasupathy & Connor, 2002; Sahani & Dayan, 2003). Another possible 
role would be that non-negative responses on the topographic map can be pooled along 
the map with an OR-operation to yield higher response invariance, as in the C1 and C2 
layers. For example, the S3 layer trained by the TNMF can be naturally extended to 
include a “C3” layer in which neurons will show more view-invariant responses. These 
post-processing functions cannot be naturally established without topographically 
organized representations, or on representations with negative values. 
 

4.4 Biological Plausibility. Model neurons generated by the SOM poorly 
reproduced the response properties of IT neurons. Their performance was worse than 
model  neurons  generated  with  the  NMF and the  C1,  C2,  S3  layers  of  the  TNMF (see  
Figure 12). A possible reason for this is that features emerging with the SOM were 
holistic patterns specialized for individual training images. In contrast, most IT neurons 
respond to partial features of input images (Tanaka, Saito, Fukada, & Moriya, 1991). 
The  S3  layer  trained  with  the  TNMF  and  the  NMF  parallels  IT  neuronal  responses  
better than the C1 and C2 layers. Thus, the TNMF and the NMF generate generalized 
higher-level parts-based features in a similar way as individual IT neurons encode 
object features. Theoretically, the features emerging with the TNMF are different from 
those with the NMF in that the TNMF considers the continuity of the learnt features 
over the map, and extracts the latent continuous structure underlying training inputs in 
an interpolating manner. No significant difference was found just for the comparison in 
Figure 12. There is still the strong difference with regard to topography and population 
coding. Further studies will be required for a more sensitive evaluation of the 
continuous interpolation in TNMF learning. 

In conclusion, we propose a new learning rule that can successfully capture two 
features of the higher object representation in primate visual cortex, parts-based 
representation and locally topographic organization. 
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