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Abstract— We introduce a greedy algorithm that works
from coarse to fine by iteratively applying localized principal
component analysis (PCA). The decision where and when to
split or add new components is based on two antagonistic
criteria. Firstly, the well known quadratic reconstruction error
and secondly a measure for the homogeneity of the distribution.
For the latter criterion, which we call “generation error”,
we compared two different possible methods to assess if the
data samples are distributed homogeneously. The proposed
algorithm does not involve a costly multi-objective optimization
to find a partition of the inputs. Further, the final number of
local PCA units, as well as their individual dimensionality need
not to be predefined. We demonstrate that the method can
flexibly react to different intrinsic dimensionalities of the data.

I. INTRODUCTION

Many problems in machine learning are related to finding
the low-dimensional manifold which is spanned by the data
samples. Psychophysical and biological findings suggest that
perceptual discrimination among other tasks are performed
on a low-dimensional representation of the sensory inputs
[2]. One family of methods – the vector quantization (VQ)
approaches – aim to approximate the density by positioning
point-like representatives in regions of high density, like the
Growing Neural Gas (GNG) by [5]. An important extension
is to build a lower dimensional map, that represents the
neighborhood relation of the representatives on the manifold.
The self organizing map (SOM)[4], and local linear em-
bedding (LLE)[9] are examples of that latter kind. Another
family replaces the point-like elements by local principal
component analysis (PCA)[3] that represents directions of
high variance in the data. The benefit is that more sample
points can be described by a few parameters (the position
on the local PCA-coordinate systems) instead of filling a
hyper-volume with increasingly many representative points.
However, when going from point-like representatives to local
coordinate systems some additional problems are introduced.
One difficulty is that the dimensionality of the local-PCA
often must be equal for all elements and it is difficult to
estimate a fixed number of dimensions that matches the
intrinsic dimensionality of the data well. There are esti-
mation techniques[1] that can address the overall intrinsic
dimensionality, but not all manifolds show consistently the
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Fig. 1. Iterative refinement. These plots show the progression of our
algorithm (with the generation error as defined in equation 4), until the
error thresholds are met. 200 data samples are drawn from a noisy-”S”
distribution. The first principal component is drawn as an arrow and the
second (if available) as a line, which crosses the principal one. For this
example the iteration stops at step nine. The threshold for the reconstruction
error tR for each element is set to 2.0 and the threshold for the generation
error tG is 0.8. Starting from a global view (top-left), the points are seen as a
two-dimensional area in step two (top-middle), towards a successively more
structured “chaining” of several one-dimensional localized elements. In each
image, one of the PCA-elements is printed in bold and the reconstruction
error ER and the generation error EG for that highlighted component are
noted above each plot (R=̂ER and G=̂EG). For example, in the fifth
step, the generation error is quite low (G=0.3), but the reconstruction error
(R=6.1) is still higher than the threshold of 2.0. This leads to increasing the
dimension of that local-PCA element in step six, where the reconstruction
error falls to zero, but the generation error actually increases (G=1.2).

same local dimensionality and it is likely to observe areas of
different local dimensionality in real world data.

Another common difficulty of local PCA methods is that
the partition of the input space into separated areas is
decoupled from the PCA computation and several approaches
have been suggested to optimize both at the same time; the
partition and the error introduced by projecting the data on
the principal components [6], [7].

In this manuscript we present a new greedy approach to
the family of local PCA methods. Our algorithm circumvents
both before-mentioned difficulties by using two opposing
“forces”: A local squared reconstruction error and a measure



Fig. 2. Left: Generation of an axis for a localized coordinate system.
On the given a number of samples ~xj ∈ X , a PCA is is computed. The
principal eigenvector is ~wk1 and the line extends from the minimum to the
maximum of the projections onto that direction.
Right: When is a line a sufficiently good approximation? For the cases
(i) and (ii) we may find that the points are represented quite well. For
the pictures (iii) and (iv), there may be more “structure” in the data than
captured by a single line segment or an additional representation dimension
(iv). From the viewpoint of the generation error, however, only (ii) may be
appropriately generated from the model.

for the homogeneity. It is well known that the principal
component analysis minimizes the squared reconstruction
error. By increasing the number of principal components,
the reconstruction error (often dramatically) drops. In the
extreme, the number of components is equal to the number
of dimensions of the input space.

An appropriate description of a data manifold should
incorporate the idea of a generative model in the sense that
new samples, which can be generated by choosing arbitrary
positions in the space, spanned by the coordinate system of
a local PCA, are located in the vicinity of the manifold. We
call the error of generating samples that do not belong (or
are not close to) the underlying data manifold “generation
error”. Clearly, a good approximation to a given data-set
should possess a small reconstruction error and – at the same
time – a small generation error. It is not at all obvious how to
assess the generation error of the space spanned by a local
PCA and therefore we tested and compared two possible
alternative candidates. One measure we studied, uses the chi-
square-test to check whether the empirical (local) distribution
of training data can be considered to stem from a uniform
distribution[8]. The alternative – which, interestingly, is
much better suited – simply measures the gradient of the
empirical distribution from the axes of the local coordinate
system “outwards” to the regions “far” from the axes. The
latter measure assumes a centered distribution density with
a falling density towards the borders of the local region.
Certain distributions with non-homogeneous densities, for
example a ring-like structure, are typical cases where the
PCA – in its nature of a linear method – fails to capture the
essence of the data. On these distributions, the gradient from
the center of the PCA coordinate axes is not monotonously
falling.

II. MODEL

The fundamental assumption in the proposed method is
that most samples lie close to a lower-dimensional manifold,
which is embedded in the input space and only few (or

no) samples lie far off. Therefore, the coordinate systems –
defined by local-PCA – should lie in or along local maxima
of the empirical density. Based on the reconstruction error
and the generation error, we iteratively and strictly locally
decide whether to increase the dimensionality or break up a
local region into two parts. For each of the sub-regions, the
algorithm is applied anew.

A. Local PCA coordinate systems

We describe a local-PCA unit on the subset Xk of all input
samples I with Xk ⊂ I ⊂ Rn and N(Xk) elements by the
tuple

Ak = {~µk, dk,Wk,Λk}

where k is the index of the local-PCA unit. The vector ~µk

describes the center of the PCA and the number dk ∈ N
represents the dimensionality of the PCA. The n×dk Matrix
Wk encodes the first dk principal eigenvectors ~wkl (of the
data-points in the set Xk) in its columns l = 1, ...dk. The
dk×dk diagonal matrix Λk contains the corresponding eigen-
values λk1, ..., λkdk

. The computation of the dk principal
components of Xk is denoted by PCA(dk, Xk) and yields
such a tuple Ak. A point from the set Xk is written as ~xj .

We describe the l-th axis l ∈ {1, ..., dk} of the local
coordinate system by a starting-point ~akl and an end-point
~bkl. The projection onto an axis is written as

Pkl(~xj) = 〈~xj − ~µk, ~wkl〉

where 〈·, ·〉 denotes the scalar product. For the given samples
~xj ∈ Xk, the axis extends from the minimum to the
maximum in the direction of the l-th principal component
(See Figure 2).

~akl = ~µk + ~wkl min
j

(Pkl(~xj))

~bkl = ~µk + ~wkl max
j

(Pkl(~xj))

An input ~xj is reconstructed by ~pkj with1

~pkj = ~µk +
dk∑
l=1

~wklPkl(~xj) (1)

in the coordinates of the whole input space.

B. Overall algorithm

The main iteration, to find a partition of the input space,
as well as the dimensionality and the number of local
PCA units, is described by the pseudo-code in algorithm 1,
where ER(·) and EG(·) are the two different error measures,
described in section II-C and II-D. For each unit Ak, the
errors ER(Ak) and EG(Ak) must fall below the thresholds
tR and tG respectively for the algorithm to stop. The function
Split(Ak) returns two new tuples {Ap, Aq} and thereby
implicitly partitions the set Xk into two subsets Xp and Xq

as described in section II-E.

1In order to keep ~pkj between ~akl and ~bkl for all l, an additional clipping
operation is performed if ~pkj would exceed the ends of one axis.



Algorithm 1 Greedy iteration.
X0 ← I
A0 ← PCA(1, X0)
K ← {A0} # K is a set
finished ← False
while not finished:

finished ← True
For each Ak in K:

L← {} # empty set
If ER(Ak) > tE:

L← L ∪ {PCA(dk + 1, Xk)}
finished ← False

Else if EG(Ak) > tG:
L← L ∪ Split(Ak)
finished ← False

Else:
L← L ∪ {Ak}

K ← L

The iteration runs until no Ak is changed any more and can
be summarized by: “Increasing the dimensions of the local
PCA units until the reconstruction error is small enough,
and then, if the generation error is too high, splitting it
into two one-dimensional local-PCA to start over again with
increasing the dimensions.”

C. Reconstruction Error

The reconstruction error ER(Ak) on the k-th unit is
measured on the samples ~xj ∈ Xk that belong to Ak, with
N(Xk) denoting the number of samples:

ER(Ak) =
N(Xk)∑

j=1

‖~xj − ~pkj‖2

N(Xk)

Obviously, with an increasing number of dimensions dk, this
error gets smaller and eventually reaches zero. So, whenever
the reconstruction error for an Ak is above the target tR,
increasing the number of dimensions is a reasonable choice.

D. Generation Error

As explained in the introduction, the choice of the gener-
ation error is not a priori clear. We studied two alternatives:

For the first candidate to measure the generation error ẼG,
we assume that the the density of the line, rectangle, cuboid
or hyper-cuboid that is covered by the axes of a local-PCA
unit Ak can be considered as a uniform distribution. We use
the chi-square test [8] to get an approximate measure, how
large the empirical distribution deviates from a uniform dis-
tribution. A dk-dimensional grid Gk is computed to represent
the empirical density by adding +1 into the closest bin for
each sample ~xk . The grid has h bins in each dimension, that
is hdk bins in total (Figure 3). The one-dimensional helper
function for the binning is named binkl(·) and it returns
the index of a bin along the l-th axis Ak. The number of
categories for the test is the total number of bins hdk . For
reasons of simplicity, we write Gi

k to denote the value of the

Fig. 3. Illustration of the histogram over the distances for each axis. For
each axis 1, ..., l, ..., dk a two-dimensional histogram is computed with h
times h bins. This histogram is always two-dimensional and does notchange
with the dimensionality of the input space. One can think of this as rotating a
grid around an axis l and each input (star-symbol) is put in the corresponding
bin (i, s). The functions fkli describe the i-th column of the histogram and
Hkl(i) (See equation 3) sums over the differences along the i-th column.

i-th bin just as if we would iterate over a all hdk bins as a
flat list, no matter of the number of axes.

ẼG = χ2 =
hdk∑
i=0

(
Gi

k −
N(Xk)

hdk

)2

N(Xk)

hdk

(2)

The second candidate for EG implies a much weaker
assumption by looking only at the distances of the data
points towards an axis. In contrast to the dk dimensional
grid, we compute a two-dimensional histogram for each
axis as illustrated in figure 3. If the histogram over the
distances increases, it means that more samples are far away
than near the axis. In other words, if the axis is positioned
approximately in or along an area of local maximal density,
the histogram decreases. For each axis l ∈ {1, ..., dk}, we
measure the distances of the reconstructed sample ~pkj to
the corresponding point ~pkjl projected only onto the l-th
axis. Therefore, we first define a one-dimensional histogram
for the distances with h bins and a bin-width of ukl =
maxj(‖~pkj−~pkjl‖)

h by

fkli(s)=
N(Xk)∑

j=1

{
1 if binkl(~xj)= i ∧

⌊
‖~pkj−~pkjl‖

ukl
+ 1

2

⌋
=

⌊
s+ 1

2

⌋
0 else

and i means the i-th bin along the axis l. The argument s =
1, ..., h marks the bin for the distance towards the axis. This
histogram fkli is evaluated for i = 1, .., h equally distributed
bins along the l-th axis. And, as already mentioned, we are
interested only in increasing values for the histograms fkli

for the error EG. Thus, we sum only over the positive steps
from s to s + 1. With

S(y) =

{
y if y > 0
0 else

,

we can formulate

Hkl(i) =
h∑

s=1

S(fkli(s + 1)− fkli(s)) (3)



Algorithm 2 Splitting of Ak

def Split(Ak):
l̂← argmin

l

∑h
i=1

∑h
s=1 fkli(s)

m← argmin
i

∑h
s=1 fkl̂i(s)

Z0 ←
{
~xj | binkl̂(~xj) < Hkl̂(m)

}
Z1 ← Xk\Z0

return {PCA (1, Z0) ,PCA (1, Z1)}

and finally describe the generation error as the sum over
all axes and all bins along each axis. Then, the resulting
number EG is a heuristic measure if the axes lie close or
along areas of locally maximal density by quantifying the
density-gradient from a line segment.

EG =
1

N(Xk)

dk∑
l=1

h∑
i=1

Hkl(i) (4)

The number of bins h is defined, such that there are three
samples in each bin on average (assuming a uniform distri-
bution)

h =

⌊(
N(Xk)

3

) 1
dk

⌋
.

We use this load-factor of three throughout all experiments
in this manuscript, since our simulation results indicate that
this is a good compromise between the resolution of the
histogram and a robust gradient computation Hkl on the
histograms.

E. Splitting of a local-PCA unit

Based on the generation error, we can decide whether
to break a local PCA unit apart to yield a more precise
approximation of the underlying distribution for the data Xk.
However, we still have to find a suitable bi-partition.

Initially (See algorithm 1) we begin with a single axis
dk = 1, that basically represents the first principal component
of a global PCA. But when is a line a good representation
of a set of data points? In Figure 3 are some examples
which we intuitively would tend to accept only (ii) and
reject (i, iii and iv) as a good approximation. To put our
intuition into mathematical expressions, we suggest splitting
the data samples along an axis, where the density of points
that projected onto the axis, is minimal.

III. SIMULATION RESULTS

We test the suggested greedy iteration method for local-
PCA on synthetic data in two dimensions and compared
the two different candidates for the generation error EG

(equation 4) and ẼG (equation 2).

A. Noisy-”S”, Square and Vortex

First, we concentrate on the generation error EG (equation
4). Since no global optimization is done, the greedy approach
can yield to different results, if the random initialization
of the data-set is changed. However, some typical different

Fig. 4. Top row: Different random initializations. We draw 400 samples
for three times from the same underlying probability density and show the
final result of each run. Parameters are tR = 2.0 and tG = 0.8. One of the
worst outcomes is shown to the left, and the right two plots show typical
results.
Bottom row: Different synthetic data-distributions with the same pa-
rameter set. The two parameters are, again, set to tR = 2.0 and tG = 0.8.
The left noisy-”S” consists of 200, the middle one of 1000 and the square has
200 data samples. Since the decision is done locally for each PCA-element,
the algorithm can adapt (without changing the parameters) to different
intrinsic dimensionalities of a manifold, here, one-dimensional and area-like
manifolds. Each image shows the final-state, when the greedy iteration is
finished. The reconstruction error for a two-dimensional distribution (right
image) is zero. All plots in this figure are computed with the generation
error EG as defined in equation 4.

runs, as shown in the top row of figure 4, indicate that the
overall result is promising, since the vortex-like distribution
with only 400 samples is relatively sparsely populated. For
example, Möller and Hoffmann[7] used 1000 sample points
and 30000 iterations on this vortex-like data-set for a local-
PCA method. We observe convergence typically for 15 to 20
steps.

The parameters tG and tR are – in a certain range – robust
against the number of points and the intrinsic dimensionality.
The result, in the bottom-row of figure 4 demonstrates
that the intrinsic complexity and structure yields results,
which are adapted to the manifold, without fine-tuning the
parameters. The iterations shown in figure 1 and 4 use the
same set of parameters.

B. Changing the thresholds tG and tR

To show the influence of the two parameters for the
reconstruction and the generation error, we repeated the
simulation with the noisy vortex of 400 samples. Figure 5
contains the plots for varying only tR and figure 6 shows the
results for simulations with different tG. A lower threshold
for the reconstruction error leads to an approximation of the
manifold with more local PCA units. In the first two plots
of figure 5, the highlighted line segments exhibit already
a lower (local) reconstruction error than tR and therefore
some parts of the vortex are represented quite coarsely by
a single element. The threshold tG for the generation error
(as defined in eq. 4), in contrast, does not look at the real



Fig. 5. Influence of the threshold for the reconstruction error tR. Six
different runs on the same 400 samples drawn from a vortex-like distribution.
Row wise from top-left to bottom right with threshold values 15.0, 8.0, 5.0,
3.0, 1.0 and 0.5. The generation error EG (equation 4) is kept fixed at 0.8
for each of these runs.

Fig. 6. Influence of the threshold for the generation error tG. Row wise
from top-left to bottom right with threshold values 1.3, 1.2, 1.1, 1.0, 0.9 and
0.8. The reconstruction error ER is kept fixed at 2.0 for each of these runs.
All six runs are performed on the same input samples. In the top-left plot,
the distribution is seen as a 2d area and with lowering the target threshold,
the inner windings are represented by more one-dimensional elements. The
algorithm is not very sensitive to the exact value of tG and in fact the final
results for 1.1 and 1.0 are the same (as well as for 0.9 and 0.8).

distances from an axis, but only looks at the gradient of the
density in the PCA-subspace. For one-dimensional PCA this
is the density of the local set of points Xk, projected onto
the principal axis. Therefore, the generation error EG only
measures how homogeneous the empirical distribution in the
subspace is. For very high thresholds, the whole vortex is
seen as a two-dimensional area (top-left plot of figure6). With
lower thresholds, the inner area is represented in a finder
resolution by more local PCA.

C. Comparison of the two alternatives ẼG and EG

We compare the two candidates for the generation error
as defined in equation 2 and 4 on a more complex synthetic
data set, consisting of a ring and a filled square, connected by

Fig. 7. Results for the generation error, defined with the chi-square test.
Top-row: Again, the noisy-”S” and the uniform square with 200 samples and
the vortex with 400 samples. The chi-square as a basis for the generation
error ẼG has significant difficulties in the representation of larger areas of
2d-homogeneous density (in contrast to EG, defined by the density gradient
used in the other figures). The best threshold found for eEG was 120 for
these three examples. Higher values for the threshold tG would yield to
represent the square by a two-dimensional unit but hinder to detect the one-
dimensional intrinsic dimension of the noisy-”S” and the vortex. Bottom-
row: A more complex manifold. The three plots show different 600 random
samples from the same underlying manifold. The threshold was set to 270
for these three different runs. Clearly the chi-square based generation error,
is very sensitive to different random

a line. Figure 8 shows the iteration steps for the generation
error EG. One can observe that the homogeneous 2d area of
the square is covered only by one two-dimensional PCA unit,
whereas the line and the ring are approximated by several
one-dimensional units. The fourth and fifth plot show the
same step, but highlight different units and the generation
error for the ring-like structure (EG = 1.3) is significantly
higher than for the square (EG = 0.7). If we compare this
to the generation error ẼG based on the chi-squared test
(bottom row in figure 7), we find that the results for the latter
ẼG are quite sensitive to different random initializations and
perhaps more important, the filled square is approximated by
several one-dimensional units in addition to a central two-
dimensional one. Further, the ring-like substructure is not
approximated very well.

IV. CONCLUSION

Our approach, in its greedy nature, may become a fast
alternative to global optimization schemes, and, we are
looking forward to evaluate the proposed method on higher-
dimensional real-world data in the future. Due to the antago-
nistic behavior of the two error measures ER and EG and the
way the greedy iteration is defined, the algorithm converges
quickly. Another positive property is the robustness against
the different intrinsic dimensionalities.

However, on the other hand, a split operation cannot be
undone and this sometimes leads to unnecessary small units
(compare Figure 4). A possibility to solve that problem
would be a kind of “clean-up” pass at the end, in which one
could try to merge small units together, of course only if the



Fig. 8. Iteration on a synthetic ring-line-square data set. 600 sample
points are randomly chosen. Depicted are all 8 iteration steps (there are two
images of step four). The threshold for the generation error (EG as in eq.
4) is 0.8 and tR is 2.0.

merged units still are compatible to the given thresholds tG
and tR.

On the one hand, we have demonstrated that our method
can deal successfully with relatively few samples, on the
other hand, the current algorithm is sensitive to outliers. The
reason for this is that the PCA itself is known to be sensitive
to outliers. Basically there are two possible solutions. First,
to apply a known outlier-elimination technique and secondly,
to prune away local PCA units that only represent very few
points. Obviously this proposed extension can only be ap-
plied, if the idea of merging local PCA units is implemented,
too. The reason for this is that units should only be pruned
away, if they are “far off”. As mentioned before, sometimes
there are relatively small units (compare figure 4), too, that
are a result of the greedy splitting and one would prefer some
of these to be combined with their neighbours.

Besides the before mentioned limitations and extensions,
the main point is that for local PCA, it is not necessary to
optimize for the positions, number of PCA units, dimensions
and, last but not least, the partition of the input space. A good
solution can be found with a fast iterative greedy approach.
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