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Abstract. We present an approach for the supervised online learning of
object representations based on a biologically motivated architecture of
visual processing. We use the output of a recently developed topograph-
ical feature hierarchy to provide a view-based representation of three-
dimensional objects using a dynamical vector quantization approach.
For a simple short-term object memory model we demonstrate real-time
online learning of 50 complex-shaped objects within three hours. Addi-
tionally we propose some modifications of learning vector quantization
algorithms that are especially adapted to the task of online learning and
capable of effectively reducing the representational effort in a transfer
from short-term to long-term memory.

1 Introduction

Most research on trainable object recognition algorithms has so far focused on
learning based on collecting large data sets and then performing offline train-
ing of the corresponding classifiers. Since in these approaches learning speed is
not a primary optimization goal, typical offline training times last many hours.
Another problem is that most classifier architectures like e.g. multi layer per-
ceptrons or support vector machines do not allow online training with the same
performance as for offline batch training. Due to these drawbacks, research in
man-machine interaction for robotics dealing with online learning of objects has
used histogram-based feature representations [8] or hashing techniques [1] that
offer fast processing, but only limited representational and discriminatory capac-
ity. An interesting approach to supervised online learning for object recognition
was proposed by Bekel et al. [2]. Their VPL classifier consists of feature extrac-
tion based on vector quantization and PCA and supervised classification using
a local linear map architecture.

We suggest to use a biologically motivated strategy similar to the hierarchical
processing in the ventral pathway of the human visual system to speed up ob-
ject learning considerably. The main idea is to use a sufficiently general feature
representation that remains unchanged, while object-specific learning is accom-
plished only in the highest levels of the hierarchy. We perform supervised online
learning of objects using a short-term memory with a similarity-based adaptive
collection of view templates using the intermediate level feature representation of

heiko
Textfeld
Proc. German Pattern Recognition Conference DAGM 2005, Vienna., pp. 301-308



2

the proposed visual hierarchy from [9]. Additionally we propose an incremental
learning vector quantization model to achieve a reduction of the representational
effort that is related to the transfer from short-term to long-term memory.

After a short introduction to the hierarchical feature processing model we
introduce our short-term and refined long-term memory model, based on an
incremental learning vector quantization approach in Sect. 2. We demonstrate
its effectiveness for an implementation of real-time online object learning of 50
objects in Sect. 3, and give our conclusions in Sect.4.

2 Hierarchical Online Learning Model

Our online learning model consists of three major processing stages: First the
input image is processed using a topographically organized feature hierarchy.
Object views are then stored using the feature map representation in a template-
based short-term memory, that allows immediate online learning and recognition.
Finally the short-term memory representatives are accumulated into a condensed
long-term memory. We now describe these three stages in more detail:

Initial Processing Architecture. Our hierarchy is based on a feed-forward
architecture with weight-sharing [4] and a succession of feature-sensitive and
pooling stages (see Fig.1 and [9] for details). The output of the feature represen-
tation of the complex feature layer (C2) can be used for robust object recognition
that is competitive with other state-of-the-art models [9]. We augment the shape
representation from [9] with downsampled color maps in the three RGB channels
of the input image with the same resolution as the C2 shape features. We denote
the output of the hierarchy for a given input image Ii as x

i(Ii).
Online Vector Quantization as Short-Term Memory. Object views

are stored in a set of M representatives rl, l = 1, . . . ,M , that are incrementally
collected, and labelled with class Ql. We define Rq as the set of representatives
rl that belong to object q. The acquisition of templates is based on a similarity
threshold ST . New object views are only collected into the short-term mem-
ory (STM) if their similarity to the previously stored views is less than ST .
The parameter ST is critical, characterizing the compromise between represen-
tation resolution and computation time. We denote the similarity of view xi

and representative rl by Ail and compute it based on C2 feature space distance
by Ail = exp(−||xi − rl||2/σ). Here, σ is chosen for convenience such that the
average similarity in a generic recognition setup is approximately equal to 0.5.

For one learning step the similarity Ail between the current training vector
xi, labelled as object q and all representatives rl ∈ Rq of the same object q is
calculated and the maximum value is computed as Amax

i = maxl∈Rq
Ail. The

training vector xi with its class label is added to the object representation, if
Amax

i < ST . If M representatives were present before, then choose rM+1 = xi

and QM+1 = q. Otherwise we assume that the vector xi is already sufficiently
well represented by one rl, and do not add it to the representation. We call
this template-based representation online vector quantization (oVQ). The non-
destructive incremental learning process allows online learning and recognition
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Fig. 1. The visual hierarchical network structure. Based on a color image input Ii

(64× 64), shape and color processing is separated in the feature hierarchy and fused in
the view-based object representation. In the shape pathway the S1 feature-matching
layer computes an initial linear sign-insensitive receptive field summation, a Winner-
Take-Most mechanism between features at the same position and a final threshold
function. We use Gabor filter receptive fields, to perform a local orientation estimation
in this layer. The C1 layer subsamples the S1 features by pooling down to 16 × 16
resolution using a Gaussian receptive field and a sigmoidal nonlinearity. The 50 features
in the intermediate layer S2 are trained by sparse coding and are sensitive to local
combinations of the features in the planes of the C1 layer. The layer C2 again performs
spatial integration and reduces the resolution to 8×8. When the color pathway is used,
three downsampled 8 × 8 maps of the individual RGB channels are added to the C2
feature maps. The short-term memory consists of template vectors rl that are computed
as the output xi(Ii) of the hierarchy and added based on sufficient Euclidean distance
in the C2 feature space to previously stored representatives of the same object. The
refined long-term memory representatives wk are learned from the labelled short-term
memory nodes rl using an incremental vector quantization approach.

at the same time, without a separation into training and testing phases. To model
a limited STM capacity we set in some simulations an upper limit of 10 objects
that can be represented and if the 11th object is presented, representatives of
the oldest learned object are removed from the STM.

Recognition of a unclassified test view Ij can be done with a nearest neigh-
bour search of the hierarchy output xj(Ij) to the set of STM representatives.
The winning node lmax satisfies lmax = argmaxl(Ajl) and then the class label
Qlmax of the winning representative rlmax is assigned to the current test view xj .

Incremental LVQ as Long-Term Memory. The labelled STM represen-
tatives rl in the C2 feature space provide the input ensemble for our proposed
long-term memory (LTM) representation, which is optimized and built up in-
crementally based on the set of STM nodes rl, where we assume a limited STM
capacity with only the most recently shown objects being represented. In con-
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trast to the typical usage of learning vector quantization networks [7], where
every class is trained with a fixed number of LVQ nodes, we use an incremental
approach, related to other models like e.g. the growing neural gas [3]. Another
related work not dealing with incremental learning, but with clustering of non-
stationary or changing datasets was proposed by [5].

For training our incremental LVQ (iLVQ) model, a stream of randomly se-
lected input STM training vectors rl is presented, and classified using labelled
iLVQ representatives in a Euclidean metrics. The training classification errors
are collected, and each time a given sufficient number of classification errors has
occurred a set of new iLVQ nodes is inserted. The addition rule is designed to
promote insertion of nodes at the class boundaries. During training, iLVQ nodes
are adapted with standard LVQ weight learning that moves nodes into the di-
rection of the correct class and away from wrong classes. An important change
to the standard LVQ is an adaptive modification of the individual node learn-
ing rates to deal with the stability-plasticity dilemma of online learning. The
learning rate of winning nodes is more and more reduced to avoid too strong
interference of newly learned representatives with older parts of the object LTM.

We denote the set of iLVQ representative vectors at time step t by wk(t), k =
1, . . . ,K, where K is the current number of nodes. Ck denotes the corresponding
class label of the iLVQ center wk. The training of the iLVQ nodes is based on
the current set of STM nodes rl with class Ql that serve as input vectors for
the LTM. Each iLVQ node wk obtains an individual learning rate Θk(t) =
Θ(0) exp(−ak(t)/d) at step t, where Θ(0) is an initial value, d is a scaling factor,
and ak(t) is an iteration-dependent age factor. The age factor ak is incremented
when the corresponding wk becomes the winning node.

New iLVQ nodes are always inserted, if a given number Gmax of training
vectors was misclassified during iterative presentation of the rl. The value of
Gmax = 30 is a compromise between convergence speed and representation res-
olution. Within this error history, misclassifications are memorized with corre-
sponding input rl and winning iLVQ node wkmax(rl). We denote Sp as the set
of previously misclassified rl within this error history that were of original class
p = Ql. For each nonempty Sp a new node wm is added to the representation.
It is initialized to the element of rl ∈ Sp that has the minimal distance to its
corresponding winning iLVQ node wkmax(rl) and the class of the iLVQ node is
given as Cm = Ql. This insertion rule adds new nodes primarily near to class
borders. The formal definition of the iLVQ learning algorithm is then:

1. Choose randomly rl from the set of STM nodes. Find winning iLVQ node
kmax = argmaxk(−||r

l − wk||) and update wkmax(t + 1) = wkmax(t) +
κΘkmax

(t)(rl − wkmax(t)), where κ = 1 if Ckmax = Ql and κ = −1 other-
wise. The learning rate is given as Θkmax

(t) = Θ(0) exp(−akmax
(t)/d).

2. Increment akmax
(t+ 1) = akmax

(t) + 1.
3. If Ckmax 6= Ql increase G(t + 1) = G(t) + 1. Add rl to the current set of

misclassified views SQl of object Ql.
4. If G = Gmax, then do for each Sp 6= ∅: Find the object index Cm of the iLVQ

representative wm with minimal distance to the wrongly classified elements
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Fig. 2. Test object images. (a) 50 freely rotated objects, taken in front of a dark
background and using a black glove for holding. (b) Some rotation examples. (c) A few
examples for incomplete segmentation. (d) Examples for minor occlusion effects. The
main difficulties of this training ensemble are the high appearance variation of objects
during rotation around three axes, and shape similarity among cans, cups and boxes,
combined with segmentation errors (c), and slight occlusions (d).

in Sp according to ||rl −wm|| = minl|rl∈Sp
||rl −w(rl)||, where w(rl) is the

winning iLVQ node for view rl. Insert a new iLVQ node with w = rl. Reset
G = 0 and Sp = ∅ for all p. Goto step 1 until sufficient convergence.

Classification of a test view xj(Ij) is done by determining the winning iLVQ
node wkmax with smallest distance to xj and assigning the class label Ckmax .

The C2 feature vectors are sparsely activated with only about one third of
nonzero entries. During our investigation of the iLVQ approach we noted that
convergence can be improved by applying the weight update of w(rl) nodes only
on the nonzero entries of the input vectors rl. The weight update is then defined
componentwise as wkmax

i (t+1) = wkmax

i (t)+H(rl
i)κΘkmax

(t)(rl
i−w

kmax

i (t)), where
H is the Heaviside function. We call this modification sparse iLVQ.

3 Experimental Results

Setup. For our experiments we use a setup, where we show objects, held in
hand with a black glove before a black background. Color images are taken
with a camera, segmented using local entropy-thresholding [6], and normalized
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Fig. 3. Classification rate of two selected objects dependent on the training time for
learning the 10th, 25th, and 50th object, and same learning curves averaged over 20
object selections. While training proceeds, at each point classification rate is measured
on all 750 available test views of the current object. Good recognition performance can
be achieved within two minutes, also for the 50th object.

in size (64x64 pixels). We show each object by rotating it freely by hand for
some minutes, such that 750 input images Ii for each object are collected (see
Fig.2). Another set of 750 images for each object is recorded for testing.

Online Learning using Short-Term Memory. In the first experiment we
investigate the time necessary for training the template-based oVQ short-term
memory with up to 50 objects. The training speed is limited by the frame rate of
the used camera (12.5 Hz), the computation time needed for the entropy segmen-
tation, the extraction of the corresponding sparse C2 feature vector xi with 3200
shape dimensions and 192 color dimensions and the calculation of similarities
Ail (see Sect.2). The similarity threshold was set to ST = 0.85 for this experi-
ment, and there was no limit imposed on the number of STM representatives.
Altogether we achieve an average frame rate of 7 Hz on a 3GHz Xeon processor.
For the shown curves of a cup and a can from our database we trained 9, 24
or 49 objects and incrementally added the cup or can as an additional object.
Figure 3 shows how long it takes until the newly added object can be robustly
separated from all other objects. At the given points the correct classification
rate of the current object is computed using the 750 views from the disjoint test
ensemble. Additionally we show the learning curves, averaged over 20 randomly
chosen object selections. On average, training of one object can be done in less
than 2 minutes, with rapid convergence. For all other experiments we used all
available views (750 views per object) for training and testing our models.

To evaluate the quality of the feature representation obtained from the visual
hierarchy, we compared the use of 8x8x50 C2 shape feature maps, 8x8x(50+3)
C2 features with coarse RGB color maps, and plain 64x64x3 pixel RGB images
as input xi for the STM. The last setting captures the baseline similarity of the
plain images in the ensemble, and serves as a reference point, since there are
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ST input data #R error rate

0.55 140 86.9%
0.65 plain 474 76.8%
0.75 color 1956 55.4%
0.85 8832 27.7%
0.90 17906 15.2%

0.55 701 57.8%
0.65 2335 35.1%
0.75 shape 7138 17.2%
0.85 19283 9.4%
0.90 28921 8.3%

0.55 2740 24.5%
0.65 shape 6451 12.5%
0.75 +coarse 14223 6.9%
0.85 color 27104 5.8%
0.90 33831 5.7%

Table 1. Classification rates and num-
ber of representatives #R of the online
learning oVQ model for different similar-
ity thresholds ST and different inputs.

method input data #R error rate

oVQ color+shape 27104 5.8%

iLVQ color+shape 7304 11.4%
sp. iLVQ color+shape 3665 9.0%

iLVQ∗ color+shape 4574 12.2%
sp. iLVQ∗ color+shape 3167 9.9%

oVQ shape 19283 9.4%
iLVQ∗ shape 5500 20.9%

sp. iLVQ∗ shape 3780 14.6%

Table 2. Comparison of classification
rates of oVQ, incremental LVQ, sparse
LVQ, incremental LVQ∗ with limited short
term memory and sparse LVQ∗ with mem-
ory. For all tests we used a similarity
threshold of ST = 0.85. The number of
selected representatives #R is shown.

currently no other established standard methods for online learning available.
Additionally we varied the similarity threshold ST to investigate the tradeoff
between representation accuracy and classification errors. The results are shown
in Tab.1. For a fair comparison, error rates for roughly equal numbers of chosen
representatives should be compared. The hierarchical shape features reducing
the error rates considerably, compared to the plain color images, especially for
a small number of representatives #R. The addition of the three RGB feature
maps reduces error rates by about one third. For training of all 50 objects that
can be done within about three hours, the remaining classification error is about
6% using color and shape and 8% using only shape.

Long-Term Memory and iLVQ. In Tab.2 we show the performance of the
iLVQ long-term memory model. We compare the effect of using only a limited
memory history for the STM (denoted iLVQ∗), in relation to using all data, and
the results for the sparse learning rule adaptation described in Sect.2 (denoted
sp.iLVQ). The necessary number of representatives #R can be strongly reduced
by a factor of 6 and more with the iLVQ network, however, at the price of a
slightly reduced classification performance. The differences between the incre-
mental LVQ and the sparse LVQ are that the sparse LVQ reaches slightly better
results with fewer number of representatives #R. More important, the sparse
iLVQ converges about ten times faster than iLVQ with the standard learning
rule, resulting in a training time of only about 3-4 hours. For the experiments
using only a limited STM of 10 objects, it can be seen that iLVQ can handle this
with almost no performance loss and uses even less resources for representation.
We also performed a test using stochastic gradient-based training of linear dis-
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criminators (based on the rl) for each object, where, however the same limited
memory history of views from the past 10 objects was applied. Although perfor-
mance on the current training window of 10 objects normally is below 5% error,
the network quickly fails to distinguish objects from the earlier training phases
and achieves only a complete final error rate of 73% on all 50 objects.

4 Conclusion

We have shown that the hierarchical feature representation is well suited for
online learning using an incremental vector quantization model approach. Of
particular relevance is the technical realization of the appearance-based online
learning of complex shapes for the context of man-machine interaction and hu-
manoid robotics. This capability introduces many new possibilities for interac-
tion and learning scenarios for incrementally increasing the visual knowledge of
a robot. Also for the realistic setting of a limited short-term memory length of 10
objects, we can achieve real-time learning of 50 objects with less than 10% clas-
sification error. Although we assume segmentation of the objects in this study,
it has been shown previously that the visual hierarchy can also be applied with
good results both to learning and recognition of unsegmented objects in clutter
[9]. The application to the unsegmented case will therefore be the next step in
extending the online object learning approach presented here.
Acknowledgments:We thank C. Goerick, M. Dunn, J. Eggert and A. Ceravola
for providing the image acquisition and processing system infrastructure.
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