
From Tools Towards Cooperative Assistants
Matti Krüger Christiane B. Wiebel Heiko Wersing

Honda Research Institute Europe
Carl-Legien-Strasse 30

63073 Offenbach/Main, Germany
{matti.krueger,christiane.wiebel,heiko.wersing}@honda-ri.de

ABSTRACT
Endowing assistant systems with more autonomy establishes
the transition from a human-controlled tool towards a self-
directed agent capable of own decisions and goals. In this
concept paper we suggest to perform the design of such an as-
sistant agent according to principles of cooperativity. We first
review definitions of cooperation between animals, humans
and machines and then discuss advantages of cooperation
also for a human-machine interaction system. We concen-
trate on the important roles of adaptivity and responsibility
within the interaction. We argue that main benefits of a co-
operative design are alleviation of typical automation issues
like controllability, complacency, trust, and greater flexibility
of the combined human-machine system in tasks with high
variability.
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INTRODUCTION
There is a growing interest in designing assistant systems with
more and more autonomy, driven from the demands of chal-
lenging applications like autonomous driving or home robots.
Greater autonomy allows a person to delegate complete sub-
tasks to an assistant system and reduce the human workload
considerably. Another possible advantage is self-controlled
system adaptation, enabling greater flexibility in highly vari-
able scenarios. On the other hand there are prevalent nega-
tive automation side-effects affecting the human user, which
are well known from ergonomics research: loss of expertise,
complacency, controllability and trust issues [23, 10, 5]. We
believe that in many situations the best way to approach these
problems is by making the step from considering an assistant
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system as a tool towards designing it as a cooperation partner.
The particular importance of mutual attention- and intention
modeling for such a cooperative approach has been discussed
by Wachsmuth [31] and demonstrated for a virtual embodied
assistant [15]. Along this line we want to identify the qualita-
tive steps with respect to mutual adaptivity and responsibility
which are necessary for this cooperative transition and discuss
advantages and possible disadvantages of this approach.

A good example for this desired change process is the concept
of shared autonomy which has been introduced as a model of
distributing control between human and machine in teleopera-
tion scenarios [8]. Schilling et al. [27] recently proposed to
extend the scope of shared autonomy from mere teleoperation
of an intelligent tool towards more flexible human machine
cooperation scenarios. They focus on the role of communi-
cation for negotiating the relation of autonomy and freedom
on hierarchical levels separated into intentions, strategies and
selection of means. The advantage of adaptivity in shared au-
tonomy has recently been investigated by Nikolaidis et al. [19]
for a multiple target robot grasping scenario. They showed
that the co-adaptation of robot and human actions can deliver
an optimal human-robot system performance with respect to
the tradeoff between human trust and robot action effectivity.

In this manuscript we first review general definitions of coop-
eration and order them according to increasing requirements
and shifts in the distribution of responsibilities for the coop-
eration partners and their interaction. We then discuss the
special case of human-machine interaction in this context. In
the subsequent section we define the transition stages from
tools and adaptive tools towards cooperative assistants up to
long-term and sustained cooperation. We conclude with an
overview summary of our argumentation.

COOPERATION DEFINITIONS
Defining and explaining cooperative behavior has been an
important research topic in different disciplines including phi-
losophy, biology, sociology, psychology and economics (e.g.
[24, 1, 20, 17]), trying to answer questions like: What is
cooperation?, How is cooperative behavior initialized and
maintained?, What are requirements and benefits of cooper-
ative behavior? and How is behavior shaped by the intent
to cooperate? We review some prominent definitions with
increasing requirements in the following:



The Oxford dictionary of current English gives a universal
definition of the act to cooperate as follows:

“work or act together in order to bring about a result”

This broad definition highlights two fundamental aspects of
cooperation: (1) cooperation involves a plurality of agents and
(2) for the purpose of a certain result they will coordinate their
actions. Piaget’s 1965 definition of cooperation goes one step
further. He states (translated by Hoc [11]):

“Cooperating in action is operating in common, that is
adjusting the operations performed by each partner by
the means of new operations. It is coordinating each
partner’s operation into a single operation system, the
collaboration acts themselves constituting the integrative
operations.”

Importantly, Piaget’s definition makes it explicit how two
cooperating partners act together - by means of adjusting their
behavior. Even more specific is the following definition by
Hoc [11]. He states:

“Two agents are in a cooperative situation if they meet
two minimal conditions. (1) each one strives towards
goals and can interfere with the other on goals, resources,
procedures etc. (2) each one tries to manage the inter-
ference to facilitate the individual activities and/or the
common task when it exists. The symmetric nature of
this definition can be only partly satisfied.”

Hoc [11] considers cooperation as a subclass of collective ac-
tivity which should be described as interference management
in real-time. That is, in addition to Piaget’s definition, he intro-
duces a temporal dimension to his definition. The regulative
process has to happen in real-time excluding the case that the
agents’ relationship and interactions have been defined entirely
by a designer or manager in advance. Besides, he differentiates
the purpose of the cooperation into a common goal or each
agent’s personal matter. In his definition of cooperation, both
concepts of the motivation to cooperate would be valid. To
what extent the agents act on behalf of their own interest or a
common goal can also be further characterized by their support
for each other. Bratman [6] adds another defining component
in his definition of a shared cooperative activity. In addition
to mutual responsiveness and commitment to the joint activity,
he suggests the concept of mutual support. This means the
willingness of all agents to support one another in performing
their role in the cooperative activity. To summarize, critical
differentiations between definitions of cooperation can be the
degree to which each agent in a cooperative system works
towards the same or different goals, to what degree the coop-
erative behavior is volitional and self-driven or whether the
cooperation partners are mutually supportive.

Cooperation Complexity
Different levels of complexity in cooperative behavior have
been defined. Boesch et al. [3] proposed a categorization
of levels of cooperative behavior in chimpanzees performing
group hunt. They differentiate between similarity hunt, coordi-
nation hunt, synchrony hunt and collaborative hunt. Similarity
hunt means that hunters perform similar actions towards the

common goal of hunting prey but without any coordination
in space and time. In synchrony hunt, hunters adjust their
actions in time but not in space. They may for instance begin
at the same time or adjust their speed to each other. The next
level, coordination hunt, includes the dimension of space. The
highest level of hunting behavior is described in collaboration
hunt. Here, hunters perform different and complementary ac-
tions in order to hunt the same prey. Brinck et al. [7] argue
that future-oriented cooperative behavior in addition has to
involve shared representations that go beyond things that are
immediately present. According to the authors, this means
that agents need to be able to communicate about things that
do not yet exist. This suggests an important role of symbolic
communication for future-oriented cooperative behavior.

Representation Sharing
In order to have cooperation in a narrow sense, as for example
suggested by Hoc or Bratman [11, 6], the involved agents
need internal models or representations that allow them to
anticipate future states of themselves, the other agent and the
task. Moreover, the ability to communicate these represen-
tations seems crucial for the cooperation success. The most
basic part of such communication corresponds to the ability
to direct someone’s attention to the own focus of attention
[28]. Humans for instance use mainly deictic gaze or pointing
gestures to do so and are extremely accurate in their inter-
pretation (for a review see.: [29]). Joint attention can thus
provide the basis for a common perceptual ground [28]. It
has also been shown for human-robot interaction that joint
attention is a crucial mechanism for successful joint actions,
leading to reduced task time and less errors [18]. It should be
noted that shared representations between agents in a coopera-
tive system have been termed differently by different authors
(e.g.: [11, 14]). The overall idea however remains the same.
Shared representations or notions of internal models as well
as the ability to communicate or at least direct the attention of
another agent within a joint reference framework are undoubt-
edly critical features for cooperative behavior. Furthermore,
the degree to which such representations exist and are shared
represents a critical criterion for distinguishing between levels
of cooperation.

COOPERATION IN HUMAN MACHINE INTERACTION
In the context of human-machine interaction, the concept of co-
operation has gained increasing interest along with the rapidly
growing capabilities of autonomous or partly autonomous
systems (e.g.: [9, 2, 11, 13]). A key question that has been
discussed is how to differentiate human-machine cooperation
from basic interaction.

Adaptability
Hollnagel at al. [14] were the first to characterize human-
machine interaction as an interaction between two cognitive
systems. Until then, human-machine interaction had been
primarily concerned with the physical adaptation of the hu-
man and the machine. This meant mostly the adaptability
of a machine’s design to the physical condition of a human
operator (e.g.: Make a system adjustable so that a wide range
of operators can physically reach the emergency button). By



means of this change in perspective Hollnagel et al. [14] es-
tablished the term cognitive system engineering. Although the
authors did not actively use the term cooperation, much of
what they claimed can be considered as a cooperative approach
for human-machine interaction. They elaborated that for fur-
ther progress in the field, cognitive adaptability1 had to be
added to the system. They declared that besides physical char-
acteristics, cognitive characteristics of the human user would
have to be acknowledged in the design process of human ma-
chine systems. They pointed to the necessity of “dynamically
adaptable” internal models for the user and the machine and
their interactions. Furthermore, they noted that this has to be
considered with caution, as the physical and the psychological
world can be quite different. Physical quantities might not
translate one-to-one into psychological entities in which case
their correspondence has to be worked out (e.g. [26]).

More recently, Hoc [13] formulated his idea of a human-
machine cooperation framework as opposed to human-
machine interaction, in line with the ideas formulated by Holl-
nagel et al. [14]. Two aspects in particular were considered
in his work. The need for uncertainty and risk management
as a result of the dynamic nature of tasks which are not fully
scripted beforehand and an appropriate and dynamic function
allocation between human and machine that takes into account
the peculiarities of a certain situation. Both points imply that
the whole system consisting of human and machine is able to
adapt itself continuously.

Observability and Directability
Christofferson et al. [9] have argued that in order to turn a
machine into a team player the cooperation automation has
to be observable and directable. Once again, observability
relates to the idea of shared representations or transparency.
The authors mainly stress the necessity of the human user
to understand the machine’s state but they do not take into
account that the machine must also understand the human
to some extent. This seems however equally important for a
successful interaction. Directability on the other hand picks
up the topic of shared authority. The authors state that as long
as responsibility has to remain with the human, authority is
not questionable. The human has to be able to influence the
machine’s activities. Therefore, directability is meant only in
one direction (human-machine) here. Related concepts are
also discussed by Bengler et al. [2] who separate key elements
of human-machine cooperation into five layers: i) intention,
ii) modes of cooperation suggested by [12], iii) allocation as a
mediator between interaction and interface, iv) interface itself
and v) physical contact layer (possibly limited or forbidden).

INTERACTION LEVELS
Besides having the ability to extend our operation space
through tool use, the large extent of cooperation within human
societies is thought to be a major reason for human evolution-
ary success [4].

1We refer to adaptability as the possibility for an entity to have param-
eters of itself changed by another entity whereas adaptivity describes
the ability of an entity to change parameters of itself. Hollnagel et al.
do not specify their understanding of adaptibility but appear to use
the term in the sense of our understanding of adaptivity.
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Figure 1. Interaction during (non-adaptive) tool use.
A tool extends the human capabilities to achieve a result. Its successful
operation relies on a proper human understanding of the tool’s properties
and features, accessible via an interface that matches the human sensory
modalities. Results produced by tool use may also be used as feedback for
better tool-understanding and improvements in future success. The human
user carries full responsibility for adapting the usage of the non-adaptive tool
to variable task conditions.

Here we describe how the shift from tool use to coopera-
tion can be characterized by differences in the distribution
of responsibilities among agents. Thereby we illustrate how
changes in this distribution depend on varying requirements
for adaptive abilities.

We focus on three main stages of interaction that take the
steps from tools to cooperative assistants. Finally, we discuss
additional mechanisms that aid in providing stability to in-
teractions between highly adaptive agents. By defining and
illustrating these stages we aim to support the classification
of human-machine systems as well as the identification of
entailed requirements and consequences.

Tool Use
We define a tool as an entity that is used in order to extend a
person’s capabilities and efficiency in carrying out a task. We
consider here only non-adaptive tools which means that all
responsibility for adapting the tool usage pattern in flexible
task settings rests with the user. For purposeful use, the user
needs to be able to access some of the tool’s properties via an
interface (Figure 1) which allows him or her to develop an un-
derstanding (model) of the tool. These properties thereby need
to be accessible in modalities that match the user’s available
sensors. Besides having a model of the tool, a user also needs
to understand the tool in relation to itself and possibly other
relevant components of the environment. Results produced by
tool use may be used as feedback for better tool understanding
and improvements in future success.

We include in our non-adaptive tool definition also complex
machines like automated robots, as long as they are employed
by a human to achieve a well-defined goal and are not capa-
ble of self-adaptation according to changing environmental
conditions.



Example - Hammer
A prototypical example for a non-adaptive tool is a hammer.
The geometry and material composition of a hammer allow
its user to carry out the task of driving nails into other ma-
terials. Note, however that the hammer obtains its purpose
only through use in a task by an external agent. If someone
exploits the hammer’s properties to use it to prevent papers
from flying from a desk, its purpose changes from an object
for hammering nails into materials into a hammer-shaped pa-
perweight. In either case, the hammer itself carries no direct
responsibility in its actions because it relies on responses made
by others in order to be involved in executing a task. The lack
of self-induced change paired with a complete reliance on user
involvement makes it relatively easy for a user to understand
and predict the effects of hammer-use. However, it also means
that a simple hammer is unable to perform sub-tasks indepen-
dent from a user and is therefore also limited in utility by its
user’s abilities2.

Example - Robot Vacuum Cleaner
Robot vacuum cleaners are well-established automatic home
robots with a defined behavior and clear purpose. Let us
explain in the following under which conditions we consider
them still an example for a tool rather than a cooperative
assistant.

A robot vacuum cleaner is capable of moving along a floor
and vacuuming it in an automatic manner. It contains sensors
for detecting collisions with other objects and is able to react
to such collisions with a predefined maneuver such as briefly
moving backwards and turning by some random angle. With
these abilities, the robot can act autonomously within a re-
stricted operation space. We assume that there is no persistent
memory for building a map of the environment which is also
not the case for many current robot vacuum cleaners.

The model which underlies its actions produces flexible reac-
tive behavior. However, the model itself is not flexible. When
the vacuum cleaner bumps into a wall, it will do so again every
time it approaches that wall from a similar initial position.
Similarly, if it gets stuck in a carpet once, it will repeat this
mistake whenever encountering the carpet, rather than trying
to avoid the carpet after the first failure. The robot must there-
fore rely on the human user to make adaptations in order to
provide an environment that is suitable for the vacuum cleaner
to operate without errors. Its user carries the responsibility for
allocating a suitable operation space and if necessary make
appropriate adaptations to ensure tool functionality.

Consequences
When using a tool, the full responsibility resides with the
human user in the interaction. For a simple tool this may offer
a clear advantage by extending the user’s abilities combined
with good controllability. For a complex tool, which may even

2A cognitive bias known as law of the instrument [16, p.15] or
Maslow’s hammer is exemplified by the saying "if all you have is a
hammer, everything looks like a nail". It refers to the observation
that people often use tools which they are familiar with beyond the
tool’s intended scope which may be inappropriate when considering
available alternatives. Consequently human adaptation to a tool may
also limit the human flexibility of adapting to different task settings.
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Figure 2. Interaction with adaptive tools.
Using experience, the adaptive tool maintains a model of the environment and
itself to adapt its parameters for improved operation towards a goal. This can
reduce the adaptation load for the human user. Conflicts can occur if tool and
human goals mismatch.

be capable of automatic reactive behavior, adapting the tool
usage pattern and environment may become a high burden for
the human user. Consequently, means for self-adaptation of
the tool may become necessary. We will discuss this in the
following.

Adaptive Tool Use
An adaptive tool (see Figure 2) is a tool which contains adap-
tive components, i.e. which has the ability to change one
or more of its own parameters in response to environmental
variations. In addition to a tool capable of producing flexible
behavior, in an adaptive tool the model that underlies its oper-
ations is flexible as well. It thus has the ability to learn from
experience. Consequently, in the ideal case it can reduce the
adaptation load that has to be carried by the human interaction
partner in flexible task situations.

Example - Cruise control
One example for an adaptive tool is the basic cruise control
function, also known as speed control or tempomat which
is available in many motor vehicles. It is characterized by
an automatic control of the acceleration of a motor vehicle
to maintain a speed value defined by its user. When active,
cruise control takes over the operator’s task of controlling
vehicle acceleration. However, it does so in a way which only
permits the realization of its desired speed value, independent
of how sensible maintaining this particular speed is in a given
situation.

Therefore the user has to terminate or manually adapt the
cruise control functionality whenever the maintenance of a
certain speed clashes with more important goals such as safety
and complying with traffic rules. Because the cruise control
function is substitutive by nature, it can furthermore have
negative effects on a user’s ability to control vehicle speed
and react appropriately upon takeover of responsibility after
function termination [32].



Example - Adaptive Robot Vacuum Cleaner
We take again the example of a home robot vacuum cleaner,
but extend it by the capability to modify its operation model
based on its operation history. Using more advanced sens-
ing it could e.g perform self-localization and map building.
Based on its position estimation information it could try to
avoid frequent bumps into obstacles or adjust time and effort
to improve overall cleaning efficiency. It is, however, not guar-
anteed that this self-driven optimization coincides with the
desired cleaning pattern of the user. To achieve this, a means
for interactive negotiation of proper cleaning targets which are
also accessible to the robot within the flat would be necessary.

Consequences
Adaptivity can lead to a self-controlled flexibility for environ-
mental variations and thus not only allow for wider compati-
bility compared to static entities but also for a delegation of
responsibility to the adaptive entity. On the contrary, adaptive
tools may follow their own goals and constraints that make it
harder to use an adaptive tool in a way that goes beyond the
intention of its designer. Such limitations typically arise when
the models that underlie adaptive operations substitute more
flexible models available to an operator. Especially in human-
machine interaction with partially automated components that
could also be performed by humans this can frequently be the
case. A good example for challenges of user interaction with
adaptive tool-like assistants is the interaction with the NEST
learning thermostat, which has the ability to learn a typical cli-
mate and heating schedule based on the history of manual user
settings during day and week. In a user study Yang et al. [33]
showed that users of this system found the intelligent learning
functions hard to understand and the resulting schedules were
often not matching the original user intent. Resolving this
issue would require better cooperative means for establishing
a shared goal between user and system.

Besides substitution-based restrictions, increased automation
can introduce various secondary issues and challenges con-
cerning the role of a human user that have been frequently
discussed [23, 10, 5]. Parasuraman and Riley [23] identified
such problems in a systematic manner by means of analyzing
for instance failures and accidents in aviation. The authors
described four main types of difficulties in the interaction of
humans with automation: loss of expertise, complacency, trust
and loss of adaptivity. Loss of expertise for instance, describes
the circumstance under which a human operator becomes pas-
sive and less vigilant in the presence of a machine that fulfills
an autonomous role. As a consequence, taking over responsi-
bility in case of shortcomings of the machine or unpredicted
situations might result in delayed or poor reactions by the
human operator which may impose a substantial danger in
many scenarios.

Cooperative Assistance
Let us first summarize the requirements for cooperative human-
machine interaction aggregated in the previous sections:

Cooperation occurs between agents if they adapt to the state
and actions of the other agent in a manner that facilitates
the realization of a shared cooperation goal. This adaptation
requires mutual models and understanding with respect to
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Figure 3. Interaction with a cooperative assistant.
In human machine cooperation the machine is capable of relating the states
and operations of a human agent to the realization of a cooperation goal and
can adapt its own states and operations in a way that, in conjunction with
the human operations, facilitates goal realization. The interface allows a
mutual adaptation by maintaining proper models of the cooperation partner.
The changing responsibilities are negotiated via the interface and adapted
according to the flexible task setting.

the intentions, actions and plans that are relevant for the goal
realization. The development and maintenance of such models
requires mutual transparency and communication of relevant
variables by the cooperating agents. Cooperative assistance
is then the application of the cooperative human-machine
interaction principles to a human-supporting assistant system
(see Figure 3).

A principle motivation for cooperation is to facilitate and po-
tentially enhance the actions and capabilities of each agent
alone by dynamically merging their available resources. This
sharing of resources goes beyond a substitution approach in
that it does not merely aim for a creation and an exclusive use
of functional redundancies but rather a context-dependent dis-
tribution of available resources that allows the agents to tackle
a larger set of tasks. Such distributions should furthermore not
be limited to scenarios in which cooperating agents may act
independently but also take advantage of capabilities that arise
or at least benefit from interdependent use of resources [5].

Example - Cooperative Robot Vacuum Cleaner
An important addition which a cooperative assistant needs
in comparison to an adaptive tool is the ability to model the
behavior of another agent in relation to a goal as well as its
own actions and abilities. This can be summarized as a goal-
oriented adaptivity. In addition a cooperative assistant should
be able to

• acquire information about a human cooperation partner that
is potentially task relevant

• relate this information to a cooperation goal and its own ac-
tions and abilities in order to produce purposefully adapted
behavior



• provide information about its own states and actions to the
human cooperation partner in order to allow for mutually
adapted operations

Furthermore, a cooperation goal which motivates the actions
of human and robot is needed to direct adaptivity. In the case
of the cleaning robot example this could for instance be the
(high level) goal of keeping an apartment clean.

To better achieve this goal, on a basic level, the robot could
start by recognizing areas which a human is taking care of and
plan its own actions to minimize overlap with these areas, thus
promoting efficiency. It could also learn from human behavior
which places and actions are common sources of dirt and focus
on these in particular by for instance more frequent coverage
or even by informing the human cooperation partner about
its observations in hope of more considerate future behavior.
Besides, it could notify its human cooperation partner about
which places are difficult or impossible for it to clean in order
to let the partner more easily determine where to best apply
his or her resources. This could for example be narrow corner
regions or areas to which access is blocked by an object the
robot can’t or isn’t authorized to move. The human partner
could then support the robot by cleaning the difficult areas or
moving obstacles out of the robot’s way respectively. After
moving an object out of the way, the human could in turn
tell the robot that the problem has been taken care of upon
which the robot could expand its planned operation space.
Additionally the robot could react to human instructions on
what areas to take care of and about what types of issues it
should request human support.

Note that although the cooperative approach imposes addi-
tional requirements on the robot’s communicative and mod-
eling abilities, it may also help to keep requirements low in
other domains without sacrificing overall effectiveness. In
particular, it facilitates a dynamic and purposeful distribution
of available resources such that for example a cleaner robot
cooperating with a human won’t need the ability for cleaning
narrow spaces which the human partner could take care of
with little effort.

Consequences
Cooperating agents need to be able to perceive information to
infer their partners’ goals and adapt their actions appropriately.
This property enables a dynamic negotiation of individual
responsibilities with respect to each individual’s goals and
thus more robust and sustainable task success. This might
especially be true if the nature of the task or an individual
agent’s capabilities may vary over time or across situations.
Failures or disengagement of one of the agents might be more
easily detected and confronted within the system.

Such personalized adaptivity however, also has a potential for
introducing novel cases of interaction failure and conflict due
to model complexity and a risk of model mismatch. Human
factors with potential for personalized adaptivity can some-
times be highly abstract concepts that are not expressed in
a universally applicable and unambiguous manner. For in-
stance, behavioral indicators for satisfaction with a function
may not only differ across different people but even within

individuals in different situations and even spoken language
can often only be disambiguated in a larger context and can
contain dangerous pitfalls such as irony. For a narrow set of
scenarios, simplistic models that are easy to understand for a
user could suffice as a basis for personalized adaptivity. But
to account for variability in the expressions of such concepts,
the respective models may need higher complexity as well.
With increasing complexity the difficulty for a user to correctly
understand the adaptive process increases as well. To promote
successful interaction with assistive tools, efforts towards mak-
ing models transparent to a user may have to increase with the
respective model’s complexity.

The requirement for transparency of personal variables means
that some sharing of personal information is necessary. In
many cases this information may be taken from variables that
are often somewhat publicly accessible such as the visual ap-
pearance. However, some scenarios can rely on the exposure
of information that is considered to be private. In such cases a
trade-off between privacy and utility arises and the notion of
trust gains importance besides its possible role in immediate
interaction success: Appropriate trust in the functionality of
a cooperation partner should be present to promote success-
ful adaptive interactions. Furthermore, appropriate trust in
data confidentiality allows individuals to judge whether the
gain through cooperation surpasses the cost entailed in sharing
private information. Unless private information is not suffi-
ciently valued by involved individuals, confidentiality may
thus become a decisive factor for the success of cooperation
and should accordingly be considered with care.

In cooperation no agent is assumed to have an idle or more
relaxed role but is supposed to actively contribute to synergy-
enabling resource distributions. As a result, typical problems
of automated functions like being "out-of-the-loop", loss of
expertise or complacency [23, 10, 5] should less likely occur.
A good distribution of resources may also reduce the risk of
individual skill loss. If a cooperative machine would, as part
of the cooperative action, take over a task that would otherwise
be performed by a human operator, the skills of the operator
may still suffer with respect to that task. However, this loss
can happen in exchange for an improvement in other tasks or
components of tasks that are relevant in the cooperative work.

Towards Sustainable Cooperation
By sustainable cooperation we denote an extension of basic co-
operation that is targeted at establishing long-term cooperative
success between multiple agents by introducing requirements
that should facilitate the formation of mutually beneficial long-
term and interdependent relationships.

Establishing long-term stability faces two main challenges:
i) Robustness with regard to cooperation failures and ii) the
necessity to accept short-term disadvantages for advantages
that only pay-off in the long-term collaboration.

Let us first focus on the issue of cooperation failures. In
human-machine interaction, inappropriate trust in the abilities
of the partner is a potential source of cooperation failure and
inefficiency: Without trust, a human is unlikely to engage in
cooperative activity with a machine. When the trust is inap-
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human-machine interaction.
Using a tool extends the accessible task space (represented by the area sur-
rounded by a dashed grey line). Still, the full responsibility and adaptation
load is carried by the human tool user. With an adaptive tool, part of the
task responsibility is taken over by the adaptive tool. However, some of the
operations carried out by the adaptive tool may clash with the goals of its user
who would perform differently if this responsibility was allocated to him or
her (represented by the grey-green areas surrounded by dashed lines). With
cooperative assistance, the distribution of task responsibilities is flexible and
can be negotiated between human and machine due to goal-directed mutual
adaptivity. Imbalances as described for the adaptive tool can be avoided by al-
locating responsibilities according to competencies and momentarily available
resources. Furthermore, flexible responsibility negotiation may counteract
occurrence of automation problems.

propriately high, an agent may neglect its role in monitoring
and interfering with another agent’s actions. When trust is
inappropriately low, an agent may waste available resources
on monitoring and interfering with another agent’s actions and
thus potential of the cooperating system remains unused.

Trust is also relevant for cooperation success in the sense of
having trust in benefiting from the interaction. Consequently
we regard social tolerance [25], the ability of an agent to
accept that cooperating agents must all benefit from the coop-
eration outcome, as an important prerequisite for sustainable
cooperation. Implementing prosocial behavior means that sub-
stantial effort may have to be made towards ensuring that a
cooperating agent’s goals are correctly identified and put in
relation with one’s own as well as other agents’ actions. On a
similar note, the application of strategies which use a more so-
phisticated concept of reward may help to sustain cooperative
behavior. Specifically, three R’s [4], i.e. reputation, reciprocity
and retribution have been argued to explain the development
of stable cooperation within cultural groups [30, 21, 22] and
could aid in designing reward functions of artificial agents.

Examples for short-term disadvantages that need to be over-
come for sustained cooperation are i) human learning effort
in understanding the machine assistant and its capabilities,
ii) inefficient transition times that are needed for the conver-
gence towards an efficient stable cooperation pattern, and iii)
effort for establishment of a common long-term goal beyond
short-term goals.

One of the main benefits of sustained long-term assistive coop-
eration is the possibility to follow long-term goals like main-
taining a proper balance between offering assistance and moti-
vating the human to stay active for avoiding a loss of expertise
and proficiency. This requires proper social cues in the inter-
action and can pave the way towards a real partner relation
between human and machine [31].

CONCLUSION
We have discussed requirements for elevating an assistant sys-
tem from a simple tool towards a cooperation partner. Our
main argument is that increasing autonomy of the assistant
should be accompanied by increasing adaptivity towards the
human partner. This progressive change can consequently
enable a redistribution of responsibilities in an interaction and
we argue that more complex task settings require a more flexi-
ble distribution of responsibility between human and system
(see Figure 4). We consider the communicative processes for
establishing cooperation as a necessary prerequisite for an
optimal distribution of responsibility with regard to criteria of
trust, mutual support and transparency.

REFERENCES
1. R Axelrod and WD Hamilton. 1981. The evolution of

cooperation. Science 211, 4489 (1981), 1390–1396.

2. Klaus Bengler, Markus Zimmermann, Dino Bortot,
Martin Kienle, and Daniel Damböck. 2012. Interaction
principles for cooperative human-machine systems.
it-Information Technology 54, 4 (2012), 157–164.

3. Christophe Boesch and Hedwige Boesch. 1989. Hunting
behavior of wild chimpanzees in the Tai National Park.
American journal of physical anthropology 78, 4 (1989),
547–573.

4. Robert Boyd and Peter J Richerson. 2009. Culture and
the evolution of human cooperation. Philosophical
Transactions of the Royal Society B: Biological Sciences
364, 1533 (2009), 3281–3288.

5. Jeffrey M. Bradshaw, Robert R. Hoffman, Matthew
Johnson, and David D. Woods. 2013. The Seven Deadly
Myths of “Autonomous Systems”. IEEE Intelligent
Systems 27, 2 (2013), 43–51.

6. Michael E Bratman. 1992. Shared cooperative activity.
The philosophical review 101, 2 (1992), 327–341.

7. Ingar Brinck and Peter Gärdenfors. 2003. Co–operation
and communication in apes and humans. Mind &
Language 18, 5 (2003), 484–501.

8. Bernhard Brunner, Gerd Hirzinger, Klaus Landzettel, and
Johann Heindl. 1993. Multisensory shared autonomy and
tele-sensor-programming-key issues in the space robot
technology experiment ROTEX. In Intelligent Robots and
Systems’ 93, IROS’93. Proceedings of the 1993 IEEE/RSJ
International Conference on, Vol. 3. IEEE, 2123–2139.

9. Klaus Christoffersen and David D Woods. 2002. How to
make automated systems team players. Advances in
human performance and cognitive engineering research 2
(2002), 1–12.



10. Jean-Michel Hoc. 2000. From human - machine
interaction to human - machine cooperation. Ergonomics
43, 7 (2000), 833–843.

11. Jean-Michel Hoc. 2001. Towards a cognitive approach to
human–machine cooperation in dynamic situations.
International journal of human-computer studies 54, 4
(2001), 509–540.

12. Jean-Michel Hoc. 2007. Human and automation: a matter
of cooperation.. In HUMAN 07, A. Pruski (Ed.).
Université de Metz, Timimoun, Algeria, 277–285.

13. Jean-Michel Hoc and Serge Debernard. 2002. Respective
demands of task and function allocation on
human-machine co-operation design: a psychological
approach. Connection science 14, 4 (2002), 283–295.

14. Erik Hollnagel and David D Woods. 1983. Cognitive
systems engineering: New wine in new bottles.
International Journal of Man-Machine Studies 18, 6
(1983), 583–600.

15. Stefan Kopp, Lars Gesellensetter, Nicole C. Krämer, and
Ipke Wachsmuth. 2005. Lecture Notes in Computer
Science. Springer-Verlag, London, UK, UK, Chapter A
Conversational Agent As Museum Guide: Design and
Evaluation of a Real-world Application, 329–343.

16. Abraham H Maslow. 1966. The Psychology of Science:
A Reconnaissance. (1966).

17. Henrike Moll and Michael Tomasello. 2007. Cooperation
and human cognition: the Vygotskian intelligence
hypothesis. Philosophical Transactions of the Royal
Society of London B: Biological Sciences 362, 1480
(2007), 639–648.

18. Bilge Mutlu, Allison Terrell, and Chien-Ming Huang.
2013. Coordination mechanisms in human-robot
collaboration. In Proc. of the Workshop on Collaborative
Manipulation, 8th ACM/IEEE Int. Conf. on Human-Robot
Interaction.

19. Stefanos Nikolaidis, Yu Xiang Zhu, David Hsu, and
Siddhartha Srinivasa. 2017. Human-Robot Mutual
Adaptation in Shared Autonomy. Proc. Conf. on Human
Robot Interaction, Vienna (2017).

20. Martin A Nowak. 2006. Five rules for the evolution of
cooperation. Science 314, 5805 (2006), 1560–1563.

21. Martin A. Nowak and Karl Sigmund. 1998. Evolution of
indirect reciprocity by image scoring. Nature 393, 6685
(1998), 573–577.

22. Karthik Panchanathan and Robert Boyd. 2003. A tale of
two defectors: the importance of standing for evolution of
indirect reciprocity. Journal of theoretical biology 224, 1
(2003), 115–126.

23. Raja Parasuraman and Victor Riley. 1997. Humans and
automation: Use, misuse, disuse, abuse. Human Factors
39, 2 (1997), 230–253.

24. Jean Piaget. 1965. Études sociologiques. Vol. 32.
Librairie Droz.

25. Friederike Range and Zsófia Virányi. 2015. Tracking the
evolutionary origins of dog-human cooperation: the
“Canine Cooperation Hypothesis”. Frontiers in
Psychology 5 (2015), 1582.

26. Sverker Runeson. 1977. On the possibility of ”smart”
perceptual mechanisms. Scandinavian journal of
psychology 18, 1 (1977), 172–179.

27. Malte Schilling, Stefan Kopp, Sven Wachsmuth, Britta
Wrede, Helge Ritter, Thomas Brox, Bernhard Nebel, and
Wolfram Burgard. 2016. Towards A Multidimensional
Perspective on Shared Autonomy. In 2016 AAAI Fall
Symposium Series.

28. Natalie Sebanz, Harold Bekkering, and Günther Knoblich.
2006. Joint action: bodies and minds moving together.
Trends in cognitive sciences 10, 2 (2006), 70–76.

29. Stephen V Shepherd. 2010. Following gaze:
gaze-following behavior as a window into social
cognition. Frontiers in integrative neuroscience 4 (2010),
5.

30. Robert L Trivers. 1971. The evolution of reciprocal
altruism. The Quarterly review of biology 46, 1 (1971),
35–57.

31. Ipke Wachsmuth. 2015. Embodied Cooperative Systems:
From Tool to Partnership. Springer International
Publishing, Cham, 63–79.

32. Lingyun Xiao and Feng Gao. 2010. A comprehensive
review of the development of adaptive cruise control
systems. Vehicle System Dynamics 48, 10 (2010),
1167–1192.

33. Rayoung Yang and Mark W Newman. 2013. Learning
from a learning thermostat: lessons for intelligent
systems for the home. In Proceedings of the 2013 ACM
international joint conference on Pervasive and
ubiquitous computing. ACM, 93–102.


	Introduction
	Cooperation Definitions
	Cooperation Complexity
	Representation Sharing


	Cooperation in Human Machine Interaction
	Adaptability
	Observability and Directability


	Interaction Levels
	Tool Use
	Example - Hammer
	Example - Robot Vacuum Cleaner
	Consequences

	Adaptive Tool Use
	Example - Cruise control
	Example - Adaptive Robot Vacuum Cleaner
	Consequences

	Cooperative Assistance
	Example - Cooperative Robot Vacuum Cleaner
	Consequences
	Towards Sustainable Cooperation


	Conclusion
	References 

