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Abstract

Facial expressions are one important nonverbal com-
munication cue, as they can provide feedback in conver-
sations between people and also in human–robot interac-
tion. This paper presents an evaluation of three standard
pattern recognition techniques (active appearance models,
gabor energy filters, and raw images) for facial feedback
interpretation in terms of valence (success and failure) and
compares the results to the human performance. The used
database contains videos of people interacting with a robot
by teaching the names of several objects to it. After teach-
ing, the robot should term the objects correctly. The sub-
jects reacted to its answer while showing spontaneous fa-
cial expressions, which were classified in this work. One
main result is that an automatic classification of facial ex-
pressions in terms of valence using simple standard pattern
recognition techniques is possible with an accuracy com-
parable to the average human classification rate, but with
a high variance between different subjects, likewise to the
human performance.

1. Introduction
Facial expressions provide one important nonverbal

communication channel. People often give implicit feed-
back about a conversation by means of facial expressions,
for instance by appearing to be interested or seeming to un-
derstand. One important goal of the research on automatic
facial expression recognition in recent years is to enable a
robot to communicate with humans in a fairly natural way.
In order to achieve this goal, besides the understanding of
speech, also the recognition and interpretation of facial ex-
pressions and other nonverbal cues is important, as they can
provide useful imformation about the interaction situation.

We think that the six emotional facial expressions hap-
piness, anger, disgust, fear, surprise, and sadness accord-
ing to Ekman [7] are not the most important ones in this
context. According to experiences in this field (as reported
by Caridakis et al. [3] and Lang et al. [12], for instance),
most of these emotional expressions occur much less fre-
quently in human–robot interaction than facial expressions
that carry some communicative semantics. Some examples
of this kind of “communicative” facial expressions are look-
ing disappointed or puzzled, appearing to agree or disagree
with the interlocutor, or seeming satisfied with or frustrated
by the situation. “Facial expressions” are considered in a
broader sense in this context, also including head poses and
head gestures, as they often carry a communicative meaning
as well. However, emotional and communicative facial ex-
pressions are not disjunct. A repetitive failure of the robot
might cause anger or the behavior of the robot could be sur-
prising, so that the user might show the corresponding emo-
tional facial expressions, which also imply a communicative
meaning in these situations.

In this paper, we investigate the automatic recognition by
means of standard pattern recognition techniques of a spe-
cial type of communicative facial expressions: the recog-
nition of valence in terms of success and failure, following
the approach we used in previous work [12]. In this context,
success means that a particular interaction with the robot
could be performed as desired, whereas failure means that
some problem occured. We think that in many practical in-
teractions with robots, the detection of failure situations by
means of facial expression interpretation would improve the
interaction experience notably, even without a finer inter-
pretation of the perceived facial expressions. For instance,
the robot could change into a “problem solving” state and
offer options that are applicable for many types of failures.
To achieve this, the interpretation of a facial expression as
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signalling a failure would be sufficient, a finer classifica-
tion (“angry”, “sad”, “disappointed”, “puzzeld”, etc.) is
not essentiell in many cases (and would probably be very
challenging). For the evaluations in this paper, we used a
database of object–teaching scenes where several subjects
showed objects to a robot and taught their names. One ad-
vantage of a pragmatic facial feedback recognition in terms
of valence is that there is often an implicitly given ground
truth label for the data, as one can usually decide whether an
interaction succeeded or a problem occured based on com-
paratively objective criteria (for example whether the robot
termed an object correctly or not), whereas the context–less
acquisition of reliable ground truth data soley based on the
visual appearance might be very difficult and subjective.

This paper is organized as follows. The next section
briefly discusses some related works. Afterwards, the used
database of object–teaching scenes is introduced. In sec-
tion 4, the results of the investigated automatic recognition
methods are presented and compared to the human perfor-
mance in section 5. Finally, the last section draws conclu-
sions and adds remarks about future work.

2. Related Work
Most work considers the classification into the six basic

emotion categories according to Ekman [7] or the recogni-
tion of facial actions in terms of the facial action coding sys-
tem proposed by Ekman & Friesen [8]. Fasel & Luettin [9]
and Pantic & Rothkrantz [13] presented surveys on facial
expression recognition techniques. Buenaposada et al. [2]
presented a real–time capable system that can classify basic
emotions. Bartlett et al. [1] have developed a system that
classifies 20 action units. The system’s performance was
tested on a database of spontaneous facial expressions, in
contrast to databases of posed facial expressions that were
usually used. In recent years, spontaneous facial expres-
sions received increasing research attention. Sebe et al. [16]
also created a database of spontaneous, authentic facial ex-
pressions. Zeng et al. [18] recently presented a survey that
focusses on the recognition of spontaneous facial expres-
sions.

Sebe et al. [15] added interest, boredom, confusion, and
frustration to the six basic emotions and the neutral ex-
pression and investigated joint visual and audio emotion
recognition, which performed significantly better than each
modality alone. Also facial expression recognition using
a dimensional emotion model (including dimensions such
as “evaluation” and “activation”) has been considered [3].
To our knowledge, there are so far only a few works that
consider the direct automatic interpretation of facial expres-
sions in terms of valence categories. Caridakis et al. [3] and
also Fragopanagos & Taylor [10] used the two–dimensional
“evaluation–activation space” and investigated the recogni-
tion of valence and activation level with neural networks.

3. Video Database

The video database used in this work is the object teach-
ing corpus presented in a previous paper [12]. It contains
videos of people interacting with the robot “Biron” [11] in
an object–teaching scenario. The subjects taught the names
of several objects to the robot, who should term the objects
correctly afterwards. Figure 1 depicts some example im-
ages from the database. All object–teaching scenes in the
videos were annotated and subdivided into four phases:

1. present: The subject presented the object to Biron and
said its name or asked for the name.

2. waiting: The subject waited for the answer of the robot
(not mandatory).

3. answer: The robot answered the subject, for instance,
by classifying the object or asking a question.

4. react: The subject reacted to the answer of the robot.

Furthermore, each object teaching scene was classified
into a specific category, depending on the answer of the
robot. Two categories are success and failure, meaning that
the robot said the correct or a wrong object name in the
answer phase. There are several other categories, which
are not used in this paper. In total, there are 221 success
and 227 failure scenes, distributed over 11 subjects, nine of
which had never interacted with the robot before. The fa-
cial expressions that the subjects showed during the react
phase can be considered as beeing authentic, because the
subjects did not know beforehand that a Wizard of Oz study
was performend and that facial expressions are important at
all, but assumed that the object classification performance
of an autonomously acting robot was to be evaluated.

In the previous paper where this database was presented
we also evaluated the human interpretation performance in
terms of valence recognition by letting other people watch
and judge videos from the database. We extracted a sub-
part of each object–teaching scene, starting near the end
of the answer phase, exactly when the robot started to say
the object name, and ending at the end of the react phase.
This starting point was chosen because it is the first moment
from which the subject could know whether the answer of
the robot was correct or not. We used the same video seg-
mentation for the evaluations in this paper. The sequence
length is typically in the range from two to seven seconds
(25 frames per second), a few videos are notedly longer.

4. Automatic Classification

This section reports the results of the conducted facial
expressions classification in terms of valence using stan-
dard pattern recognition techniques. For each success and
failure scene of the database an automatic face detection
based on the approach of Castrillón et al. [4] was applied.



(a) scenario overview (b) object–teaching scene (c) examples of facial expressions

Figure 1. Example images from the used object–teaching video database.

It succeeded for 98% of the scenes, the remaining 2% were
excluded from the evaluation.

Three different types of features were used: For each
subject, we built an individual, hand–annotated active ap-
pearance model (aam) [5] with 55 landmarks placed over
the face. The parameter vectors of the aam (when fitted to
the images in the video sequences) were used as feature vec-
tors for each frame. The aam fitting was initialized based on
the method described by Rabie et al. [14]. As second fea-
ture extraction method, we applied a bank of 40 gabor en-
ergy filters, consisting of eight equally spaced orientations
and five spatial frequencies with wavelengths of 1.17, 1.65,
2.33, 3.30, and 4.67 standard iris diameters (seventh part of
the distance between the eye centers), as used by Whitehill
et al. [17]. This filter design was found to be well suited
for face recognition [6, 17]. We also used the face images
directly as features.

4.1. SVM Majority Voting over Frames

We used a support vector machine (svm) classifier with
radial basis function (rbf) kernel. The evaluation was con-
ducted by a leave–one–out cross validation for all videos
of a subject: all frames of all videos except one were used
for the training, then the excluded video was classified via
a majority voting over the single frames.

4.1.1 Meta Parameter Selection

In order to evaluate the effectiveness of the svm classifier
in the given scenario, we performed a grid search to find
good meta parameters (rbf parameter σ and regularization
cost C), using a 10–fold cross validation for each parameter
combination, over all frames of all videos of a subject. Af-
terwards the training and test of the classifier was executed
as described in section 4.1. The results for different variants
of the features are summarized in table 1: aams with 95%
and 99% pca variance preservation (aam-95 and aam-99),
gabor energy filters with response images scaled down to
4x4, 8x8, and 12x12 (gab-size), and the raw face images

feature all scenes success failure
variants mean std mean std mean std
aam-95 63.6 23.1 54.8 27.1 69.8 23.9
aam-99 76.1 10.3 66.6 18.0 83.2 12.2
gab-4 72.8 12.3 65.7 28.4 76.3 15.5
gab-8 73.1 11.6 66.5 27.9 76.0 15.4
gab-12 71.3 12.9 64.4 27.9 74.9 17.3
gray-8 73.3 13.1 69.3 23.7 73.3 19.6
gray-16 75.1 12.5 67.5 25.3 79.0 14.6
gray-25 74.8 14.1 66.5 30.4 78.9 16.1
rgb-8 72.5 13.9 63.8 28.1 77.6 14.6
rgb-16 72.1 14.3 65.9 28.0 74.2 17.8
rgb-25 68.2 16.7 60.9 29.7 70.8 27.1
img-aam 70.5 11.1 64.0 21.2 73.3 18.3

Table 1. Mean value and standard deviation of the classification
performance for all videos, only success and only failure videos
(distribution over subjects), each for different features. Please re-
fer to sections 4.1.1 and 4.1.2.

scaled down to 8x8, 16x16, and 25x25, for both gray level
and rgb images (gray-size and rgb-size).

On the one hand, the classification rates are rather low
for a two–class problem. On the other hand, the classifica-
tion problem is expected to be hard, as the average human
performance is only 82% [12] (please see section 5). For
the subsequent investigations, we used only the best per-
forming variant of each feature (marked in bold in table 1),
except for the gabor energy filters, where we used variant
“gab-4” instead of “gab-8” because of the lower feature vec-
tor dimensionality (640 compared to 2,560) and the only
marginal difference in the classification rate (0.3% means
just one more video classified correctly).

In real applications, it is not possible to use all feature
vectors to find optimal meta parameters, as the test data is
unknown and not available for meta parameter optimiza-
tion. Therefore we conducted new grid searches, this time
prior to each training, using only the respective training set
of the svm for the search. Furthermore, it is not desirable



feature all scenes success failure
variants mean std mean std mean std
aam-gs 74.2 11.0 63.0 19.1 82.5 14.3
aam-av 75.4 10.1 64.1 19.3 84.0 12.5
img-gs 74.5 12.9 67.3 24.8 78.1 16.6
img-av 74.4 12.9 67.7 25.5 76.8 18.0
gab-gs 72.1 12.7 65.3 27.9 75.4 15.6
gab-av 72.4 12.5 65.4 28.1 76.0 15.4

Table 2. Mean value and standard deviation of the majority vot-
ing classification performance for all videos, only success and
only failure videos (distribution over subjects), each for different
features and meta parameters (feature-gs: individual grid search
for each training process, feature-av: average meta parameters of
these grid searches) Please refer to section 4.1.1.

for each training process to have its own set of meta param-
eters, as usually a certain stability of these parameters is re-
quired for practical usage. In order to estimate this stability,
we tested the classifiers for the third time, using the mean σ
and C values from the second test for all training processes.
The results of these tests are listed in table 2. The classi-
fication rates are only slightly lowered, and the best meta
parameters in the second grid search test were usually clus-
terd in a certain region in the search space. This supports
the assumption that good meta parameters can be selected
without knowing all data beforehand. For the subsequent
evaluations, the results from the first grid search were used.

4.1.2 Feature Comparison

The raw image features compare surprisingly well to the
active appearance models. The reason behind is that about
19% of the frames needed to be rejected from the aam clas-
sification, because the model fitting was too poor, mainly
due to too large head rotations. If the raw image feature
performance is evaluated only on those frames that are used
for the aam tests, the classification rates decrease notably,
as listed in the last row of table 1.

Surprisingly, the gabor energy filters yielded the lowest
classification rates. Theoretically, they are expected to out-
perform the raw image features. We surmise that compared
to the amount of available training data, the dimension of
the feature vectors is too high, even though the gabor re-
sponses are highly downscaled (which might be a problem
in its own), making it difficult to find appropriate class bor-
ders. It might be beneficial to use less filters with a higher
resolution for future tests. In the remainder of the paper, we
continue the investigations for aams and images only.

4.1.3 Classification Details

The classification performances of the aam and image fea-
tures for each of the 11 subjects are listed in the left columns

of table 3. The variance of the classification rates is very
high, ranging from very good to very poor, even system-
atic misclassifications occur. We think that this difficulty
of the classification problem is due to the high intraclass
variance, compared to the interclass variance. As a rough
estimate of these variances, we computed the mean pair-
wise euclidean distances between all success and all failure
frames separately (mean intraclass distance), and also the
mean pairwise euclidean distance between all success and
all failure frames of each subject (mean interclass distance).
The distances are listed in the right columns of table 3. The
mean intra- and interclass distances are of comparable sizes,
which is an indication of the difficulty of the classification
problem. There is a significant correlation between the clas-
sification rate and the ratio of interclass to itraclass distance,
the latter represented as the sum of the intraclass distances
of the two classes (Spearman’s rank correlation coefficient,
r = 0.77, p = 0.0059 for aam features and r = 0.61,
p = 0.0484 for image features). This supports our conjec-
ture that a low interclass to intraclass variance ratio is the
main reason for misclassifications in the investigated sce-
nario.

For the aam features, the classification performance is
also correlated to the percentage of selected support vec-
tors (17% on average, 7.3 standard deviation) to some ex-
tent (close to significance, Spearman test, r = −0.58,
p = 0.0590), which reflects the problem difficulty also in
terms of model complexity. This correlation does not hold
for the image features (19% support vectors on average, 8.4
standard deviation, r = −0.19, p = 0.5703).

4.2. SVM Mean Feature Vector Classification

In section 4.1, the results of a simple majority voting
over single frames are reported. This section considers an
even simpler approach: each video is represented by one
feature vector only, namely the mean vector of its frames.
This simple classification method yielded surprisingly good
results, outperforming the previous majority voting scheme.

4.2.1 Classification Performance

The classification performances for the mean feature vec-
tors are summarized in table 4. The aam features with meta
parameters selected via a cross validation grid search over
all training data performed best, but also the classification
rate of the image features improved, compared to the major-
ity voting. The results for meta parameters selected by an
individual grid search over the training data prior to each
training and the mean parameters of these grid searches
(please refer to section 4.1.1) are a few percent lower. This
difference is greater than in the majority voting case, show-
ing a higher sensitivity to the meta parameter selection. We
attribute this to the drastically decreased number of feature



subject classification rates mean distance values
all succ fail succ fail inter

aam-01 85 80 89 25.5 22.1 26.8
aam-02 72 65 83 23.0 17.6 21.3
aam-03 83 82 83 26.9 19.3 24.5
aam-04 95 90 100 30.9 21.8 29.9
aam-05 84 75 94 39.9 28.7 37.5
aam-06 64 67 62 44.3 47.2 46.8
aam-07 64 48 77 27.4 29.3 29.0
aam-08 67 72 62 29.8 20.3 27.4
aam-09 69 25 91 22.1 21.8 23.0
aam-10 71 58 83 23.0 33.0 29.4
aam-11 83 71 91 25.4 17.1 24.6
img-01 91 93 89 3.03 2.09 2.73
img-02 66 76 50 1.89 1.54 1.80
img-03 80 86 72 2.52 2.16 2.43
img-04 97 95 100 3.11 2.08 2.92
img-05 88 81 94 2.85 2.83 2.95
img-06 71 73 69 3.14 3.24 3.23
img-07 59 32 81 2.17 2.15 2.19
img-08 72 81 62 2.68 1.85 2.43
img-09 60 17 83 1.43 1.44 1.48
img-10 71 58 83 2.42 2.89 2.75
img-11 71 50 86 2.39 1.70 2.25

Table 3. Classification details for majority voting classification.
Left: Classification rates for all videos, only success and only fail-
ure videos for all 11 subjects, each for aam and image features.
Right: Mean pairwise inter- and intraclass feature vector distances.
Please refer to section 4.1.3.

feature all scenes success failure
variants mean std mean std mean std
m-aam 82.1 10.1 76.1 14.0 86.8 10.2
m-img 80.0 10.0 76.4 21.4 80.7 12.6
m-aam-gs 76.0 11.5 70.3 19.2 79.2 13.3
m-aam-av 77.6 11.6 73.5 16.7 80.3 10.1
m-img-gs 73.5 10.5 66.2 25.5 77.5 11.6
m-img-av 76.3 11.2 68.7 25.7 80.4 13.3

Table 4. Mean classification performance and standard deviation
for mean vector features, each for all scenes, only success, and
only failure scenes. Abbreviations likewise to table 2.

vectors. However, even most of these classification rates are
better than the corresponding rates in the majority voting.

4.2.2 Classification Details

Table 5 shows the mean classification rates, intra- and in-
terclass distances for all subjects, likewise to table 3 in
the majority voting case. The average classification per-
formance improved for all 11 subjects for the aam features
and for eight subjects for the image features. The correla-
tion between classification performance and ratio of inter-

subject classification rates mean distance values
all succ fail succ fail inter

aam-01 91 80 100 12.9 16.1 18.4
aam-02 79 76 83 14.4 11.2 13.8
aam-03 87 89 83 24.9 23.6 25.4
aam-04 97 95 100 20.2 12.0 21.0
aam-05 88 88 88 32.6 22.8 30.3
aam-06 68 67 69 39.0 38.5 38.5
aam-07 66 57 73 19.2 20.3 20.5
aam-08 81 72 92 25.3 15.5 23.2
aam-09 74 50 87 19.2 13.8 17.6
aam-10 79 75 83 18.8 17.1 18.2
aam-11 93 88 97 18.3 11.6 20.0
img-01 94 87 100 1.73 1.31 1.70
img-02 83 88 75 1.22 1.12 1.22
img-03 76 86 61 1.69 1.83 1.80
img-04 89 85 94 1.62 1.03 1.79
img-05 88 94 81 1.64 1.45 1.63
img-06 79 93 62 1.43 1.71 1.61
img-07 63 28 90 1.48 1.31 1.42
img-08 76 75 77 1.52 1.29 1.62
img-09 63 42 74 1.04 0.83 0.97
img-10 83 83 83 1.78 1.60 1.67
img-11 86 79 91 1.67 1.26 1.67

Table 5. Classification details for mean feature vector classifica-
tion. Left: Classification rates for all videos, only success and
only failure videos for all 11 subjects, each for aam and image
features. Right: Mean pairwise inter- and intraclass feature vector
distances. Please refer to section 4.2.2.

to intraclass distance is now stronger for the aam features
(Spearman test, r = 0.85, p = 0.0010) and is weak-
ened beyond the significance level for the image features
(r = 0.54, p = 0.0896). For both feature types, the corre-
lations between percentage of selected support vectors and
classification performance are not significant (r = −0.45,
p = 0.1686 for aam features and r = −0.57, p = 0.0686
for image features). Due to the much smaller number of
training vectors, a higher percentage is choosen as support
vectors (aam features: 68%, 17.9 standard deviation; im-
age features: 69%, 15.7 standard deviation). The training
error is usually in the range of 15% – 30%, whereas it is
below 1% in very most cases in the majority voting classifi-
cation. This is natural to some degree due to the differences
in the amount of training data, but it might also indicate
some overfitting in the majoriy voting.

4.2.3 Comparison to Majority Voting

In order to investigate why the mean feature vectors per-
formed better than the majority voting over frames, we con-
sidered those videos where the two approaches disagreed
in their classification. This was the case for 77 scenes for



the aam features and 86 scenes for the image features. The
classification of the mean features was correct in 51 and
53 cases, respectively. In an inspection of these scenes it
was found that very often there are one or two subsequences
where almost all frames are wrongly classified, and also one
or two subsequences where almost all frames are classified
correctly. In cases where the former outnumbered the lat-
ter ones in terms of total length, the scene was necessarily
misclassified by the majority voting scheme. In contrast, the
mean vector of all frames could still capture important char-
acteristics of the associated class and hence allow for cor-
rect classification. Visual inspection of the videos also led
to the conclusion that often only a (possibly short) subse-
quence of the video is discriminative in terms of valence in-
terpretation, although the videos were already segmented to
contain only important information, according to the given
annotations. For those scenes, majority voting over the
complete video sequence is not well suited. Instead, an au-
tomatic detection of important subsequences would be very
beneficial and remains for future work.

5. Comparison to the Human Performance
In the paper were the database was introduced [12], we

also evaluated the human recognition performance in facial
feedback interpretation in terms of valence. We randomly
chose 88 videos from the database (four success and four
failure videos of each subject) and showed them to 44 new
subjects who should interprete the videos in terms of va-
lence. All videos were presented without sound and in four
different context conditions: showing the full scene or only
the face region of the video sequence, each combined with
showing the video sequence over the full length or only the
first half of the video. The condition where only the face
of the subject is shown over the full length of the scene
(according to the annotations) matches best with the infor-
mation the automatic classification approaches considered
in this paper can use, as they also process the whole video
without any visual context. The average human recognition
performance for this condition was 82%, with a high vari-
ance over both observing subjects and shown videos. The
results are summarized in table 6.

The best performing automatic recogniton approach con-
sidered in this paper, the mean aam features, reached the av-
erage human recognition performance. When evaluated on
the above mentionend 88 videos only (instead of all avail-
able videos), the performance of the mean aam features
even exceeded the human performance, as shown in table 6.
For comparison, also the performances of the image fea-
tures and the majority voting are listed. The mean image
features also reached the human performance when eval-
uated on the video subset shown to the human observers.
Also in the majority voting case, the aam features per-
formed better on this subset, whereas the image features

class- all scenes success failure
ifier mean std mean std mean std
human 82.0 19.1 78.1 21.2 86.0 16.1
m-aam-a 82.1 10.1 76.1 14.0 86.8 10.2
m-aam-s 86.6 8.8 79.5 15.1 93.2 11.7
m-img-a 80.0 10.0 76.4 21.4 80.7 12.6
m-img-s 82.1 15.0 79.5 18.8 84.1 16.9
aam-a 76.1 10.3 66.6 18.0 83.2 12.2
aam-s 78.7 14.9 70.5 27.0 86.4 17.2
img-a 75.1 12.5 67.5 25.3 79.0 14.6
img-s 71.8 22.3 59.1 35.8 84.1 16.9

Table 6. Comparison of the performances of human recognition,
mean aam features evaluated on all videos (m-aam-a) and only on
those 88 videos the human subjects judged (m-aam-s), likewise
for mean image features (m-img-a and m-img-s). Also the perfor-
mances for the majority voting for aam and image features when
evaluated on all videos (aam-a and img-a) and only these 88 videos
(aam-s and img-s) are listed. Please refer to section 5.

yielded worse results. Further commonalities between hu-
man and automatic recognition performances are that on
average failure scenes were easier to classify than success
scenes, a higher variance for success than for failure scenes,
and a high variance of the classification rate depending on
the subject resp. video in general.

In order to evaluate whether the human observers and the
svm classification using the mean aam features tended to
make the same classification errors, we binarized the classi-
fication results for the 11 observing subjects1 for each video
by setting the classification result to 1 if six or more subjects
classified it correctly, and to 0 otherwise. This binarization
was done to become compatible with the results of the auto-
matic recognition, which yield only one binary value (cor-
rect or false classification) for each video. It turned out that
there is a significant correlation between these classification
results on the 88 videos (Pearson’s correlation coefficient,
r = 0.25, p = 0.0187), indicating that indeed the human
observers and the automatic classification tended to make
the same classification errors to some extent.

6. Conclusions and Future Work

We demonstrated that it is possible to reach the human
performance in facial expression interpretation in human–
robot interaction in terms of valence with a surprisingly
simple approach using standard pattern recognition tech-
niques, when a subject–specific classification is performed.
However, the classification with the best performing mean
aam and image features requires an appropriate meta pa-
rameter selection. Likewise to the human classification, the

1 There were 44 observing subjects, who are distributed over the four
context conditions, thus resulting in 11 observing subjects for each context
condition, not to be confused with the 11 subjects shown in the videos.



variance of the recognition performance is very high, and
on average failure scenes are easier to classify than success
scenes. The investigation of the surprisingly good perfor-
mance of the mean feature vectors compared to the major-
ity voting over frames indicated that the detection and usage
of descriminative subsequences of the videos might be very
benefical and shall be investigated in future work. Despite
the achievement of the human average recognition perfor-
mance, the classification rates are rather low for a two–class
problem, espescially for the success class. We assume that
this can be improved be using more sophisticated classifica-
tion approaches, for instance based on subsequence analy-
sis. One main problem to deal with is the comparatively low
interclass to intraclass variance ratio, measured on frame
level.

The good performance of the raw images compared to
the active appearance models show that also the video parts
with large out–of–plane head rotations (which are problem-
atic for the aam fitting and were thus rejected in the aam
tests) convey useful information and should be considered
for the interpretation. Although shown to yield good results
on other facial analysis problems, a bank of 40 gabor filters
performend worse than aam and image features in our eval-
uations. All features that were used in this paper operate
on single frames. In future work pattern recognition meth-
ods that consider the temporal dynamics shall be evaluated.
Furthermore, this paper considered only subject–specifc in-
terpretation of facial expressions. Generalization between
different subjects is expected to be much more difficult and
a main target of future work. Also the automatic segmen-
tation of interesting video segments is to be investigated, as
so far presegmented scenes were used.

7. Acknowledgements

Christian Lang gratefully acknowledges the financial
support from Honda Research Institute Europe for the
project “Facial Expressions in Communication”.

References
[1] M. Bartlett, G. Littlewort, M. Frank, C. Lainscsek, I. Fasel,

and J. Movellan. Fully Automatic Facial Action Recognition
in Spontaneous Behavior. In Proceedings of the 7th Interna-
tional Conference on Automatic Face and Gesture Recogni-
tion, pages 223–230, 2006. 2

[2] J. M. Buenaposada, E. Muñoz, and L. Baumela. Recognising
facial expressions in video sequences. Pattern Analysis &
Applications, 11(1):101–116, 2008. 2

[3] G. Caridakis, L. Malatesta, L. Kessous, N. Amir,
A. Raouzaiou, and K. Karpouzis. Modeling naturalistic af-
fective states via facial and vocal expressions recognition.
In 8th International Conference on Multimodal Interfaces,
pages 146–154, 2006. 1, 2

[4] M. Castrillón, O. Déniz, and M. Hernández. The ENCARA
System for Face Detection and Normalization. Lecture Notes
in Computer Science, 2652:176–183, 2003. 2

[5] T. Cootes, G. Edwards, and C. Taylor. Active Appearance
Models. In H. Burkhardt and B. Neumann, editors, Proceed-
ings European Conference on Computer Vision, volume 2,
pages 484–498. Springer, 1998. 3

[6] G. Donato, M. Bartlett, J. Hager, P. Ekman, and T. Se-
jnowski. Classifying facial actions. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 21(10):974–989,
1999. 3

[7] P. Ekman. Strong evidence for universals in facial expres-
sions: a reply to Russell’s mistaken critique. Psychological
Bulletin, 115(2):268–287, 1994. 1, 2

[8] P. Ekman and W. Friesen. Facial Action Coding System: A
Technique for the Measurement of Facial Movement. Con-
sulting Psychologists Press, Palo Alto, 1978. 2

[9] B. Fasel and J. Luettin. Automatic Facial Expression Analy-
sis: A Survey. Pattern Recognition, 36:259–275, 2003. 2

[10] N. Fragopanagos and J. Taylor. Emotion recognition in hu-
mancomputer interaction. Neural Networks, 18(4):389–405,
2005. 2

[11] A. Haasch, S. Hohenner, S. Hüwel, M. Kleinehagenbrock,
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