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Abstract. If label information in a classification task is expensive, it can
be beneficial to use active learning to get the most informative samples
to label by a human. However, there can be samples which are mean-
ingless to the human or recorded wrongly. If these samples are near the
classifier’s decision boundary, they are queried repeatedly for labeling.
This is inefficient for training because the human can not label these
samples correctly and this may lower human acceptance. We introduce
an approach to compensate the problem of ambiguous samples by ex-
cluding clustered samples from labeling. We compare this approach to
other state-of-the-art methods. We further show that we can improve the
accuracy in active learning and reduce the number of ambiguous samples
queried while training.
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1 Motivation

User-adaptable learning systems, who are post-trained by the user have the
advantage, that they can adjust to new circumstances or improve towards a
user-specific environment. In a classification system the samples can be trained
incrementally and labeled by the user. Active learning [10] is an efficient training
technique, where the samples which are predicted to deliver the highest improve-
ment for the classifier are chosen for labeling by a human.

Whenever the user is involved, the system has to make sure that interaction
and training is efficient. A user often feels bored with labeling tasks, therefore the
learning system should limit the number of actions and they should be solvable
for the human to not annoy him and instead make him feel comfortable and
meaningful in his role as interaction partner. To know the time when the learning
system needs advice, it is necessary to predict the competence of the learning
system, which we demonstrated in our recent contribution [6] with respect to a
classifier’s accuracy in pool-based incremental active learning. However, on the
other side the human teacher can also have limited competence to fulfill his task
in an oracle role.
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In most active learning approaches the oracle is expected to have perfect
domain knowledge [11]. But in many real world applications a perfect oracle is
not realistic because there can be samples resulting from noisy recordings like a
dirty camera or bad light conditions. Also a specific oracle might not know the
labels for specific samples because it can not identify them.

Our goal in this contribution is, that the learning system should adapt to the
human weaknesses and adapt its strategy of interacting as a good cooperation
partner. Related to active learning that means, rather than forcing the human
to give uncertain answers, we want to give him the opportunity to reject the
samples he is uncertain about.

There are diverse approaches in the literature for handling uncertainty in
labeling. Much research was done on active learning with noisy labels or with
labels from multiple oracles [15]. However in our task setting the robot is in-
tended to have access to only one oracle. Käding et al. [5] proposed an approach
for their Expected Model Output Change (EMOC) model that adds uncertain
samples in one error class. However, their method only works with EMOC and
is directly integrated into the classifier. A similar approach was done by Fang
et al. [3]. They train a classifier that should distinguish certain and uncertain
objects. However, in their evaluation they have clustered the data in three clus-
ters and define two of them as ambiguous, which is too simplistic and does not
model a real world task. The problem with classifier-based solutions for finding
and rejecting ambiguous samples is that they, according to our experiments, can
not generalize well in highly complex scenarios like the one we are facing. In
our application scenario, a service robot acts in a garden environment [7], mows
the lawn and records the garden and occurring objects by a camera. However,
because occurring objects are diverse, there is no clear concept between recog-
nizable and ambiguous samples in the feature space, making it hard to train i.e.
a secondary classifier to separate them, as is shown in the experiment section.

We show that a more local method is better able to adapt to this distributed
ambiguous samples and therefore we introduce Density-Based Querying Exclu-
sion (DBQE), a lightweight clustering-based approach which finds ambiguous
clusters and excludes them from querying in active learning. Our approach does
not inhibit exploration of unknown classes, and can be stacked up to any exist-
ing active learning model and every querying technique. We evaluate it using a
challenging outdoor data set (Fig. 1).

2 Active Learning

In pool-based active learning there is a labeled set L and an unlabeled set U .
The active training of a classifier C starts with an empty or small L. The learner
C can choose which samples from U should be labeled by a so-called oracle
(which is often a human) and added to L. This is called querying and there
are a variety of approaches to find the best samples to query [11]. An often
used querying technique is uncertainty sampling [1] which queries the samples
with the least certainty for labeling. Other strategies select samples based on
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the expected model output change [5], or they consider a committee of different
classifiers [12] for choosing the samples to be queried. C is then trained in an
incremental fashion or again from scratch on L.

Fig. 1. Images from the outdoor object recognition benchmark [7,8]: The upper row
images are labeled as recognizable and the bottom row as ambiguous. Objects like the
basketball or the leaves are recognizable from every angle. The car is recorded in its
canonical view, opposed to the blue duck which is ambiguous from this perspective.
There are also views of different objects which are hardly distinguishable, like an apple
(bottom center) and a tomato (bottom right).

3 Density-Based Querying Exclusion

We introduce Density-Based Querying Exclusion (DBQE) which clusters am-
biguous samples and prevents them from querying by excluding them from U .
Our assumption is that ambiguous samples are located in clusters which can
occur in a variety of places in the feature space. Density-based clustering ap-
proaches showed to be versatile and deliver good performance while at the same
time are robust with handling outliers [2]. Another advantage is that the number
of clusters does not have to be known in advance. This is important in particular
because in our case we want to find only one cluster at a time, while there can
be any number of clusters in the data set.

The training procedure of an active learning classifier using DBQE is illus-
trated in Algorithm 1.
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Algorithm 1 Active learning with Density-Based Querying Exclusion (DBQE)

Require: maxPts . do clustering on maxPts points nearby xe
Require: minPts . minimum number of neighbors to be a core sample
Require: ε . distance range describing a sample’s neighborhood
1: U ← load data() . unlabeled data
2: L ← {} . labeled Set is empty
3: C ← initialize classifier() . initialize active classifier
4: while not C.is trained() do
5: s← C.query next sample(U) . querying using uncertainty sampling
6: l← ask for label(s) . ask oracle for supervision
7: if l.is ambiguous() then . oracle labeled s as ambiguous
8: c← DBQE(s,minPts,maxPts, ε) . DBQE clustering is applied
9: U ← U \ c . found cluster c is excluded from U

10: else . s is not ambiguous and oracle labeled it
11: C.train(s, l) . classifier C is trained with new sample s and label l
12: end if
13: end while
14:
15: function DBQE(xe,minPts,maxPts, ε)
16: v ← {} . visited samples
17: c← {xe} . samples considered to be in cluster
18: t← {xe} . samples to be processed
19: R← get samples nearby(U , xe,maxPts) . get maxPts nearest samples to xe
20: for a ∈ t do
21: if not a ∈ v then . if a was not visited before
22: v ← v ∪ a . mark a as visited
23: n← region query(a, ε) . find neighborhood points
24: if n.size() > minPts then . if a is a core sample
25: c← c ∪ a . add a to cluster set c
26: t← t ∪ n . add n to t
27: end if
28: end if
29: t← t \ a . remove a from queue t
30: end for
31: return c . return ambiguous cluster c
32: end function
33:
34: function region query(s, ε) . returns samples from R within range ε to s
35: n← {}
36: for i ∈ R do
37: if |i− s| < ε then . sample i is within ε range
38: n← n ∪ i . i is added to set n
39: end if
40: end for
41: return n . samples in neighborhood are returned
42: end function
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The active learning is applied as usual: First the query strategy selects a
sample and the oracle is asked for a label. If it can provide it, the classifier is
trained, otherwise our DBQE approach is applied which does a region growing
to find the cluster containing the queried ambiguous sample, which we call xe.
In the clustering function we select a subset of samples R ⊆ U which are the
nearest samples to xe for speed improvements and to limit the maximum number
of excluded samples, denoting maxPts as the number of points in R. The region
growing is applied similar to DBSCAN [2], also illustrated in Fig. 2. DBSCAN
iteratively applies this region growing until the whole data set is clustered. There
are two parameters involved: ε is a distance range describing an arbitrary sam-
ple’s neighborhood points. The other parameter to choose is minPts which is
the minimum number of samples in a sample’s neighborhood for the sample to
be a so-called core sample, otherwise it is an outlier. The main idea is to ex-
pand a cluster c around the ambiguous sample xe. The cluster samples in c are
excluded from U .

If there is no cluster containing xe (so xe itself is an outlier) DBQE is only
excluding xe from U .
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Fig. 2. Illustration of DBQE: the points represent samples from the unlabeled subset
R ⊆ U with the number of samples maxPts = 14. Blue points (circles) are samples not
visited, visited points in v are displayed orange (half circles) and points determined as
part of the ambiguous cluster c are in red (peaked circles), outliers in gray (pacman
shape). The progress of the region growing is displayed with the minimum neighbor-
hood size minPts = 3. The oracle defines xe as ambiguous and in the first step xe is
determined as a core sample. The cluster is expanded, finding the second core sample
in step 2. In step 3, an outlier is found, which is not included into the cluster. The final
clustering result is displayed on the right.

4 Evaluation

We evaluated our method together with some baseline methods on our outdoor
data set [7] because it provides a real application benchmark of high difficulty
[6,7,8]. The data set is an image data set consisting of 50 object classes. The
objects are laying on the lawn and were recorded by a mobile robot in a way
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that the robot approaches the object and makes ten consecutive pictures each
approach. In total each object has ten approaches with ten images each, sum-
ming up a total of 5000 images. Some objects can be hard to distinguish due to
unfavorable viewing angle. Also there are some objects that look rather similar
like an apple, onion, tomato, orange and ball or e.g. several rubber ducks. A
feature representation of each image is extracted with the VGG16 deep convo-
lutional net [13] trained on images from the imagenet competition. We removed
the last softmax layer and using the outputs of the penultimate layer as a 4096
dimensional feature vector. There can be approaches or partial approaches of an
object, from which the object images can be ambiguous for a human. We anno-
tated this ambiguity property for our data set (compare to Fig. 1). In total we
annotated 24% of the images as ambiguous, a selection of recognizable and am-
biguous images can be seen in Fig. 1. For evaluation a 50/50 train-test split was
done. The data was split by approaches, so that the images of a single approach
are either completely in the train or in the test set. We repeated the experiment
15 times to average our results. As a classifier we chose Generalized Learning
Vector Quantization (GLVQ). GLVQ has proved to be an accurate classifier in
incremental learning [8] and is also suitable for active learning with uncertainty
sampling [6].

DBQE needs the parameters minPts and ε to be set to a suitable value. To
have a better idea how the data is clustered, a look at unsupervised statistics
related to the distances to neighboring samples can help. We achieved good
results with many parameter combinations but we also applied a grid search
where we defined ranges of minPts and ε values and tested all combinations of
those. There we found out ε = 35, minPts = 3 and maxPts = 20 give best
results for our evaluation on the outdoor data set. For training and evaluating
an active learning classifier we developed the framework ALeFra3 in context of
this paper. By using it any offline and incremental classifier can be converted to
an active classifier. There are also basic querying techniques implemented and
the user can visualize the progress of the training with a few lines of code. There
is a visualization of the feature space which uses a dimensional reduction like
t-SNE [9] or MDS [14] and if the data consists of images, they are visualized in
a collage which is created after each batch while training.

We investigate three approaches and compare them to simple baselines:

– Classifier: The problem can be represented as a binary classification task,
predicting whether samples are recognizable or not [3]. The classifier is
trained with all yet queried recognizable and ambiguous samples. We evalu-
ated the classifiers GLVQ, kNN, logistic regression and SVM, where the kNN
outperformed the others. This may occur because a local model like kNN
can better adapt to the ambiguous samples, who may be diverse in feature
space. Also we have observed, that if using classifier’s confidence information
of predicted samples can improve performance and exploring new classes in
U . Therefore we make use of a certainty value of the kNN-classifier, which
uses distance information of the winning and loosing classes defined in [6].

3 https://github.com/limchr/ALeFra

https://github.com/limchr/ALeFra


Improving Active Learning by Avoiding Ambiguous Samples 7

Only samples who are classified as ambiguous with a certainty value greater
than a predefined threshold are avoided in querying. We tuned this threshold
to the best performance for our evaluation on the outdoor data set.

– Rejection: The problem can be represented as a rejection task, where some
samples are rejected from querying. Therefore we implemented a local re-
jection approach [4] for the GLVQ-classifier. Here every prototype has a
rejection threshold which is set to zero at beginning. If an ambiguous sam-
ple is queried, the winning prototype’s threshold is adjusted to d ∗ α, where
d is the certainty of the ambiguous sample and α is a parameter that can
be tuned. Only those samples are considered for querying, for which the
distance d to their winning prototype is higher than the threshold of that
particular prototype.

– Clustering: The problem can be represented as a clustering task. DBQE is
using density-based clustering to represent ambiguous samples. We also tried
to apply silhouette analysis, but density-based clustering results in higher
accuracy in finding the ambiguous clusters and additionally it is very fast to
expand a cluster and it can also detect outliers.
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Fig. 3. Evaluation on the outdoor data set: test-accuracies (y-axis) of all approaches
vs. number of queried samples (x-axis).

We also implemented the following two baseline strategies for comparison:

– Mark: If an ambiguous sample is queried, it is marked as ambiguous and is
not considered in future queryings. This baseline strategy can be seen as a
naive approach for handling ambiguous samples.

– Prediction: If an ambiguous sample is queried, the classifier predicts its
label and uses this for training. With this baseline we want to determine if
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the classifier itself is able to classify the samples that the human rejected as
ambiguous.

Fig. 3 shows the test-accuracies of the strategies for active training. DBQE
and classifier are the two strategies with the highest accuracy where DBQE is
better in the middle stage of the training. Reject is slightly better than mark,
where at the end of training, both are converging to DBQE and classifier. Predic-
tion is significantly worse than the other approaches, indicating that the classifier
is not accurate at predicting those labels that the human can not provide.
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Fig. 4. Number of queried ambiguous samples during training. Each bin of the his-
tograms represents the number of ambiguous samples queried, pooled in bins of 16
queryings giving a total of 50 bins. The number of ambiguous samples is displayed
on the y-axis and the number of queries on the x-axis. Please note that the baseline
strategy prediction is not represented here because it is using ambiguous samples for
training.

DBQE is slightly better than classifier in terms of accuracy while training.
However, another important objective was to minimize human frustration and to
make him feel comfortable in his role. Therefore we visualized the number of am-
biguous queried samples while training. In Fig. 4 it can be seen that significantly
fewer samples are queried using DBQE. After 400 trained samples, ambiguous
samples are queried only occasionally. The querying of ambiguous samples us-
ing classifier only drops slowly and especially in the earlier stage of training is
significantly higher than DBQE. Mark is querying the most ambiguous samples
compared to DBQE and classifier. To better visualize the total number of am-
biguous queried samples, we plotted the cumulative sum of ambiguous queried
samples in Fig. 5. DBQE is capable of querying approximately three times less
ambiguous samples than classifier and five times less than reject and mark.
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Fig. 5. Cumulative sum of queried ambiguous samples during training.

5 Conclusion

We showed that it is possible to efficiently exclude ambiguous samples from
active learning. In our challenging outdoor object recognition setting, where
ambiguous samples were distributed over the whole feature space, DBQE is able
to improve the accuracy in active learning and further reduces the amount of
meaningless queries significantly. We implemented and evaluated a variety of
other approaches in depth and compared them to DBQE in a realistic setting.

We think that DBQE can be used to model human capabilities and signif-
icantly improve robot acceptance as a cooperation partner. To prove this as a
next step we want to integrate DBQE in a robotic application and investigate a
larger number of benchmarks.
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