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Abstract—This paper introduces a novel approach
for querying samples to be labeled in active learning
for image recognition. By using dimension reduction
techniques to create a 2D feature embedding for vi-
sualization, the user is able to efficiently label images
for training a classifier. This is made possible by a
querying strategy specifically designed for the visu-
alization, seeking optimized bounding-box views for
subsequent labeling. The approach is implemented in a
web-based prototype. It is compared in-depth to other
active learning querying strategies within a user study
we did with 31 participants. With our approach the
participants could train a more accurate classifier than
with the other approaches on a challenging data set.
Additionally, we demonstrate that due to the visual-
ization, the number of labeled samples increases and
also the label quality improves.

Index Terms—Active Learning, Classification, Pat-
tern Recognition, Image Recognition, Object Recogni-
tion, User Interface, Visualization, Dimension Reduc-
tion

I. Motivation
In a classification task, there are machine learning mod-

els that can be trained incrementally and samples can
be labeled stepwise by the user. Active learning [16] is
an efficient training technique, where the samples, which
are predicted to deliver the highest improvement for the
classifier, are chosen for being labeled. There are several
approaches for selecting the samples to be queried. How-
ever, it depends on the actual data which approach yields
the best accuracy [18].

Having this in mind, we try to find a more efficient way
for applying active learning. The common practice is to ask
the human for a label of one single sample at a time [17].
Since this is a monotonous task and therefore often leads
to mislabeled samples, we want to intervene already at
this point by using a labeling user interface which is not
only capable of boosting the performance of the classifier
and increase the number of labeled samples, but also gives
the human a more pleasurable experience while training
the classifier. Another goal is to give the human a better
idea about the inner representation of the trained model.

This insight may lead to a better understanding where
strengths and weaknesses of a feature representation are.
To facilitate human labeling of high-dimensional samples,
we use dimension reduction techniques to visualize the
data in a 2D feature embedding space. We use this for
improving active querying in an image recognition task.

There are some approaches towards machine learning
using such a visualization. Recently, Cavallo et al. [1]
introduced an approach for not only visualizing high di-
mensional data, but also changing both the data in the
feature embedding space and in high dimensional space.
For instance, after changing data in feature embedding
space it can be explored what effect this has in the high
dimensional data and vice versa. Iwata et al. [6] introduced
an approach where the user can relocate the data in
a visualization to be more representative for him. This
can be useful if data is clustered in different categories
and a category should be located in one region of the
visualization space. It is also useful for ordering data, if
it has a natural ordering like numbers or letters.

More related to active learning, there are approaches
using scatter plots for visualizing data to facilitate la-
beling. Huang et al. [5] improved the labeling process of
text documents showing the human visualizations of the
feature space. The text data is visualized by t-SNE [15],
force-directed graph layout and chord diagrams. Hongsen
et al. [11] used semi-supervised metric learning to train
a visualization of video data. In both approaches, the
data is displayed next to the scatter plot for labeling. The
querying of samples is done manually by the user, so there
is no active learning strategy involved directly, which we
want to accomplish for image recognition.

We introduce an active querying technique which uti-
lizes the visualization and enables an efficient training
by finding bounding-box views in the visualization for
labeling. We show in our contribution, that especially for
image data using a visualization is favorable and that using
our adaptive interface together with the proposed querying
method is more efficient than state-of-the-art approaches.



II. Active Learning
Active learning is an efficient technique for training a

classifier incrementally. One variant of it is pool-based
active learning, where the features X with labels Y are
divided in an unlabeled pool U and a labeled pool L. A
querying function selects the most relevant samples from
U to be labeled by an oracle, which is in most cases
a human annotator. As the training progresses, samples
from the unlabeled pool U are labeled and put in the
labeled pool L. Simultaneously, the classifier c is trained
online with the new labeled samples.

There were many research contributions in the past
proposing querying methods for high performance gain
of the classifier. An often used approach is Uncertainty
Sampling (US) [8], originally proposed by Lewis et al. [10].
In US the classifier’s confidence estimation cp of the
samples from the unlabeled pool are used to select those
with the lowest certainty for querying: argminu∈Ucp(u).
Another technique is query by committee (QBC) [9],
[19], where the query is chosen that maximizes the dis-
agreement of the classifiers. In our evaluation we use the
vote entropy for measuring the disagreement of classifiers:
argmaxu∈U −

∑
i

V (yi)
C log V (yi)

C where yi is a particular
label and V (yi) is the number of classifiers voted for this
label, C is the number of classifiers in the committee. In
our evaluation we chose a linear Support Vector Machine,
a Decision Tree and Logistic Regression as a committee of
diverse classifiers.

III. Dimension reduction for visualization
There are many dimension reduction approaches to visu-

alize a high-dimensional feature space in lower dimensions.
Their training is usually unsupervised. An early approach
is Principal Component Analysis (PCA) [4], where a
small set of linearly uncorrelated variables having the
highest variance in the data, called principal components,
are extracted. Multidimensional Scaling (MDS) [21] is a
technique for dimension reduction, which preserves the
spatial relation of the high-dimensional data in the lower-
dimensional space. A Self Organizing Map (SOM) [7],
introduced by Kohonen in 1982, can be used for dimension
reduction. By applying competitive learning SOMs can
preserve topological properties in the lower dimensional
map. In 2008, van der Maaten et al. proposed t-SNE [15],
which is a variant of Stochastic Neighbor Embedding
(SNE) [3]. By modeling data points as pairwise proba-
bilities in both the original space and the embedding,
using a gradient decent method to minimize the sum of
Kullback-Leibler divergences, it is possible to create an
embedding of high quality. Especially if there are classes
with different variances in high dimensional space, t-SNE
delivers reasonable results. Our preliminary experiments
also show, that t-SNE is delivering best results compared
to PCA and MDS for image data where classes consist
of objects showed from different viewing positions, like in
the OUTDOOR data set [14] that we will also use in our
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Fig. 1. General workflow diagram describing active learning with
visualization.

evaluation. Because of these advantages, we use t-SNE as
a dimension reduction technique in our experiments, but
basically every other dimension reduction approach can be
used as well.

IV. Adaptive Visualization View Querying
(A2VQ)

The underlying idea is to query the samples within a
bounding-box view of the visualization which we denote
as a view v. The goal of our approach is to query the
optimal view for labeling of its enclosed samples.

In the following we introduce the Adaptive Visualiza-
tion View Querying (A2VQ) approach for querying in
active learning using an adaptive visualization. The overall
workflow is illustrated in Fig. 1. At first, we use the
t-SNE algorithm to reduce the dimensions of data set
X to 2D for visualization. We normalize the output by
applying feature scaling so that values of each of the two
dimensions are between 0 and 1, naming this normalized
embedding feature space Z. In the following we refer Zi

as the visualization of sample Ui.
Since we assume to have no label information at the

beginning, active training starts with an empty L. So
labeling of one or more random views by the human is
necessary to initially train a classifier for our approach.
Then confidences for samples of U are calculated by the
classifier, used to query the optimal view (described in
detail in the next chapter). The queried view can be
labeled e.g. by a user with our proposed user-interface.
Then the classifier is trained incrementally with the newly
labeled samples. After this training epoch, a new optimal
view is queried with the retrained classifier and the process
repeats.

We think a querying method is necessary for an efficient
labeling because a visualization of more complex data sets



s

o

   

Fig. 2. t-SNE visualization of 50 objects from the OUTDOOR data
set with illustrated sliding window approach. In one iteration of
sliding window, all views of the visualization are scored by A2VQ’s
scoring function. The possible views are generated by moving the
squared template with side length s in overlap o steps from the upper
left to the bottom right corner. The view with highest score is queried
for labeling and displayed in our web-based user interface.

can be confusing for the human as there are too many
classes and the images are highly overlapping as one can
see in Fig. 2. Also we want to be able to actively query the
samples which the classifier demands for efficient training.

A. Visualization View Querying

To query the optimal view we use a sliding window
technique to cycle through a grid of possible bounding-box
views that arise from a view size s and overlap amount o.
The first view is positioned at (0, 0) in Z. By shifting the
square s−o in each dimension (illustrated in Fig. 2), there
is a total number of (1 + 1−s

s−o )2 views to be evaluated. We
therefore calculate a scoring function r(v) for each view:

r(v) =
∑

u∈Uv
(1− cp(u))
m

(1)

where Uv are the samples lying in the particular view,
cp(u) is the classifier’s confidences of the most certain class
for sample u and m is the number of samples in the view
with the most enclosed samples. By dividing by m not only
the classifier’s confidences of the view’s samples are taken
into account, but also the number of samples in the view.
We do this for not querying views with few outlier samples
with low confidences, as they can occur for instance at
border areas in a t-SNE visualization (see Fig. 2).

After calculating r for each view generated by the sliding
window approach, the view with the highest score r is
queried for labeling.

Fig. 3. Querying user interface showing a view queried by A2VQ.
The user can label samples by selecting their thumbnails by dragging
rectangles in the visualization. The class name can be entered in an
input formula. There are certain possible strategies for labeling, like
label everything, label only the biggest clusters or label only outliers.
With a click on the button Query next view the classifier is retrained
with the new labeled samples and a new view is queried with A2VQ.

B. User interface
The samples of the optimal view can be labeled with our

user interface, also available at github1 together with all
implemented querying techniques. By applying an affine
transformation the view is shown in full size with the
corresponding sample images as scatter plot symbols. The
resulting display is shown in Fig. 3. Due to the visualiza-
tion most neighboring samples will receive the same label.
Interactive selection techniques (Fig. 3) allow economic
labeling of the samples within the view.

C. Adaptive view size
In addition to querying the best view for labeling, there

is the question of finding the best view size s. A small
s would not be efficient for labeling and a too large s
makes it impossible for the human to recognize the images
because there are too many. We investigated two heuristics
for finding a suitable view size.

Number of Classes: In this heuristic we assume that
showing the user about c = 3 different classes within a
view results in best usability. We incrementally increase
or shrink s we use a heuristic that is evaluated after each
labeled view:

s = s+ σ(λ ∗ (c− n))− 0.5 (2)

where λ is the learning rate, n are the number of
individual classes in the view after removing outlier classes

1https://github.com/limchr/A2VQ



with less than 5 samples and σ is the sigmoid function.
Using the learning rate inside the sigmoid function, which
is centered vertically by subtracting 0.5, enables us to
incrementally change the view size to match c.

Preliminary (automated) experiments showed, that ad-
justing view size with upper heuristic converges to a proper
view size with λ = 0.05. However, in our automated
experiments we assumed that the user has perfect ability
in labeling the samples and that he labels all samples
within a view. But we train also ambiguous objects in our
user study and so we want to give the human the change to
skip samples. Since we can not evaluate n, we used another
heuristic for choosing a view size:

Number of Samples: We assume that a view should
not have more than b = 100 samples so that the user
is able to recognize them while using our label interface.
To determine the s that fits this assumption, we count
the number of samples within all possible views. We sort
this array in descending order and choose the highest
20% for calculating a mean, naming it m. We do this
for several view sizes {0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40}
and choose the view size with the minimum |b − m|. In
our user study we evaluated s = 0.25 and chose o = 0.5s.
A smaller overlap would be possible but requires longer
calculation time because more views have to be evaluated
while querying.

V. Evaluation

A. Experiment
We did a user study for comparing A2VQ to the base-

lines US, QBC and random querying (RAND).
1) Participants: 31 participants (16 males, 13 females,

2 others) joined the study. The median of their age was
28 years. Most of the participants were students (27 stu-
dents, 2 employed, 2 others). The participants were paid
5e for completing the whole study which took 30 to 45
minutes. Three of the participants refused the money. The
protocol was approved by the Bielefeld University Ethics
Committee.

2) User interfaces: In the study participants labeled
images with two different user interfaces. The first one was
the already described user interface for A2VQ (see Fig. 3).
Participants had to drag rectangles to mark multiple
images with the same object in one view. Afterwards they
had to choose the corresponding label from the drop down
menu in the top left. To label the selected images with
the chosen label, they had to click the Label Selection
button. If the selection was wrong, they could click the
Remove Selection button. Participants were told, that it
is not necessary to label all images within one view because
we wanted to give them the ability to skip samples in all
approaches. If none of the images within a view could be
labeled, the view with the next higher score was displayed.
Otherwise, to go to the next view, participants had to click
the Next View button in the top right.

Fig. 4. Classic labeling interface for approaches US, QBC and
RAND. The user also can skip images if he can not give a label.

The second user interface was used for labeling with
US, QBC and RAND (see Fig. 4). To label an image,
participants had to choose a label from the upper left
drop down menu and click the Label button. If they were
not sure about the label of an image, they could click the
Skip button. After skipping an image we use DBQE [13] to
prevent the querying of similar ambiguous images again,
to speed up training.

3) Data set: We chose to use the OUTDOOR data
set [14] for labeling in the experiment. The data set
consists of 5000 images showing objects of 50 classes in
a garden environment. Since this were too many classes
to be labeled properly within a feasible time, we decided
to reduce the data set to only seven classes. To make
the labeling challenging for the participants, we selected
object classes which might look very similar: Onion, Or-
ange, Potato, RedApple, RedBall, Tomato and YellowAp-
ple. As a pre processing step, the objects are cropped
using a color segmentation. For feature extraction we used
the penultimate layer of the VGG19 deep convolutional
net [20] trained for the imagenet competition, resulting
in a 4096 dimensional feature vector. For evaluation we
used a 80/20 train-test split. The test images are used to
evaluate the classifier’s performance. The images of the
train set were presented in the user interfaces and labeled
by the participants. We have chosen a 1 nearest Neighbor
classifier with the same parameters for all the approaches.
For estimating classifier confidences cp we chose relative
similarity [12]. The classifier is trained in an online fashion
after each labeled image in the classic labeling interface or
after each labeled image batch in A2VQ.

4) Questionnaires: Since we did not want to focus on a
questionnaire analysis in our study, we decided to integrate
just a short questionnaire in our study. The goal was to
check whether our new approach delivers an idea about the
inner representation of a trained model and might give a
better understanding of strength and weaknesses of feature
representations. We added, therefore, two questions:

Q1) Completing the task gave me an idea of the inner
representation of a trained model.

Q2) Completing the task gave me a better understanding
of strength and weaknesses of a machine learning
model’s feature representation.

Participants had to answer on a Likert scale from one
(strongly disagree) to seven (strongly agree). They had



also the option to answer with N/A.
5) Task and procedure: At the beginning participants

signed an informed consent. They read the global task
instructions telling them that the main task is to label
images to train a service robot to distinguish objects. Af-
terwards, they performed four experimental trials. Before
a trial they had to first read specific task instructions. The
instructions contained information about which of the two
label interfaces they will use in the following trial and how
to interact with it. The instructions did not provide any in-
formation about the underlying active learning approach.
If a participant had to perform the label task with one of
the two label interfaces for the first time, the experimenter
showed a short video about the interaction with the label
interface. In a trial, participants labeled images using the
corresponding label interface. They had to be as fast as
possible but also as accurate as possible. After five minutes
the trial was stopped automatically by the system. After
the trial, participants filled out a questionnaire.

6) Data recording: Whenever a participant labeled an
image with any of the tested approaches, there were several
information saved by the system:
• the participant’s id
• the time in milliseconds since the start of the experi-

ment
• the index of the labeled image
• the given label
• the ground-truth label
• the classifier’s 0/1 accuracies on both train and test

set
7) Experimental design: The experiment had a within

subjects design, meaning that each participant labeled
with each approach once. This resulted in four experi-
mental trials, in which participants had to label the same
images. It was, therefore, possible that participants be-
came familiar with the images and improved their labeling
performance during the experiment. To avoid such effects
having an impact on the analysis, we varied the order of
the experimental trials between participants. There exists
24 different possibilities to order the four experimental
trials. Since we had 31 participants we needed 7 additional
orders which were chosen randomly. The resulting 31
orders were randomly matched to the participants.

B. Analysis
Statistical tests were conducted with IBM, SPSS Statis-

tics, Version 23.
1) Questionnaire: We extracted the answers for ques-

tions Q1 and Q2 from the participants’ questionnaires.
Higher values for Q1 indicate that completing the task
delivered a better idea of the inner representation of the
trained model. Higher values for Q2 provides a better un-
derstanding about strength and weaknesses of the model’s
feature representation. Since all the answers were given
on a seven point scale, the values range between one and
seven. We performed a two-sided Friedman’s test (with

α = 0) for both questions each to check whether there are
differences depended on the querying approach.

2) Recorded data: We investigated the impact of the
four querying approaches A2VQ, US, QBC and RAND
on three different parameters. The first parameter is the
classifier’s acccuracy for the test data set. Here the tem-
poral progress of the accuracy and also the final accuracy
after 5 minutes of training was explored. The second
analyzed parameter was the human label quality which
describes, how much of the data was labeled correctly
by the participants. Finally, we analyzed whether the
querying approaches have an impact on the number of
samples which are labeled during the 5 minutes.

We aimed at analyzing whether there are significant
differences between the different approaches in the three
above mentioned parameters. Therefore, we first checked
whether the data meets the assumptions to perform an
ANOVA with repeated measures. By inspecting a box-
plot, we noticed that all three parameters’ data showed
outliers. Furthermore the data were not normally dis-
tributed as assessed by Shapiro-Wilk’s test (p < .05).
According to this, we performed a two-sided Friedman’s
test (with α = .05) instead of the ANOVA. For each of
the three parameters, which showed significant results in
Friedman’s test, we checked whether there are significant
differences among the approaches. Hence, we conducted
multiple comparisons with a Bonferroni correction.

C. Results and discussion
Table II presents all means, medians and standard

deviations of the analyzed data. Results of Friedman’s test
are summarized in Table III.

1) Questionnaire: In Fig. 5 top, the mean values of
the questionnaire answers are plotted showing the lowest
values for A2VQ. This means, that participants were most
satisfied with the system usability in A2VQ. Additionally,
this approach delivered them a better idea of the inner
representation of a trained model than the baseline ap-
proaches. Finally, A2VQ gave them a better understanding
of strength and weaknesses of a machine learning model’s
feature representation than other approaches. Anyway,
Fig. 5 bottom shows that the differences between the
approaches are very small compared with the distribution
of the data.

A Friedman’s test did not show any significant results
for the three parameters.

2) Classifier’s accuracy: Figure 6 shows the temporal
progress of the classifier’s accuracy on the test data during
training. A2VQ has a slower increase of accuracy in early
training while having a higher accuracy at the end (4.8%
better than US). The slow rise might be because labeling
with A2VQ is comparable with a depth-first search in a
tree, while the other approaches are rather comparable
with a breadth-first search, having a representation of each
object class early in training. Most of the time QBC is
performing better then US, which is performing better



TABLE I
Number of valid answers, means and standard deviations for the answers in the questionnaire.

A2VQ US QBC RAND
N M SD N M SD N M SD N M SD

Q1 28 4.57 1.59 28 4.39 1.70 29 4.52 1.71 29 4.41 1.65
Q2 28 4.68 1.79 29 4.24 1.85 29 4.52 1.98 29 4.59 1.84

Note: The median for all questions and all approaches was Mdn = 5. A higher value means a higher agreement.

TABLE II
Means, medians and standard deviations of the analyzed parameters.

A2VQ US QBC RAND
M Mdn SD M Mdn SD M Mdn SD M Mdn SD

classifier’s 77.52 81,54 15.83 72.73 75.15 13.21 71.61 73.08 13.81 68.41 70.00 14.49
accuracy in %
human label 83.06 84.68 11.97 76.31 76.74 10.87 78.65 80.70 9.15 79.05 81.25 11.32
quality in %
number of 434.65 469 87.60 49.71 49 16.11 52.16 57 13.01 58 61 14.01
labeled samples

TABLE III
Results of Friedman’s test

χ2(3) p

Q1 1.965 .580
Q2 3.296 .348
classifier’s accuracy in % 10.869 .012*
human label quality in % 9.311 .025*
number of labeled samples 60.650 <.001*

Note: An asterisk marks significant differences between the
querying approaches on a level of α = .05. Q1 and Q2 were
the responses to questions of our questionnaire.

than RAND. All baseline approaches start to converge
near the end of the experiment.

Friedman’s test comparing the accuracies of the different
approaches after five minutes training showed significant
results. Post hoc tests reveal significant differences be-
tween A2VQ and QBC with p=.021 and between A2VQ
and RAND with p=.002. This implies A2VQ delivers a
better accuracy than RAND and QBC after five minutes
training. Even if we did not find any significant differ-
ences between A2VQ and US, we can state that in our
study A2VQ had the best mean accuracy compared with
the other approaches after training the classifier for five
minutes (see Table II).

3) Human label quality: In Fig. 7 a confusion matrix is
displayed showing the true labels and the labels given by
the participants averaged over all approaches. The labeling

task was challenging for the participants who were not
perfect oracles while labeling. This is especially noticeable
at classes RedApple, RedBall and Tomato with a label
quality of 80% and below.

To compare the label accuracy of the participants be-
tween the tested approaches, we performed Friedman’s
test. The test revealed significant results and, therefore,
we performed multiple comparisons with a Bonferroni
correction. This resulted in significant differences between
A2VQ and the baseline approaches (A2VQ and US with
p = .005, A2VQ and QBC with p < .021, A2VQ and
RAND with p = .030). Figure 8 demonstrates the results.
A2VQ has the best label quality, which is around 4%
better than the second best (see Table II). The reason
for this may be an improved human capability to see the
objects in context with similar other objects and then to
decide. Furthermore the RAND querying approach results
in the second best label quality. This may lead to the
assumption that classifier’s uncertainty, which is used in
US and QBC to query the most uncertain samples, is
related to human uncertainty. Another interesting insight
is, that even with a worse mean labeling quality, using US
and QBC resulted in a better performing classifier than
RAND (see Fig. 6 and Table II).

4) Labeled samples: Figure 9 shows how many samples
were labeled within five minutes in the different experi-
mental trials. The figure indicates, that people could label
more samples using A2VQ while the number of labeled
samples of the baseline approaches were comparable. The
result of the statistical tests confirmed this observations.
This outcome is as expected, because in A2VQ people can
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Fig. 5. Questionnaire answers of all 4 approaches. Higher values
indicate stronger agreement. Top: Mean answers over all participants.
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label multiple images with the same label while in baseline
approaches just one image can be labeled at a time.
Additionally, there was a significant difference between US
and RAND.

VI. Conclusion
In this paper we have proposed to use dimension reduc-

tion techniques for applying active learning with a visual-
ization. Therefore we introduced the querying approach
A2VQ which queries optimal views for labeling by the
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user. For showing it to the user, we developed a user
interface, which we also evaluated in a user study. The
study showed that using A2VQ the classifier’s accuracy,
the number of labeled samples and also the label quality
improves compared to US, QBC and random querying.

There are many possible interesting further research in
this topic. The user study showed that baseline methods
have the advantage to faster respond at start of training.
When training samples that can be ambiguous, we showed
that the used DQBE [13] approach has a huge impact in
boosting the speed by querying only meaningful samples.
However, our study shows that after 100 seconds the fast
increase in accuracy of the baseline methods saturates.
So it may be worth to evaluate a hybrid model, that
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first uses a classical active querying technique to query
a few samples of each class for a fast learning of an initial
classifier and then use A2VQ to label in depth. Using
A2VQ also results in a higher label quality, as our study
shows, so it may also correct former contradictions in
labels, since we think that seeing patterns in contrast to
other patterns facilitate to give the correct label.

It may is possible to use semi-supervised dimension
reduction techniques [22] for a better visualization. Then,
after each trained view not only the classifier is retrained
but also the visualization is regenerated with new label
information.

In the near future we will integrate A2VQ together with
the labeling interface within a service robot [2], which
interacts in a smart lobby environment. By showing the
user interface on the robot’s front touch screen we want
to allow the user not only to teach the robot objects by a
finger swipe, but also give him a feeling what the robot’s
internal representation of the objects might be.
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