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Abstract
Data Mining in non-stationary data streams is par-
ticularly relevant in the context of the Internet of
Things and Big Data. Its challenges arise from fun-
damentally different drift types violating assump-
tions of data independence or stationarity. Avail-
able methods often struggle with certain forms of
drift or require unavailable a priori task knowledge.
We propose the Self-Adjusting Memory (SAM)
model for the k Nearest Neighbor (kNN) algorithm.
SAM-kNN can deal with heterogeneous concept
drift, i.e. different drift types and rates. Its ba-
sic idea are dedicated models for current and for-
mer concepts used according to the demands of
the given situation. It can be robustly applied in
practice without meta parameter optimization. We
conduct an extensive evaluation on various bench-
marks, consisting of artificial streams with known
drift characteristics and real-world datasets. Highly
competitive results throughout all experiments un-
derline the robustness of SAM-kNN as well as its
capability to handle heterogeneous concept drift.

1 Introduction
The classical batch setting of machine learning assumes that
the complete task-specific data is all time available and can
be accessed simultaneously without any restriction regarding
the processing time. Furthermore, it is premised that the data
is independent and identically distributed (i.i.d.). State of the
art machine learning methods are able to obtain very accu-
rate results within this framework. However, an ever growing
field of real-world applications generates data in streaming
fashion at increasing rate, requiring large-scale and real-time
processing as well as life-long learning. Streaming data is
prevalent in domains such as health monitoring, traffic man-
agement, financial transactions, social networks [Chen et al.,
2014] and is the foundation of the Internet of Things [At-
zori et al., 2010] technology. Supplementing streaming data
with non-stationary environments leads to one of the recent
key areas in data mining research: Learning in streams under
concept drift. Here, algorithms are challenged by a variety
of possible forms of drift under strict limitations in terms of
memory consumption and processing time.

In supervised classification, concept drift [Gama et al.,
2014] occurs when the joint distribution between the set of
features x ∈ Rn and the target variable y ∈ {1, . . . , c}
changes for at least two time steps t0 and t1:

∃x : Pt0(x, y) 6= Pt1(x, y),

The term real drift is used to specify that the relation between
observation and labels Pt(y|x) varies over time. Virtual drift
is present when the feature distribution Pt(x) changes with-
out affecting the posterior of the classes Pt(y|x). Further-
more, the rate at which drift is taking place can be either clas-
sified as abrupt, resulting in a severe shift within the distri-
bution, e.g. caused by a malfunctioning sensor, or incremen-
tal, an evolving change over time, e.g. evoked by a slowly
degrading sensor. In the context of seasonal effects, drift is
often characterized as reoccurring to describe that previous
concepts are repeatedly emerging. In recent years, a few al-
gorithms have been published which can be roughly divided
in active and passive approaches [Ditzler et al., 2015]. Due to
space constraints, we primarily review methods that are later
also used in the experiments. A more complete overview is
given in [Gama et al., 2014].

Active approaches explicitly detect the time of change and
usually discard the accumulated knowledge up to this point.
Often statistics such as the classification error, calculated on
different time periods, are analyzed for significant deviations.
A popular representative of these methods is ADaptive slid-
ing WINdowing (ADWIN) [Bifet and Gavalda, 2007], uti-
lized in various published algorithms. It efficiently monitors
the binary error history since the last detected change. The
history is repeatedly partitioned into two windows of vari-
ous size. Whenever the difference of their average error ex-
ceeds a threshold a change is detected and the older window is
dropped. Active approaches are often combined with a slid-
ing window containing the most recent examples, as these
are assumed to be the most valuable for current predictions.
Hereby, the size is a trade-off between fast adaptation (small
window) and good generalization in stable phases without
drift (large window). To achieve both properties at the same
time the size is adjusted dynamically. One exemplary method
is the Probabilistic Adaptive Windowing (PAW) [Bifet et al.,
2013] which randomly removes examples from the sliding
window leading to a mix of recent and older instances. Ac-
tive methods are able to quickly detect abrupt drift, however,



they struggle with incremental change, which may not be sig-
nificant enough and remains undetected. Another weakness
is that knowledge either slowly fades out or is discarded in
case of detected drift. Although the most recent examples
are usually the most valuable for current predictions, there
are also cases in which older data carries crucial information,
e.g. reoccurring drift.

Passive approaches continuously adapt their model with-
out explicit awareness of occurring drift. This prevents pit-
falls such as missed or false detected drifts on the one hand,
but the adaption speed is more or less constant, leading to
costly delays in the case of abrupt drift, on the other hand.
Passive algorithms are dominated by ensembles whose mem-
bers are updated with incoming examples using techniques
such as Bagging or Boosting. Jaber et al. presented Dy-
namic Adaption to Concept Changes (DACC) in [Jaber et
al., 2013], an algorithm inspired by the Dynamic Weighted
Majority [Kolter and Maloof, 2007] method. A classifier of
the worst half of the pool is randomly removed after a prede-
fined number of examples and replaced by a new one. Predic-
tions for incoming examples are solely done by the best clas-
sifier within the pool, having the highest accuracy in the past.
In Leveraging Bagging (LVGB) [Bifet et al., 2010] the ran-
domization of Online Bagging [Oza, 2005] is increased and
thereby also the diversity of the resulting ensemble. Addi-
tionally, ADWIN is used as change detector for every ensem-
ble member such that every detected change leads to the re-
placement of the worst classifier by a new one. Learn++.NSE
[Elwell and Polikar, 2011] processes incoming examples in
chunks with a predefined size. A base classifier is trained
for each chunk and added to the ensemble. In contrast to
other methods, members are not learning continuously, but
preserve their initial state. This fact is used to revive for-
mer members in the presence of reoccurring drift. Passive
approaches can deal with incremental drift, but their inher-
ent adaption speed has to be adjusted to the task-specific drift
speed. In case of abrupt drift, the adaption delay is usually
more pronounced than into active methods.

Even though some of the introduced methods can be used
for several types of drift by an appropriate setting of their
meta parameters, this requires explicit prior knowledge about
the task at hand. However, it is still unclear how to identify
the type of drift in a given real-world data stream. Further-
more, in real-world applications, data usually do not change
only in one specific form, but instead multiple, sometimes
even concurrent, types of drift are taking place at various
rates. One example is the field of personalized assistance, in
which individual user behavior is taken into account to pro-
vide appropriate assistance in various situations [Schiaffino et
al., 2008]. But, individual behavior in particular can change
in arbitrary ways. Systems anticipating only certain forms of
drift, will perform sub-optimal at best, or fail completely at
worst, when unexpected forms of change occur.

Our Self-Adjusting Memory (SAM) in combination with
the k Nearest Neighbor (kNN) classifier is able to cope with
heterogeneous concept drift and can be easily applied in prac-
tice without any parametrization. The extensive evaluation
on common benchmarks demonstrates the gain of SAM-kNN
in comparison to current state of the art approaches. It ex-

Figure 1: Illustration of the general approach. The STM contains
only the current concept, whereas the LTM preserves only knowl-
edge which is consistent in regard to the STM.

clusively achieves highly competitive results throughout all
experiments, demonstrating its robustness and the capabil-
ity of handling heterogeneous concept drift. This paper is
an abridged report of [Losing et al., 2016].

2 Streaming Setting
Our focus is data stream classification under supervised learn-
ing for incremental / on-line algorithms. A potentially infinite
sequence S = (s1, s2, . . . , st, . . .) of tuples si = (xi, yi)
arrives one after another. As t represents the current time
stamp, the learning objective is to predict the target variable
yt ∈ {1, . . . , c} for a given set of features xt ∈ Rn. The pre-
diction ŷt = ht−1(xt) is done according to the previously
learned model ht−1. Before proceeding with the next ex-
ample, the learning algorithm generates a new model ht =
train(ht−1, st) based on the current tuple st and the previous
model ht−1. The performance is measured via the Interleaved
Test-Train error E(S) = 1

t

∑t
i=1 1(hi−1(xi) 6= yi).

3 Architecture of SAM
In the research field of human memory the dual-store model
[Atkinson and Shiffrin, 1968], consisting of the Short-Term
and Long-Term memory (STM & LTM), is largely accepted.
The SAM architecture is partly inspired by this model and
exhibits analogies such as the explicit separation of current
and past knowledge, different conservation spans among the
memories, filtered transfer of knowledge from the STM to the
LTM as well as a situation dependent usage of both memories.

Our basic idea is to combine dedicated models
for the current concept Pt(x, y) and all former ones
Pt−1(x, y), . . . , P1(x, y) in such a way that the prediction er-
ror is minimized. We construct two different memories: The
Short-Term Memory (STM), containing data of the current
concept and the Long-Term Memory (LTM), maintaining
knowledge of past concepts. This approach is illustrated
by Figure 1. We share the general assumption of new data
being more relevant for current predictions. Hence, we
remove those information from former concepts which is in
conflict with the current one, but we explicitly preserve the



Figure 2: Overview of the SAM architecture. Incoming examples
are stored within the STM. The cleaning process keeps the LTM con-
sistent with the STM. Whenever the STM is reduced in size its dis-
carded knowledge is transferred into the LTM. Accumulated knowl-
edge is compressed each time the available space is exhausted. Both
models are considered during prediction depending on their past per-
formances.

rest in compressed fashion. We avoid any parametrization,
by exploiting the minimization of the error on recent data at
various steps. Our architecture is depicted in Figure 2 and
described below in detail.

3.1 Model Definition
Memories are represented by sets MST, MLT, MC. Each
memory is a subset in Rn × {1, . . . , c} of varying length, ad-
justed during the adaptation process. The STM represents the
current concept and is a dynamic sliding window containing
the most recent m examples of the data stream:

MST = {(xi, yi) ∈ Rn × {1, . . . , c} | i = t−m+ 1, . . . , t}.

The LTM preserves all former information which is not con-
tradicting those of the STM in a compressed way. In contrast
to the STM, the LTM is neither a continuous subpart of the
stream nor given by exemplars, but instead a set of p points:

MLT = {(xi, yi) ∈ Rn × {1, . . . , c} | i = 1, . . . , p}.

The combined memory (CM) is the union of both memories
with size m+ p and defined as MC =MST ∪MLT.

Every set induces a classifier, in our case a distance
weighted kNN : Rn 7→ {1, . . . , c}, kNNMST , kNNMLT ,
kNNMC . Weights wST, wLT, wC are representing the accu-
racy of the corresponding model on the current concept and
are determined as described in section 3.2. The prediction of
our complete model relies on the sub-model with the highest
weight and is defined for a given point x as:

x 7→


kNNMST(x) if wST ≥ max(wLT, wC)

kNNMLT(x) if wLT ≥ max(wST, wC)

kNNMC(x) if wC ≥ max(wST, wLT).

This model is adapted incrementally for every time t as de-
scribed in section 3.2.

The hyperparameters of the model consist of the minimal
length of the STM Lmin, the maximum number of stored ex-
amples Lmax (STM & LTM combined) as well as the number

of neigbhors k. These can be robustly chosen and do not re-
quire a task-specific setting1.

3.2 Model Adaption
The adaption comprises the size m of the STM, the data
points in the LTM and the weights wST, wLT, wC of the corre-
sponding sub-models.

Adaption of the short term memory
The STM is a dynamic sliding window containing the most
recent examples. Every incoming example of the stream gets
inserted such that the STM grows continuously. Its role is to
exclusively contain data of the current concept. Therefore, its
size has to be reduced, whenever the concept changes such
that examples of the former concept are dropped. However,
we do not explicitly detect a concept change, but instead we
adjust the size such that the Interleaved Test-Train error of
the remaining STM is minimized. This approach relies on the
fact that a model trained on internally consistent data yields
less errors and we assume the remaining instances to repre-
sent the current concept or being sufficiently ”close” to it.

We evaluate differently sized STMs and adopt the one with
minimum error for MSTt+1

. We test only bisected window
sizes to bound logarithmically the number of comparisons.
Whenever the STM is shrunk, the set of discarded examples
Ot is defined as

Ot =MSTt \MSTt+1 . (1)
Cleaning and transfer
The LTM contains all data of former concepts that is con-
sistent with the STM. This requires a cleaning of the LTM
according to every seen example. In addition, whenever the
STM is reduced in size, we do not simply discard the data
sorted out, since it still may contain valuable information for
future prediction. One example for such a situation is reoc-
curring drift, as methods preserving knowledge in this case
do not have to relearn former concepts and therefore produce
fewer errors. Instead, we transfer as much knowledge as pos-
sible into the LTM. Before doing so, we delete examples from
the separated set Ot (see eq. 1) which are contradicting those
in MSTt+1

. This adaption is formalized by two operations.
1. We clean a set A by another set B regarding an example

(xi, yi) ∈ B
clean : (A,B, (xi, yi)) 7→ Â

where A,B, Â ⊂ Rn × {1, . . . , c} and (xi, yi) ∈ B. Â
is defined in two steps.
(1) We determine the k nearest neighbors of xi in B \
(xi, yi) and select the ones with label yi. These define
the threshold

θ = max{d(xi,x))|x ∈ Nk(xi, B \ (xi, yi)},
y(x) = yi).

(2) The k nearest neighbors of xi ∈ A which are incon-
sistent to B are cleaned based on the threshold, yielding
the result of this operation:

Â = A \ {(xj , y(xj))|xj ∈ Nk(xi, A),

d(xj ,xi) ≤ θ, y(xj) 6= yi}.
1We used for all experiments k = 5, Lmin = 50, Lmax = 5000.



2. We also require a cleaning operation for the full set B

clean : (A,B) 7→ Â|B|

where A,B, Â|B| ⊂ Rn × {1, . . . , c}. This is de-
fined iteratively by applying the former cleaning for all
(xi, yi) ∈ B = {(x1, y1), . . . , (x|B|, y|B|)} as

Â0 = A

Ât+1 = clean(Ât, B, (xt+1, yt+1)).

The adaption of the LTM takes place at two different steps.
To ensure a consistent model at any time, cleaning takes place
according to every incoming sample (xt, yt)

M̃LTt
= clean(MLTt

,MSTt
, (xt, yt)).

Whenever the STM is shrunk, the discarded set Ot is trans-
ferred into the LTM after cleaning, i.e. the LTM becomes

MLTt+1
=

{
M̃LTt

∪ clean(Ot,MSTt+1
) if STM is shrunk

M̃LTt
otherwise

Compression of the long term memory
In contrast to the FIFO principle of the STM, instances are
not fading out as soon as the size limit of the LTM is reached.
Instead, we condense the available information to a sparse
knowledge representation via clustering. This enables a far
longer conservation than possible with simple out fading.
Formally, for every class label ĉ we group the corresponding
data points in the LTM as MLTĉ

= {xi|(xi, ĉ) ∈ MLT}. We
use the clustering algorithm kMeans++ [Arthur and Vassilvit-
skii, 2007] with |MLTĉ

|/2 clusters. The resulting prototypes
M̂LTĉ

represent the compressed original data. The LTM is
given by the union of all prototypes

MLT =
⋃
ĉ

{(xi, ĉ)|x ∈ M̂LTĉ
}.

This process is repeated each time the size limit is reached
leading to a self-adapting level of compression.

Model weight adaption
The weight of a memory is its accuracy averaged over the last
mt samples, where mt = |MSTt

| is the size of the current
STM. Hence, the weight of the LTM at time stamp t equals

wt
LT =

|{i ∈ {t−mt + 1, . . . , t} | kNNMLTi
(xi) = yi}|

mt

and analogous for STM and CM.

4 Experiments
We couple the SAM architecture with the kNN classifier and
evaluate it in comparison to well-known state of the art al-
gorithms for handling concept drift in streaming data. Next
to the methods discussed in section 1, we compare against a
kNN classifier with a sliding window of fixed size (kNNS). A
rough taxonomy of the methods is depicted in Table 1. The
evaluation was done with common artificial and real-world
benchmarks, which are extensively described in [Losing et
al., 2016]. Window based approaches were allowed to store

Table 1: Taxonomy of the evaluated methods.

L++.NSE DACC LVGB kNNS PAW SAM

Drift handling passive passive active passive active passive
Classifier Decision tree Decision tree Decision tree kNN kNN kNN
Ensemble 3 3 3 7 7 3

Table 2: Error rates of all experiments.

Dataset Drift properties L++.NSE DACC LVGB kNNS PAW SAM

SEA Concepts abrupt real 14.48 15.68 11.69 13.83 13.39 12.50
Rotating Hyperplane incremental real 15.58 18.20 12.53 16.00 16.16 13.31
Moving RBF incremental real 44.50 54.34 44.84 20.36 24.04 15.30
Interchanging RBF abrupt real 27.52 1.40 6.11 45.92 8.56 5.70
Moving Squares incremental real 65.90 1.17 12.17 68.87 61.01 2.30
Transient Chessb. abr. reoc. virtual 1.98 43.21 17.95 7.36 14.44 6.25
Mixed Drift various real/virtual 40.37 61.06 26.29 31.00 26.75 13.33

Artificial ∅ 30.05 27.87 18.80 29.05 23.48 9.81
Artificial ∅ Rank 4.00 4.57 2.86 4.29 3.57 1.71

Weather virtual 22.88 26.78 21.89 21.53 23.11 21.74
Electricity real 27.24 16.87 16.78 28.61 26.13 17.52
Cover Type real 15.00 10.05 9.07 4.21 6.76 4.8
Poker Hand virtual 22.14 20.97 13.65 17.08 27.94 18.45
Outdoor virtual 57.80 35.65 39.97 13.98 16.30 11.25
Rialto virtual 40.36 28.93 39.64 22.74 24.96 18.58

Real-world ∅ 30.90 23.21 23.50 18.03 20.87 15.40
Real-word ∅ Rank 5.33 4.17 3.17 2.33 4.00 2.00

Overall ∅ 30.44 25.72 20.97 23.96 22.27 12.39
Overall ∅ Rank 4.62 4.38 3.00 3.38 3.77 1.85

up to 5000 samples but never more than 10% of the whole
dataset. No dataset specific hyperparameter tuning was done.

The error rates of all experiments are shown in Table 21.
SAM significantly outperforms the others by having nearly
half the error rate in average compared to the second best
method LVGB. Even more important is the fact that whereas
other methods struggle at some datasets our approach deliv-
ers robust results without any hiccup. All concept drift types
are handled better or at least competitive. Our results confirm
the fact that kNN is in general a very competitive algorithm
in the streaming setting. It is quite surprising that the simple
sliding window approach kNNS performs comparably well or
even better than more sophisticated methods such as DACC
or L++.NSE. A more detailed evaluation as well as an analy-
sis of the memory behavior and their respective functions can
be found in [Losing et al., 2016].

5 Conclusion
In this paper we presented the Self-Adjusting Memory
(SAM) architecture, especially designed to handle heteroge-
neous concept drift within streaming data. It explicitly sep-
arates the current concept from former ones and preserves
both in dedicated memories. Thereby, it omits a common
weakness of available methods which simply discard former
knowledge and, therefore, have to relearn concepts in case of
reoccurring concept drift. Our method is easy to use in prac-
tice since it requires no task-specific meta-parameterization.
We compared SAM with current state of the art methods on
various artificial and real-world benchmarks. As the only al-
gorithm it demonstrated consistently accurate results for het-
erogeneous concept drift.

1The drift properties of the real-world data were determined as
described in [Losing et al., 2017]
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