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Abstract— Online action classification is an important field of
research, enabling the particularly interesting application sce-
nario of controlling wearable devices which actively support the
user’s motions. The majority of machine learning applications
of real-world systems are based on pre-trained average-user
models without any personalization. Our long-term goal is to
provide a system that adapts to its user’s personal behavior
patterns on the fly and in real-time. Ideally, we want to initiate
a continuous collaboration between the system and the user
where both alternatively adjust to each other to maximize
the system’s utility. Such tasks are not feasible with static
models. In this paper, we investigate the potential and benefits
of personalized online learning in the task of online action
classification. We record motion sequences of different subjects
wearing the Xsens bodysuit, which incorporates multiple in-
ertial measuring units, enabling a fine-grained discrimination
of motions. On this basis, we first perform a feature selection,
showing that only a few sensors are necessary to achieve a
high classification performance. Subsequently, we compare the
recognition capabilities of offline average user models against
personalized models trained in an online way. Our experiments
conclude that personalized models require only few data to
outperform average user systems and are particularly valuable
for applications with limited computational hardware which
rely on the raw sensor inputs only.

I. INTRODUCTION

The classification of human actions is crucial for diverse
application scenarios such as surveillance, human-machine
interactions and pervasive health care [1], [2]. In contrast
to the tasks of activity recognition or offline action
classification, where the classification is performed on
the basis of a fully observed sequence, online action
classification aims to recognize the motion on the fly and
as quickly as possible. This crucial difference opens up a
spectrum of further application scenarios. One that we are
particularly interested in is the control of wearable devices
which actively support the motion of users. Such hardware
may support physical rehabilitation or assist handicapped
persons by means of an improved prosthesis control [3],
[4] for example. Another application area are working
environments where repetitive and strenuous motions such
as bending and kneeling are frequently demanded [5]–[7].
Usually, action classification is done with skeleton data
extracted from vision-based sensors [8]–[12]. However,
the accessibility of visual data is limited to environments
equipped with the necessary sensors. In case of wearable
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devices, integrating inertial measuring units (IMU) is a
viable and elegant solution to obtain a continuous data
stream independent from environmental properties. IMUs
have been mostly used for activity recognition tasks, which
aim to discriminate high-level actions such as walking,
cycling and swimming, often on the basis of commercial
everyday hardware like smart-phones, smart-watches or
fitness-tracker wristbands [13]–[15]. In contrast, we apply
the Xsens bodysuit [16], [17] which incorporates seventeen
IMUs spread across the body, providing a rich measurement
of postures with a high sample rate, enabling motion
recognition in a fine-grained way.
Commonly, online action classification has been tackled
with offline machine learning methods. A static model
is generated by a large amount of labeled examples and
then applied to a hold-out set [8]–[12]. However, we aim
for a system that adapts to the personal behavior patterns
of its user in real-time and on the fly based on inertial
measurements. Ideally, a continuous collaboration between
the system and user is triggered where both alternatively
adjust to each other and maximize the utility of the system.
A static model is simply not suitable in such a scenario.
Hence, we apply online machine learning algorithms which
continuously adapt to the incoming data stream. Since the
data is processed one-by-one, these algorithms are able to
handle infinite streams and thereby guarantee a low time and
space complexity. Therefore, even limited computational
hardware is able to process the stream locally without access
to cloud services, allowing an application independent from
internet connectivity and offering complete data privacy at
the same time.
Personalization denotes the modification of a system towards
the characteristics of an individual user. Two different modes
of personalization have been distinguished [18], [19]: i)
Active customization by the user, e.g. by making selections
and setting parameters and ii) adaptive systems where the
usage history is employed to estimate user preferences and
situation statistics to adjust parameters and behavior. The
general idea behind personalized learning is that the focus
on one person drastically reduces the variance within the
data, enabling a better performance with a smaller amount
of data. Furthermore, the major problem of inter-person
generalization is completely avoided, facilitating the task as
well as the computational complexity, since post-processing
steps such as normalization or temporal integration can
often be omitted.
The potential of personalization in the context of motion
recognition was mostly analyzed with static models. Weiss



and Lockhart investigated personalization in an activity
recognition task on the basis of accelerometer-data obtained
from smart phones [20]. In their experiments, personalized
models were more accurate with a clearly smaller amount
of training data. Medrano et al. used personalized models
for the task of human fall-detection and achieved a higher
performance in comparison to average user models [21].
Our contribution differs from the mentioned work, since
we combine personalization with online learning to classify
motion classes on the basis of a large data foundation
obtained with multiple IMUs. We first perform a forward
feature selection to determine a small sub-set of IMUs
which are the most valuable ones in terms of classification
performance. Subsequently, we thoroughly compare average
offline machine learning models with online personalized
ones. Our experiments show that online models require a
small amount of data to outperform average user systems,
particularly if only the raw sensor data is used, often a
necessity for applications with strictly limited computational
resources. The advantage of the online models increases
further with more training data.

II. FRAMEWORK

Our focus is the evaluation of off- and online learning
models in the online action classification task. In the fol-
lowing, we introduce the classification task and describe the
characteristics of both learning schemes.

A. Online action classification

Our application is an online action classification problem
[9]. A stream {x1,x2, . . . ,xt} of feature vectors (IMU
sensor measurements in our case) arrives one after another.
The goal is to determine whether a frame xt at time t
belongs to an action among the predefined C action classes.
Algorithms are allowed to use not only the current feature
vector xt but also those of the past (xt−1 . . .x1). The
classification is done for each feature vector presented in
the order of the stream. In contrast to action detection tasks,
there are no situations in which xt does not belong to any
predefined action. A model predicts the action class in the
form of:

y?t = argmax
yt∈{1,...,C}

P (yt|x1, . . . , xt).

Naturally, online action classification is more challenging
than offline action classification, since methods are not
allowed to peek in the future and must instantaneously
determine the action of xt.

B. Offline learning

In the offline learning setting, an algorithm generates a
model function h : Rn 7→ {1, . . . , c} based on a training
set Dtrain = {(xi, yi) | i ∈ {1, . . . , j}}. In the subsequent
test phase, the model is applied on another set Dtest =
{(xi, yi) | i ∈ {j+1, . . . , k}}, whose labels are kept hidden.
The model provides a label ŷi = h(xi) for every point

xi ∈ Dtest and the 0-1 loss L(ŷi, yi) = 1(ŷi 6= yi) is
calculated. The test error

E(Dtest) =
1

k

k∑
i=j+1

L(h(xi), yi) (1)

is the commonly used performance metric. In our case, an
offline average user model is generated by using the data of
all but one subjects for training and tested to classify the
actions of the hold-out subject.

C. Online learning

The online learning setting is more challenging, since
the data is accessed one-by-one in a predefined order
and the algorithm provides a model after each datapoint.
Therefore, online algorithms initially tend to deliver a
lower performance compared to their offline counterparts.
However, they provide the benefits of a low time and space
complexity, are able to process datasets of arbitrary sizes
and allow particular tuning to a special problem domain.
Formally, a potentially infinite sequence St =
(s1, s2, . . . , st) of tuples si = (xi, yi) arrives one after
another. In contrast to the offline setting, a model function is
generated after each tuple. As t represents the current time
stamp, the classification ŷt = ht−1(xt) is done according to
the previously learned model ht−1. After the true label yt
is revealed, the applied learning algorithm generates a new
model ht = train(ht−1, st) on the basis of the current tuple
st and the previous model ht−1. Usually, the interleaved
test train error is used for performance evaluation and is
defined as:

Ê(St) =
1

t

t∑
i=1

L(hi−1(xi), yi). (2)

We train our online personalized models iteratively from the
scratch. Precisely, each action of one subject is first classified
by the model and subsequently used for training.

The principle difference between off- and online ap-
proaches is that the offline methods have generally a much
larger set of training data available, whereas the online
algorithms have the capability to adapt to the actual test data.
The natural consequence is that online methods using few
data are only applicable if the variation in the test condition
is not too high, which is particularly the case for personalized
learning. Online algorithms are even able to adapt to non-
stationary environments and efficient methods have been
recently published [22], [23], however, this is beyond the
scope of this contribution.

Our goal is to evaluate the potential of online learning
schemes for model individualization as just formalized in
the context of online action classification based on IMUs.
Thereby, we will rely on state-of-the-art online learning
schemes as exist in the literature, in particular the Online
Random Forest [24] algorithm.

III. DATASET

The data recording as well as the resulting dataset is
described in this chapter.



Fig. 1: The XSENS body suit with seventeen IMU sensors.
The sternum IMU is occluded due to the image perspective.
We used the wireless version. Source: https://www.
xsens.com/.

A. Recording setup

We used the popular Xsens bodysuit with seventeen IMUs,
measuring linear and angular motions with a triad of gy-
roscopes and accelerometers, distributed on different body
locations as shown in Figure 1. We used a sample rate of of
60Hz, which is usually sufficient to track highly dynamic
motions as common in sports [25]. Six additional sensor
positions are interpolated, resulting in altogether 23 different
segments. Altogether, thirteen different feature types such as
acceleration, joint-angles or orientation are provided for each
segment and are encoded with three or four dimensions.
Various filters are used to provide also integrated feature
types such as velocity and position. However, these are prone
to drift due to the inevitable sensor bias [26].

B. Feature extraction and normalization

We translated the position of all segments such that the
pelvis is in the origin of the X-Y coordinates. Xsens offers
kinematic data as 3-dimensional vectors. We enriched the
data by adding further feature types which encode only the
magnitude of these. Furthermore, a normalized version of
each feature is added which is obtained by mean-subtraction
and scaling to unit-variance. This has been done per person
to improve generalization across different subjects. In total,
up to 32 different feature types are available for each of the
23 segments, resulting in 1472 dimensions per sample.

C. Action variety

Four different subjects performed nine movement se-
quences consisting of several single actions. These sequences
were repeated 10-20 times. In total, sixteen fine-grained
action classes are present in the data1. The recordings were
done in one session for each subject and the data was man-
ually labeled. Figure 2 depicts some action sequences. The
action class distribution of the dataset is depicted in Figure
3. The data is mainly dominated by five different walking
actions as well as the standing class, which frequently occurs
in-between. Altogether, the dataset encodes 2755 actions
represented by 329021 single instances.

1 The action classes are : stand, walk forward, walk backwards, walk
sideways, walk curve, turn, squat down, squat up, lunge down, lunge
up, stand with object, walk forward with object, walk backwards with
object, turn with object, put object down, squat up with object)

Fig. 3: The imbalanced class distribution of the recorded
data. For reasons of clarity, only the dominating classes are
labeled in the chart. ST = stand, WB = walk backwards, WF
= walk forward, WS = walk sideways, TU= turn around.

IV. EXPERIMENTS

We compare an offline average user model against an
online personalized one, which we denote as average (AVG)
and personalized (PERS) from now on. The average model
is trained in leave-one-subject-out scheme. Precisely, it is
tested with the data of one specific subject, whereas data of
the remaining three subjects is used for training. This is done
repeatedly such that each subject is used for testing once.
Personalized models are evaluated in the online learning
setting, as described in Section II-C. The model classifies
first the label of one sample and uses it afterward for
model adaption. This is done for all samples in the dataset.
However, the order of each instance within one performed
action is predefined by the recording time, and therefore,
there is a high degree of label auto-correlation, since each
action consists of a number of samples with the same class.
In this case, the ordinary online scheme is misleading in
because a naive classifier, simply using the previously seen
label for classification, achieves a very low error rate without
learning anything. Therefore, we perform an action-wise
evaluation. Precisely, the model classifies all samples of one
action, before the corresponding labels get revealed. The
personalized models are trained from scratch, one online
model for every subject in single pass. Consequently, online
models are utilized without any form of pre-training and only
access the data of one subject. Please note, that we calculate
both errors (off- and online) using the same data for testing,
but the online algorithms continuously adapt their model to
the test subject.
We apply on- and offline variants of the popular Random
Forest (RF) [24], [27] to enable a possibly fair comparison.
The RF is a well known state-of-the-art learning algorithm,
delivering highly competitive results [28], [29] and is easy
to apply out of the box. Concretely, we use decision forests
consisting of 50 trees and rely on the class entropy as
impurity function [30].



Fig. 2: Exemplary sub-parts of sequences with different subsequent actions. The ground truth is depicted in the green boxes.
The classes are often ambiguous in the transition period from one action to another.

A. Encoding recent motion data

Action classification is known to be more accurate when
the feature vector encodes not only the current sensor state,
but the recent motion history. We performed preliminary
experiments to compare the effect of different feature con-
figurations. We evaluate the performance for encoding only
the current sensor state versus stacking the features of the
last 30 frames (∼0.5 s)) versus encoding the features of the
last 30 frames via the five highest values of the discrete
cosine transformation (DCT) [31]. The highest performance
is achieved by the DCT encoding even though it uses a
substantially lower amount of dimensions in comparison to
stacking. Based on these results, we use the DCT encoding
for the rest of the experiments2. The detailed results are listed
in the appendix (Table II).

B. Feature selection

The Xsens body suit offers various feature types for each
segment. To reduce the number of input dimensions, we
performed for each model feature selection, determining the
most valuable dimensions in two steps. We use forward
feature selection [33] to minimize the classification error.
Concretely, we start with an empty set and iteratively add
the feature type / segment which minimizes the error the
most until all of them are used. In the first step, we extract
the most valuable feature types (see section III), thereby
using all segments and in the second we determine the
most valuable segments using only the previously extracted
feature types. The normalized feature types were not offered
to the personalized model, since they have no effect on
person-specific and scale-invariant models. Figure 4 shows
the error rate depending on the number of feature types /
segments. It can be seen, that only few feature types and
segments are necessary to reach a high performance. Using
all feature types is even harmful which is probably caused by
overfitting. The personalized model relies on less data and is

2 The discrete Fourier transformation (DFT) [32] was evaluated as well,
however, it performed worse than the DCT

Fig. 4: Forward feature selection in two steps: First, the
best feature types are determined using all segments (top).
Subsequently, the most valuable segments are determined
on the basis of the three best feature types (bottom). The
personalized model had no access to the normalized features
because they have no effect on its performance. The number
of evaluated segments depends on the chosen feature types
in the first step. Hence, the number of evaluated segments is
different for both models.

therefore more affected. Based on these results, we decide to
use the three best feature types together with the five most
valuable segments. Table I lists the most valuable feature
types for both models. The chosen types by the average
model are mostly temporally integrated and normalized,
highlighting that the person-specific normalization improves
the inter-person generalization. In contrast, the personalized
model prefers rather the raw sensor data. Figure 5 displays



TABLE I: The three most important feature types.

Priority AVG PERS

1 position (scaled) sensor-acceleration
2 magnitude-angular-velocity (scaled) sensor-angular-velocity
3 velocity (scaled) center-of-mass

Fig. 5: The favored sensor locations of both models. There
is no excessively covered body part. Instead, the sensors are
equally distributed across the whole body.

the preferred sensors. Both models equally distribute the
segments across the body, indicating that our motion dataset
profits from an encoding of the whole body posture.

C. Results

The reported results are based on the selected features
(Section IV-B) which are encoded via the five highest values
of the corresponding DCT (Section IV-A). Figure 6 shows
the average error rate of the personalized and average model
depending on the relative action progress. As expected, the
models are the most uncertain during the transition period
from one action to another, since the data is very similar
then for consecutive action classes. Also the ground truth is
most inconsistent then because it is hard to define the exact
moment one action ends and another starts. The models are
particularly uncertain at the beginning of motions because
the feature vector encodes the recent past. Consequently, a
lot of variance is within the data at this stage, since different
action classes can transition into the same class.
Both models perform similarly on average with the average
one being slightly better. However, the personalized model
is continuously adapting, therefore, we analyze it in more
detail. Assuming the data of a given subject contains l single

Fig. 6: The classification performance depending on the
relative progress of the action. The models are less accurate
in the transitions between the actions.

Fig. 7: The learning curve of both models. The personalized
model achieves a lower error with significantly less data.

motions, we break the set into approximately equally sized
sets l1 and l2, i.e. |l1| ≈ |l2| ≈ |l|

2 , and measure the
performance on each of those independently. The perfor-
mance of the first half is the incremental error achieved
on l1 by an online model starting from scratch without
any prior knowledge and continuously adapting on the basis
of l1. Averaging the results over all subjects leads to the
curve in the plot. As expected, it performs clearly worse in
comparison to the average model. The performance of the
second half is the incremental error achieved on the second
half of the motions l2, but this time the model has already
seen the data of the first half l1. In this case, we observe that
the personalized model significantly outperforms the average
one as soon it has seen enough motions of the respective
person. The average performance of the personalized model
can be expected to converge at least towards the error rate
achieved for the second half of the data with additional
motion sequences.
The learning curves are depicted in Figure 7. The perfor-
mance of the personalized model is measured by averaging
the performance over the last 3600 instances (∼1min),
whereas the performance of the average model is always
measured by classifying the whole data of the hold-out-
subject. The average model has access to significantly more
data because it is trained on three subjects. Nonetheless, the
learning curve of the personalized model is not only steeper,
but it reaches a distinctly lower error rate, highlighting the
benefits of personalized learning in this field.

D. Raw sensor data

It is a matter of time until the integration of even low
sensor bias signals leads inevitably to drift, if no recalibration
is periodically performed. One way to avoid the continuous
bias accumulation is to use the raw sensor signals without
any integration. Also applications where the integration is
not possible due to limited computational resources have
to rely on the raw data. Figure 8 depicts the classification
performance when only the raw sensor data is used in
comparison to the one using also integrated features3.

The inter-subject generalization ability of the average
model significantly drops if only the sensor data is used,

3 Similar to the selection process in Section IV-B, we determined the most
relevant features of the raw sensor data.



Fig. 8: The error rate depending on the relative progress of
the action. The performance achieved with the raw features
is compared with the one including integrated information.
Varying sensor signals across the subjects reduce the gener-
alization ability of the average model.

because of the person-specific nature of the raw signals. The
personalized model is basically not affected, since it uses
in both cases mostly the raw signals. Hence, personalized
learning is even more valuable when the input is limited to
the raw sensor data.

V. OBTAINING THE GROUND TRUTH ONLINE

In this paper, we simulated personalized online learning
with pre-labeled data. However, the application of such a
system in real-world scenarios requires online ground truth,
which is often hard to obtain. However, in most cases,
a labeling delay is tolerable and therefore ground truth
can be provided in retrospective. One possibility is to let
humans label the recorded data, which has often been done
in human-machine interaction scenarios [34]. Additionally,
active learning approaches can be integrated to reduce the
labeling burden [35], [36]. A feasible way to get the labels
without human interaction is to use another model which
classifies the event after it has occurred. In other words, this
model has the advantage to peek in the future, which often
drastically facilitates the task. In various prediction tasks,
the classification of the event is very simple in retrospective
such that the ground truth quality is comparable to manually
annotated data [37]. Though, action classification is a hard
task even after the complete motion has been performed, it is
still less challenging than doing it online. Hence, this semi-
supervised learning approach may be a reasonable choice,
however it is just a concept we have not applied, yet. Figure
9 shows the corresponding system architecture.

VI. CONCLUSION

In this paper, we analyzed the application of personalized
online machine learning models in the task of online action
classification. Using the Xsens body suit, we recorded a
large motion database with over 2750 actions. Four different
subjects repetitively performed various motion sequences
which are categorized into sixteen different classes. The data
was enriched with normalization techniques to improve the
inter-subject generalization. We performed a forward feature
selection, which showed that only a few IMUs are necessary

Fig. 9: Online learning system architecture. The ground truth
is determined with an additional model which is allowed to
buffer a some data and classify actions with delay. These
delayed labels are used to train the online model.

TABLE II: Average error rates of all experiments.

Feature set #Dimensions AVG PERS PERS-1.half PERS-2.halfAVG PERS

Single frame 33 27 0.177 0.186 0.173 0.986
Stacked 990 810 0.116 0.145 0.229 0.607
DCT 165 135 0.115 0.134 0.213 0.558

(a) The results are based on all available features including post-
integrations and normalizations. Three feature types and five segments
were used for both models.

Feature set #Dimensions AVG PERS PERS-1.half PERS-2.halfAVG PERS

Single frame 35 35 0.246 0.172 0.237 0.108
Stacked 1050 1050 0.190 0.148 0.218 0.794
DCT 175 175 0.179 0.142 0.215 0.703

(b) Only the raw sensor signals were used in these experiments. Three
feature types and five segments were used for both models.

to obtain a high performance. Using state-of-the-art ma-
chine learning algorithms, we compared personalized online
models against average-user offline models. It turns out that
personalized models are very efficient learners yielding better
results with a small amount of data which indicates that
the motions are indeed performed in a personalized way.
The performance gain is particularly pronounced when only
the raw sensor signals are used without any integration. The
advantage is likely to increase with additional data.
In the future, we want to continue this analysis with ad-
ditional data and particularly evaluate the personal data
variance between different recording sessions. We already
started to fuse off- and online personalized models to avoid
a cold start at the beginning. The first results show that the
hybrid model indeed provides a performance gain. Our long-
term goal is to utilize personalized models in a real-world
application as described in Section V.

APPENDIX

For the sake of completeness, we report the average error
rates of all experiments in Table II.
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