
Evolution of a Learning and Anticipating Decision System

Alexandra Mark, Bernhard Sendhoff, and Heiko Wersing
Honda Research Institute Europe

Carl-Legien Strasse 30
63073 Offenbach/M, Germany

{alexandra.mark, bs, heiko.wersing}@honda-ri.de

Abstract

We describe an adaptive decision making architecture which is applied to competitive
games. The task is to learn online a model of the current opponent strategy which is used
to predict the next opponent actions in order to find an appropriate counter-strategy. We
show this for the iterated prisoner’s dilemma and rock-paper-scissors. In comparison
with three other methods against different typical game strategies as opponents, our sys-
tem performs best in most cases. In some experiments, the best prediction accuracy did
not lead to the best payoff. This phenomenon is discussed in more detail.

1 Introduction

Our motivation is to develop a general decision making system which can solve different strategic
problems using methods like evolutionary computation and learning. We focus on problems that
fulfill certain conditions such as a fixed number of possible actions, an existing payoff matrix or
fitness function, and discrete time steps, but they do not have to satisfy the Markov property and are
not restricted to games – our first field of applications. There are for example navigation tasks which
fulfill these constraints and might be potential future applications for our system. According to [8],
humans consider different alternatives, learn and adapt their strategies, when solving decision making
problems. Thus they internally play through different potential outcomes, using various models of
their environment and considering different own actions. Evolutionary methods are predestinated to
solve problems where a reservoir of such alternative potential solutions has to be generated. A good
example for this is given in [3]. Darwen and Yao develop an evolutionary system which uses a genetic
algorithm to create offline a pool of specialist strategies for game playing. These strategies are used
as potential opponent-models for a hypothetical game to evaluate the outcome of different actions.

We have implemented an adaptive decision making architecture which controls the behavior of a
player in a competitive game. To achieve this task it is sensible to build an internal model of the
opponent players’ strategies. There are many different methods to build such an internal model,
as for example lookup-tables [3], finite automatons [2], influence diagrams [11], nested recursive
models [13], classifier systems [7], or (recurrent) neural networks [12]. These internal models can be
used to predict future opponent actions and to find suitable counter-strategies. According to [10] (p.
1593) an “anticipatory capacity is crucial for deciding between alternative courses of action”. This

Published in: SOAVE 2004 3rd Workshop on SelfOrganization of AdaptiVE Behavior, pp. 271-281



view is supported by [1]. The authors in [4] also use an anticipatory mechanism including internal
simulation of hypothetical actions, but they are focusing on the prediction of sensory consequences
in a sensorimotor navigation task while we are primarily interested in strategic problems.

When humans interact in competitive situations, their predictions of each other are unreliable and
the model which each one makes of the other depends on the model which the other one makes of
oneself. In such a nested co-learning system players are often trapped by a pair of false models. For
example in the iterated prisoner’s dilemma (IPD) small prediction networks often over-simplify the
opponent and wrongly recognize the opponent strategy as all-defection [5]. The best counter-strategy
against all-defection is all-defection and thus the game will actually end with mutual defection, if the
opponent correctly recognizes the all-defection strategy. Then the prediction ability of this small pre-
diction network might misleadingly seem very good, because it correctly predicted the all-defection
strategy. In our results we will also see, that the strategies with the best correct prediction rates of
their opponent are not always the most successful ones.

In this paper, we present a decision making system (DMS) which is applied to two different games:
the iterated prisoner’s dilemma and rock-paper-scissors. Our strategies are represented by neural
networks. We employ a genetic algorithm to optimize the structure of the networks to allow a good
strategy coding. Additionally a learning mechanism is applied to the networks in order to realize an
online adaptation to the current opponent. Thus we couple evolution and learning to benefit from the
advantages of both methods: The genetic algorithm generates a pool of potential network strategies
which might be well suited for learning, and the learning process takes these generated nets and trains
them to predict the future actions of the opponent. This pool of individuals from where the best
individual is selected as “imitator” is called “imitator-pool” in the following.

In section 2, we describe the structure of our DMS as well as the mechanisms it employs. Evalua-
tion results against different strategies and the comparison with other methods are presented in section
3, followed by a discussion concerning prediction accuracy. We conclude in section 4.

2 Method

2.1 Games

In this paper, the task of our decision making system is to decide on the strategy of a player in 2-
player iterated prisoner’s dilemma (2IPD) and rock-paper-scissors (RPS). The opponent is given from
outside, e.g. by a fixed strategy. In both games two players have to choose one action simultaneously
in each round. In 2IPD each player has to decide whether he cooperates (“C”) or defects (“D”). In the
2-person zero-sum game RPS the actions rock (“R”), paper (“P”), and scissors (“S”) can be chosen.
In a variant there exists one more action called well (“W”). Paper covers rock (thus the player who
has chosen paper wins), rock crushes scissors (rock wins), and scissors cuts paper (scissors wins).
If both players make the same choice, they tie with each other. If well is added, then well wins
against rock and scissors (because they can fall into it), well loses against paper and ties against well.
The corresponding payoff matrices for both games, which determine the score for each player in one
round, are shown in Figure 1. The player which plays the action given in the line of the matrix gets
the given payoff against a player which plays the action denoted in the column. These payoffs are
summed up over all rounds of one game. The player with the maximal sum at the game end has won.

2.2 Basic Algorithm

We have taken the following method by Darwen and Yao (see [3]; in the following called D/Y) as
starting point for our investigations: A Genetic Algorithm (GA) is used to develop a population of



IPD strategies. The last generation is kept as a diverse repertoire of specialized strategies. After the
game has started, a gating algorithm searches in this repertoire for the strategies which resemble most
the current opponent. The corresponding individuals are called “imitators”. Then all strategies of the
repertoire are tested against the selected imitators in a game over 4 rounds, starting with the current
game history as input. This corresponds to a prediction of the future behavior of the opponent and
a test of potential counter-strategies against it. The strategies which score best against the imitators
vote for the next action to be taken in the current situation against the actual opponent.

The main differences between D/Y and our DMS are:

• Our strategies in the repertoire are represented by neural networks instead of lookup tables.
This allows a more flexible coding of more sophisticated strategies.

• Our GA optimizes which part of the game history is used as input for each neural net. The GA
continues online during the whole game.

• The strategies which are represented by neural nets learn online to imitate the actual opponent.

• We do not search in the strategy repertoire for potential counter-strategies against the current
opponent, but we directly test all possible actions against the selected imitator. This assures that
the optimal counter-action can be found, when the prediction by the imitator is correct.

C D

C 3 0

D 5 1

R P S W

R 0 -1 1 -1

P 1 0 -1 1

S -1 1 0 -1

W 1 -1 1 0

Figure 1. Payoff matrix for IPD (left)
and RPS (right)

history

learn opponent 

model using pool of 

imitator neural nets

predict next 

opponent actions 

using best imitator

find appropriate counter-

action by playing through 

possible situations (imitator 

plays role of opponent)

Genetic Algorithm 

optimises which parts of 

history are used as input 

for each imitator

opponent

action

system

actionupdate

Decision Making System (DMS)

update

Figure 2. Decision Making System (DMS)

Our basic algorithm works in the following way:

1. create imitator-pool with random chromosomes

2. create a neural net for each imitator with random weights

3. repeat until end of this game (given number of rounds)

(a) compute system action

i. in first few rounds randomly

ii. else

A. select from imitator-pool best imitator of opponent in past 16 rounds of game

B. use selected imitator to predict opponent behavior 4 rounds into the future

C. test all possible actions against the predicted opponent actions for 4 rounds into
the future and select the best reaction as the next action of the DMS

(b) get action of opponent
(c) compute payoff for this round
(d) update histories



(e) all gatRounds rounds: optimize imitator-pool by GA and RPROP-learning

gatRounds is a random number between a given minimum (default: 3 rounds) and maximum (de-
fault: 5 rounds) which determines after how many rounds the system learns. Figure 2 visualizes the
important algorithmic steps. Details are explained in the following sections.

2.3 Genetic Algorithm

The GA works on the chromosomes of the individuals in the imitator-pool, which are described in
section 2.4. One GA-iteration works as follows:

1. delete worst popSize/2 individuals from parents; other popSize/2 parents are kept
2. to keep population size constant, popSize/2 offspring individuals are created as follows

(a) one offspring gets random chromosome

(b) create other popSize/2 − 1 offspring chromosomes:

i. with 60% probability in the following way: select one parent fitness-proportionally
and the other parent randomly; then offspring is created by 2-point-crossover

ii. with 40% probability in the following way: select one parent fitness proportionally
and use it directly as offspring

3. for each offspring

(a) mutate chromosome (flip probability 20%)

(b) create neural net with random weights (number of input neurons in chromosome)

(c) each neural net learns with RPROP algorithm from previous game history to imitate op-
ponent (some learn parameters are given in corresponding chromosome)

4. add new offspring to new parents population
5. fitness computation of population as described in section 2.6. Considered are

(a) (possibly weighted) number of matches with opponent actions in the previous rounds

(b) if the individual has already given a correct imitator-prediction once before

(c) a small penalty for each used history window

In the experiments shown at the end of this paper we used a population size of 50. In each optimiza-
tion step (see section 2.2) 10 generations of the genetic algorithm are executed and the population is
stored as a new optimized imitator-pool. The learning of the corresponding neural nets is described
in section 2.5.

2.4 Strategy Representation

In each round the actions of both players are stored in a game history – one for each player. The
actions are coded as consecutive integers: “0” = defect and “1” = cooperate for IPD, and “0” = rock,
“1” = paper, “2” = scissors, “3” = well for RPS. The index of the history vector denotes the round
of the game. Each individual (or strategy) is represented by a neural network with its weights and a
chromosome which codes additional parameters. The nets are fully connected feed forward neural
nets with one hidden layer of 10 neurons. Each net gets as input a part of the current game history and
gives as output an action. The GA optimizes which part of the history is used as input (see below),
thus the number of input neurons of the nets differ.



a b c d e f

with

a: windows for own history

b: windows for opponent‘s history

c: number of learn steps from learn history (numLearnSteps1)

d: number of learn steps from game history (numLearnSteps2)

e: number of learn rounds (maxLearnRounds)

f: further learning parameter (learnBackHist)

Figure 3. Coding of the binary chromosome

chromosome: 1 0 0

other

parameters

windows for 

system‘s history

windows for 

opponent‘s history

0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 ...

system‘s history: opponent‘s history:

... 1 ... 11 0 1 0 2 0 1 1 2 2 0 1 1 2 0 2 0 1

older part 

of history

part of history to be 

used as net input
12201

Figure 4. History windows code which parts of the
history are used as input for the neural net that
predicts the next action of the opponent

The binary chromosome codes several parameters (see Figure 3). The first 10 bits code the windows
to look on the system history. If the bit is “1”, then the corresponding position of the history is used,
but not if it is “0”. The first bit corresponds to the oldest part of the history (the action before 10
rounds) and the 10-th bit corresponds to the most recent action. The same applies for the next 10 bits
which code the windows for the history of the opponent (see Figure 4). “10” is the default value of a
parameter which determines how many windows can be maximally used.

The next four values (c–f in Figure 3) are integer values. numLearnSteps1, numLearnSteps2, and
maxLearnRounds lie between 0 and 50, whereas learnBackHist can take values between 0 and 100.
These four parameters are needed for the learning process and are described in section 2.5. For each
value 6 bits are Gray coded and rounded to an integer value in the given interval. Thus the length of
the chromosome is 2 · 10 + 4 · 6 = 44.

The length of the lookup-table-type chromosome of [3] increases fast with a rising memory length
of the coded strategies. For a memory length (m) of 4 the chromosome length is already 264 (22m +
2m). This is the longest memory length which has been considered in Darwen’s and Yao’s paper.
Since we are using neural nets in addition to the chromosome to code our strategies, our chromosomes
are much shorter and independent of the memory length.

2.5 Learning

We use fully connected feed forward neural nets with one hidden layer of 10 neurons. Since the
GA optimizes which part of the history is used as input, the number of input neurons depends on
the number of history windows (h) which are coded in the chromosome. Let numActions denote
the number of possible actions for each player. Thus the input (which is a part of the game history)
consists of h integer values between 0 and numActions−1. Each input value is 0-1-coded and given
into numActions input neurons in the following way: For input value 0 the first neuron gets input 1
and the neurons 2 until numActions get input 0. For input value 1, the second neuron gets input 1,
and the others get 0. See also Figure 5 for clarity. Thus the number of input neurons is computed as
h · numActions.

The input neurons propagate the given input directly to the next layer. The hidden neurons and the
output neurons have a sigmoid activation function zi = 1/(1+exp(−a)), with a being the propagated
result of the previous neurons: a =

∑

j wijzj +Θi. Θi is a bias term between -1 and 1. wij is the real-
valued weight ∈ [−1, 1] of the connection from neuron j to neuron i. When a new net is created, all
weights and bias values are initialized with uniformly distributed random values ∈ [−0.1, 0.1]. Each



part of history to be 

used as net input1 2 2 0

coded input0 1 0 0 0 1 0 0 1 1 0 0

fully connected

input layer

fully connected

hidden layer

output layer

Figure 5. Neural network with example input
coded for numActions = 3

history opponent

1

0

1

0

1

0 payoff (0)

payoff (2)

payoff (3)

payoff (0)

opponent

prediction

opponent

prediction

system system

1st round 2nd round

max

1 next action

of system

current point in time

history system

Figure 6. Action selection tree

network has numActions output neurons – one for each possible action. The action corresponding
to the neuron with the maximal output value determines the action of the corresponding individual
(winner takes all). If during the game a net should be used to compute an action, but the available
game history is shorter than needed according to the history windows, a random action is returned.

The RPROP (resilient backpropagation, see [9]) rule is applied as learning mechanism to adapt the
real-valued weights. The learning data are taken from the past game history: One random position
between the current position and up to learnBackHist rounds back into the past is determined in the
history. The target output for the net is the action of the opponent in the round after the selected ran-
dom position. Thus the input for the learning net is read from the history (with the random position as
newest available history data) according to the history windows which are coded in the correspond-
ing chromosome, and the error is computed using the difference between net output and target. The
parameter learnBackHist is coded in the chromosome, as well as the number of learn steps numLearn-
Steps2 for each learning process and the maximal number of rounds of the game in which the net can
learn (maxLearnRounds). Thus all gatRounds rounds each imitator net does numLearnSteps2 steps
of RPROP learning until the total number of learn rounds (maxLearnRounds) is reached. Then the
weights of the net are “frozen”. This allows to keep strategies as they are in the pool.

numLearnSteps1 was intended to determine the number of steps to be learned from an artificially
created history which should be given for initial learning before the start of the real game. The idea
was to provide with this learn history some typical strategy mixture. Results showed however, that
the online learning is so fast, that no beforehand learning is needed. Thus in the experiments at the
end of this paper, the value of numLearnSteps1 was ignored and no offline learning was done.

2.6 Imitator Selection

In each round of the game the best imitator is selected from the imitator-pool in order to predict the
next action of the opponent. The following items are considered to find the best imitator. The values
add up to a reward, which is also used as fitness for the genetic algorithm.

• A parameter (numPastRounds, default: 16) specifies the number of previous rounds of the game
history in which each individual is compared with the real opponent. For each round in which
an individual selects the same action as did the opponent in this situation, the individual gets 1
point. Here the individual gets the same history as input which was available to the opponent at
this time step.



• Each individual which has been selected once as imitator and has predicted the correct action,
gets a positive additive value (+1), which contributes to the reward (r), but decays slightly with
each round t of the game. Thus with decay being a parameter between 0 and 1 (default: 0.95):

r(t + 1) =

{

(r(t) + 1) · decay , if correct pred.
r(t) · decay , else

• For each used history position the reward is reduced by a small value (default: 0.2).

The individual with the highest reward is selected as imitator. In the rare case of several individuals
having the maximal sum, the imitator is selected randomly among these. The parameter default values
have been chosen after some test experiments.

2.7 Reaction to Imitator Action

The following mechanism for finding the best reaction to the predicted opponent action has been
implemented: All possible actions which can be played starting with the current game history are
tested for the next numNext rounds into the future in a hypothetical game. Here the part of the
opponent is simulated using the imitator and the system player tests all possible actions it could take.
The system action of the first tested round which led to the maximal payoff after all numNext rounds
is taken as the next action of the system in the actual game (see Figure 6). Obviously this method
can only be employed in those cases where the number of possible actions is rather small and all are
known. Thus this approach has to be enhanced to work with more general problems.

In [3] all individual strategies in the population from where the imitators are selected also serve
as pool from where answer strategies are selected. This method has the drawback, that the reaction-
strategies are limited to a small pool of given strategies. So a good prediction of the next actions can
possibly not be exploited to full extent, because no suitable counter-strategy is available.

3 Results

For evaluation we compared our DMS with three other methods: “D/Y”, “linear prediction”, and
“single neural net”. D/Y is our re-implementation of the system described in [3]. In the linear predic-
tion method, we used a classical linear predictor of order 3 to predict the next action of the opponent,
with the game histories of both players as input. In this case the actions have been rounded to the
allowed values. In the single neural net method we used a neural net similar to those in the DMS, but
with a fixed number of input neurons: the previous 5 actions of both players’ histories are fed into
the net which learns online, using the RPROP-algorithm (as in the DMS), to predict the next action
of the opponent. For the latter two methods, the counter-action is computed in the same way as in the
DMS (see Figure 6), but instead of an imitator prediction, the prediction of the single available linear
predictor respectively neural net is used. We had our DMS play 10 runs of 1000 rounds against each
of the default strategies of the prisoner’s dilemma competition at CEC’04 [6]:

Figure 7 shows the results. On the right side the percentage of correct predictions of the next
opponent action is plotted. The D/Y method is not included here, because no explicit prediction is
used. They select a number of imitator strategies instead, which are used to find a counter-action.

The corresponding Figure 8 shows average (avg), minimal (min), and maximal (max) payoffs as
well as standard deviations (std) and percentages of correct opponent predictions (pred) of the dif-
ferent methods. The DMS gets sensible results against all strategies. It plays (nearly) only defection
against RAND, ALLD, ALLC, and GRIM. This is the best, it can do, when not knowing the opponent
strategy but having to explore it online during the game. Against TFT and STFT mostly cooperation



RAND: makes random moves

ALLD: always defects

ALLC: always cooperates

GRIM: starts with cooperation and plays ALLD after first defection of opponent

TFT: tit-for-tat starts with cooperation and repeats last move of opponent

STFT: suspicious TFT: like TFT, but defects in first move

TFTT: tit-for-two-tats: like TFT, but defects only after two consecutive opponent defections

Pavlov: starts with random move and repeats its last move, if it has brought many points (two 

higher payoff values in Figure 1), otherwise makes other move

RAND ALLD ALLC GRIM TFT STFT TFTT Pavlov
500

1000

1500

2000

2500

3000

3500

4000

4500

5000

default strategies

av
er

ag
e 

sc
or

e

D/Y
lin. predict.
single NN
DMS

RAND ALLD ALLC GRIM TFT STFT TFTT Pavlov
50

55

60

65

70

75

80

85

90

95

100

105

default strategies

pe
rc

en
ta

ge

lin. predict.
single NN
DMS

Figure 7. Average score (left) and percentage of correct opponent predictions (right) of different methods against
CEC’04 IPD default strategies (10 runs of 1000 rounds for each method; payoff matrix see Figure 1). Standard
deviations are given in Figure 8

is played. Against TFTT after an initial phase of mostly defection, the DMS repeats most time the
pattern “1010”. Against Pavlov the DMS either played many rounds of defection or some irregular
pattern of “0” and “1”. Compared to the other methods, our DMS belongs always to the best methods
and often gets the best score. Against the simple strategies ALLD, ALLC, and GRIM, the DMS has
no chance to outperform the other strategies at large. The games of the DMS against TFT and STFT
have never ended with mutual defection, which has led to the low scores of the other methods. The
very high standard deviations of many methods against TFT and variants occur because some of the
games have converged to mutual cooperation (high score), and some to mutual defection (low score).
The D/Y method shows a relatively high standard deviation against all default strategies. This can
probably be explained by the method itself: the strategy reservoir is created offline before the game
starts, optimized by a GA which uses for evaluation only games between strategies of the reservoir
itself. Thus the population might converge to very special strategies, e.g. rather cooperative ones,
which cannot play well against all unseen test strategies. In [3] Darwen and Yao do not measure the
diversity of their created reservoir to prove this. In the IPD results shown in Figure 8, our DMS was
better than the single learning neural net on average, but not in the maximal values for the TFT vari-
ants. Closer analysis showed that both methods usually find good solutions very fast, but the DMS
tries some defective moves in between every now and then. Thereby the DMS games never ended
with mutual defection – in this respect the DMS is more robust. According to [5] humans’ prediction
learning does not converge as fast as typical neural network learning, thus allowing more exploration.
In our experiments the DMS also behaved more explorative than the single neural net.

We also tested four sophisticated methods playing IPD and RPS against the DMS (see Figure 9).



D/Y lin. pred. single NN DMS

avg 2505.4 2995.4 2845.7 2919.9
std 104.8 58.2 121.4 51.1

RAND max 2726 3114 3035 3004
min 2326 2936 2591 2814
pred — 49.8 50.4% 51.4%
avg 653.3 999.3 998.3 996.7
std 133.8 0.5 1.1 2.1

ALLD max 841 1000 1000 1000
min 507 999 996 997
pred — 99.9% 99.9% 99.9%
avg 4930.4 4998.6 4996.6 4998.8
std 209.7 1.0 1.9 1.4

ALLC max 5000 5000 4998 5000
min 4334 4998 4994 4996
pred — 99.9% 99.7% 99.9%
avg 724.8 1005.6 1002.0 1001.6
std 249.5 0.8 2.1 1.8

GRIM max 934 1006 1004 1004
min 258 1004 999 1000
pred — 99.8% 99.5% 99.9%
avg 1911.7 1005.2 2377.7 2847.3
std 285.6 1.0 948.8 74.2

TFT max 2423 1006 2996 2886
min 1567 1004 1004 2644
pred — 99.8% 99.6% 96.8%
avg 1939.5 1346.3 2181.2 2820.3
std 358.3 724.8 1017.1 180.9

STFT max 2487 2722 2994 2886
min 1285 1000 1000 2306
pred — 98.0% 99.8% 97.1%
avg 2927.1 1009.0 3639.7 3711.2
std 783.5 1.0 921.4 44.0

TFTT max 3991 1010 3979 3744
min 1571 1008 1020 3626
pred — 99.7% 98.1% 94.4%
avg 2639.8 2998.4 2992.1 2988.9
std 448.1 4.7 14.2 8.9

Pavlov max 3002 3002 3000 3000
min 1849 2989 2953 2976
pred — 99.4% 99.2% 98.5%

Figure 8. Different methods against CEC’04 IPD de-
fault strategies

D/Y lin. pred. single NN DMS

avg 2081.3 1001 1000.1 1013.8
817.3 1013 1019.6 1011.3

std 575.4 5.8 6.8 7.7
817.3 6.1 8.4 5.8

DMS max 2773 1015 1018 1024
IPD 1000 1022 1033 1022

min 1206 996 994 1002
593 1000 1008 1006

pred 85.9% 99.7% 99.6% 99.3%
— 98.9% 99.2% 99.3%

avg — 26.3 86.3 2.7
— -26.3 -86.3 -2.7

std — 23.7 34.6 26.1
— 23.7 34.6 26.1

DMS max — 55 143 42
RPS — 14 -42 33

min — -14 42 -33
— -55 -143 -42

pred — 33.5% 32.1% 28.8%
— 24.3% 25.2% 28.4%

Figure 9. Results of DMS against different methods
(including itself); in each cell first given value belongs
to DMS, second to opponent method

TFT imitator historyopponent history

before 10 

rounds

newest

history

position

before 10 

rounds

newest

history

position

Figure 10. Usage of history positions in PD: DMS
against TFT. Left: imitator percentage using posi-
tions of opponent history. Right: imitator percent-
age using positions of own (TFT imitator) history.

All IPD-games except D/Y converged very fast to mutual defection, thus the actions of the players
are predicted correctly with very high percentages, but the score is very low. When the DMS played
against D/Y, then typically the DMS defected nearly always and D/Y played a very regular pattern,
such as “110000110000...” or “10001000...”, but sometimes also a more irregular pattern. The average
payoff for the DMS was much higher than for D/Y. When the same methods play RPS (with well)
against each other, their actions become almost unpredictable and the rate of correct predictions sinks
to values in the range of 30%. When playing RPS against itself, the history of the DMS shows no
recognizable special pattern and the game ends in about the same payoff for both players. The DMS
wins against linear prediction and single net method. Since the D/Y method only works for IPD
(because of the strategy coding), we could not compare it with the other methods for RPS.

Concerning the optimization of the history positions, which are used as input for the imitator nets,
we observed that good results are also possible when this optimization is switched off and always
the 10 previous positions of system and opponent history are used. This result should be expected
regarding the relatively simple application task. But the DMS is intended to be applied also to more



complex applications, where a reduction of input complexity is necessary. The optimization of the
history positions produces good results, as can be seen in a typical run in Figure 10 for the TFT
strategy in the prisoner’s dilemma. The history position which contains the last opponent action is
used in 98.2% of all considered TFT-imitators, i.e. the 10 best imitators in each optimization step. On
average each of these TFT-imitators used 2.0 positions of the opponent history and 1.0 positions of
the own history. For simpler strategies like ALLC oder ALLD only 0.8 positions are used on average
per history and imitator, whereas more difficult strategies like RAND lead to larger values (3.3 for the
opponent history and 4.1 for the own history).

3.1 Prediction Accuracy

At first sight it might be surprising that a better prediction does not always give rise to a better score
(see Figure 7, especially for the TFT variants). A similar phenomenon occurs in Figure 9 where the
lower correct prediction rate of the DMS against D/Y led to a higher payoff than the higher correct
prediction rate of the DMS against the other methods. Should it thus be desirable not to maximize the
prediction accuracy in order to achieve the maximal payoff?

Four simplified cases can occur in IPD:

1. opponent difficult to predict; allows low maximal score1

2. opponent difficult to predict; allows high maximal score
3. opponent easy to predict; allows low maximal score
4. opponent easy to predict; allows high maximal score

The linear predictor method and TFT only defected
system

strategy
maximal

possible

payoff

opponent

strategy

difficulty

to reach good 

prediction

accuracy

system prediction of 

opponent strategy

Figure 11. Dependencies in IPD. Arrows:
“depends on”.

against each other. Since a defecting opponent is easy to
predict but only allows a low maximal reachable payoff,
this belongs to case 3. Accordingly Figure 8 shows a very
low average score of 1005.2 and a very high prediction
accuracy of 99.8%. The DMS played mostly “C” against
TFT in a sophisticated pattern with defective moves in
between every now and then. Thus TFT also mostly co-
operates in this sophisticated pattern. This is an example
of case 2, because the pattern which TFT adopted is diffi-
cult to predict, but allows a high maximal score, because

it plays mostly cooperation. Here the average payoff is rather high (2847.3), but the prediction accu-
racy of 96.8% is lower than in the former case.

Since tasks which are difficult to predict mostly come along with a lower prediction accuracy by
the predictor, a direct comparison of the cases 2 and 3 might lead to the counterintuitive result that a
better prediction accuracy does not result in a better payoff. The problem is, that we cannot compare
the results of different runs so easily, because the environment is not stationary. The maximal possible
payoff values for IPD (at least for reacting strategies) depend strongly on the opponent strategy, which
in turn depends on the own strategy which depends on the own prediction of the opponent strategy.
Figure 11 illustrates these cyclic dependencies. And since Figure 7 shows different prediction meth-
ods, the results cannot directly be compared. This is true even if the “same” opponent strategy is used.
Looking at each situation apart from the others however, an improved prediction accuracy still leads
to a higher score. This problem does not occur in RPS where the maximal possible payoff is always
1 point per round – regardless of the opponent strategy. In order to achieve a direct comparability
of the results in IPD, it would be desirable to have a normalized prediction accuracy measure, which
considers the aforementioned dependencies.

1Note: The maximal reachable payoff for a player in IPD depends on the opponent strategy. If the opponent defects,
the obtainable score is lower than if the opponent cooperates (cf. Figure 1).



4 Conclusion

The DMS outlined in this paper beats the single neural net in RPS and plays equally good in IPD
(mutual defection). Moreover the average payoff against the default strategies in IPD is higher. Since
both methods use online learning, one can conclude, that the usage of a pool of neural net strategies
and the GA optimization of the history windows result in the observed advantage.

The DMS beats the D/Y-method in IPD and plays better against the CEC default strategies. Since
both methods use a strategy pool, one can conclude, that our enhancements like online learning,
strategy coding with neural nets instead of lookup tables, GA optimization of history windows and
explicitly trying out all possible counter-strategies must have brought the advantage. It is planned to
analyze in more detail which relative influence is due to which modification.

Despite online-learning, the DMS runs faster than our implementation of the D/Y method (includ-
ing D/Y offline pool generation). Especially the disassortative sampling in the D/Y method is very
time-consuming. Since Darwen and Yao did not measure the diversity or show in [3] how much better
their system performs using fitness-sharing and disassortative sampling than without these methods,
we did not employ them for the DMS.

As intended, our DMS learns online the current strategy of its opponent and adapts its own strategy
accordingly. The performance is very good compared to other playing methods, as has been shown
in section 3. Since the DMS is not primarily intended to play games, we want to apply it to other
decision making problems, in order to fully exploit its potential.

Acknowledgment

This work was supported by the German Ministry of Education and Research (BMBF) under grant
LOKI 01IB001E. We would like to thank Edgar Körner for his support and Paul Darwen for answering
several questions concerning the parameters used in his paper [3].

References

[1] M. V. Butz et al., editors. Anticipatory behavior in adaptive learning systems. Springer, New York, 2003.
[2] D. Carmel et al. Learning models of intelligent agents. In Proc. 13th Nat. Conf. AI, pages 62–67, 1996.
[3] P. J. Darwen and X. Yao. Speciation as automatic categorical modularization. IEEE Trans. Evolutionary

Computation, 1(2):101–108, 1997.
[4] H. Gross et al. Neural architecture for sensorimotor anticipation. In EMCSR’98, pages 593–598, 1998.
[5] T. Ikegami et al. Chaotic itinerancy in coupled dynamical recognizers. Chaos, 13(3):1133–1147, 2003.
[6] G. Kendall et al. IPD competition, 2004. Organized at CEC’04, http://www.prisoners-dilemma.com.
[7] C. Meyer et al. Learning strategies in games by anticipation. In Proc. IJCAI-97, pages 698–703, 1997.
[8] J. Payne et al. The adaptive decision maker. Cambridge University Press, 1993.
[9] M. Riedmiller and H. Braun. A direct adaptive method for faster backpropagation learning: The RPROP

algorithm. In Proc. IEEE Int. Conf. Neural Networks, volume I, pages 586–591. IEEE/INNS, 1993.
[10] W. Schultz et al. A neural substrate of prediction and reward. Science, 275:1593–1599, 1997.
[11] D. Suryadi et al. Learning models of other agents using influence diagrams. In Proc. Int. Conf. User

Modeling, pages 223–232, 1999.
[12] M. Taiji et al. Dynamics of internal models in game players. Physica D, 134(2):253–266, 1999.
[13] J. Vidal et al. Recursive agent modeling using limited rationality. In ICMAS’95, pages 376– 383, 1995.


