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ABSTRACT

A major problem in designing neural vision models is the
large dimensionality of the search space for defining the
needed networks. By using hierarchical vision models in-
spired by biology we narrow the space of possible architec-
tures. We perform evolutionary optimization of remaining
critical network parts e.g. the combination features, which
are up to now mostly subject to manually determination. We
show that the evolutionary approach leads to an optimized
recognition system with respect to speed and performance,
which is highly competitive with other state of the art sys-
tems.

1. INTRODUCTION

A critical problem in the application of artificial neural vi-
sion systems to object recognition tasks is the introduction
of invariance properties. The correct recognition of pre-
sented visual objects should be robust under translation, scal-
ing and rotation of the input stimuli. To incorporate these
properties into a neural vision system a proper architectural
design of the network is essential.

Evolution strategies provide a general and powerful
method for system design optimization and their successful
combination with neural networks has been shown in var-
ious applications [14]. In the work presented here we use
evolution strategies to support the design process.

In order to apply evolutionary algorithms to the design
of neural systems their structure and parameters must be
represented or encoded. Most approaches use the so-called
direct coding , e.g., via a connection matrix, where each
entry represents a connection between two neurons. The
main disadvantage of this method is the bad scaling prop-
erty, since the representation scales quadratically with the
number of neurons. In neural networks used for vision tasks,
the number of neurons needed is immense and, therefore,

We acknowledge partial funding of the LOKI project by the Bun-
desministerium für Bildung und Forschung (BMBF) grant 01IB001E.

the direct encoding is difficult to apply. Interesting
approaches which focus on an indirect coding can be found
in [3, 8]. Another way to prevent getting lost in an enor-
mous search space of possible network architectures is to
incorporate insights from neuroscience and in this way nar-
row the search space of possible network architectures. So
inspired by the human visual cortex, we use a hierarchi-
cal vision system in which feature complexity is increas-
ing from initial to later processing stages, and where invari-
ance is achieved through pooling over increasing receptive
fields [2, 7, 13]. One important part of a hierarchical model
which still needs to be determined are the so-called combi-
nation features, which combine for example more elemen-
tary features like local edges into more complex patterns
like corners and T-junctions. Methods which were proposed
so far for the optimization of these features include unsu-
pervised competitive learning combined with manually de-
signed training patterns [2], supervised gradient-based opti-
mization [4], enumeration heuristics [7], and sparse coding
[13]. Few works use evolutionary methods to optimize hi-
erarchical vision systems. Pan et. al. [6] optimize features
with manually designed patterns as targets in intermediate
stages of the vision architecture. Shi et. al. [12] on the con-
trary use genetic algorithms to build these patterns and use
conventional supervised training methods of the neocogni-
tron [2] to get the features.

In the work presented here we directly determine the
combination feature filter bank using evolution strategies.
We use a problem-specific direct coding and keep the di-
mensionality of the optimization sufficiently low by using
a biologically inspired hierarchical architecture, described
in the following section. In addition to the combination
features, we also optimize important nonlinearities of the
vision model architecture. The target value of the optimiza-
tion is the classification performance of the vision network
in an object recognition task. The details of the evolutionary
optimization of the hierarchical vision system are described
in Section 3. In Section 4 we demonstrate the generaliza-
tion ability of the optimized feature set in object recognition
tasks and compare the results to state-of-the-art algorithms.



In the last section, we summarize our results.

2. THE NEURAL VISION SYSTEM FOR OBJECT
RECOGNITION

The used vision system for object recognition is based on a
hierarchical feed-forward architecture with weight-sharing
and a succession of feature-sensitive and pooling stages,
see Fig.1. The first processing stage consists of a convo-
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Figure 1: Sketch of the hierarchical network. The input
image is presented as a 64 � 64 pixel image. The S1 layer
consists of 4 Gabor feature planes at 4 orientations with a
dimension of 64 � 64 each. The C1 layer subsamples by
pooling down to a resolution of 16 � 16 for each of the 4
S1 planes. The S2 layer contains combination coding cells
with possible local connections to all of the C1 cells. The
C2 layer pools the S2 planes down to a resolution of

� � �
.

The final S3 cells are tuned to particular views, which are
represented as the activity pattern of the C2 planes for an
input image.

lution with 4 differently oriented first-order Gabor filters, a
Winner-Take-All mechanism between these features and a
final threshold function. We adopt the notation, that vector
indices run over the set of neurons within a particular feature
plane of a particular layer. To compute the response ��� ���	��
���
of a neuron in the first layer S1, responsive to feature type �
at position ����
���� , first the image vector � is multiplied with
a weight vector ������	��
��� (Gabor filter with orientation no.
1) characterizing the receptive field profile:

� �� �	��
������� � � � ����
�������� �"! (1)

All neurons in a feature plane � have the same receptive field
structure, given by ������	��
��� , but shifted receptive field cen-
ters. In a second step, a soft Winner-Take-All mechanism is

performed with

# � ������
�����
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if '�()+*-, . /102 354 � or 67� % 
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(2)

where 6 �>=@?�ACB � B�C����
��� and # � ������
��� is the response
after the WTA mechanism which suppresses sub-maximal
responses and provides a model of latency-based competi-
tion. The parameter

% 3D4 � 3FE controls the strength of
the competition. The activity is then passed through a sim-
ple threshold function with a common threshold G � for all
neurons in layer S1:

� � � ����
����� H H # � � ����
����JIKG �ML 
 (3)

where H �	�N�O� E if �QP %
and H ���R�S� %

else and �T� � �	��
���
is the final activity of the neuron sensitive to feature � at
position �	��
���� in the S1 layer. The activities of the first
layer of pooling C1-neurons are given byU � ������
����V�XW8? Y�Z�H\[ � �	��
�������] � � L 
 (4)

where [ � �	��
��� is a normalized Gaussian pooling kernel with
width ^ � , identical for all features � , and W8? Y�Z is the hy-
perbolic tangent function. The features in the intermediate
layer S2 are sensitive to local combinations of the features in
the planes of the previous layer, and are thus called combi-
nation neurons in the following. We introduce the layer acti-
vation vector _` � �a� ` ���
b!b!c!1
 `ed�O� and the layer weight vector_� �f �g�	� � �f 
b!c!b!b
�� � df � with K=4. Here � � Bf �	��
��� is the re-
ceptive field vector of the S2 neuron of feature � at position�	��
��� , describing connections to the plane h of the previousi E neurons. The combined linear summation over previous
planes is then given by � �fj�	��
���&�k_�@�f ����
����l�m_` � . After the
same WTA procedure with strength 4 f as in (2), the activ-
ity in the S2 layer is given by �T�fe�	��
������on5� # �fj�	��
���JIpG f �
after thresholding with a common threshold G f . The step
from S2 to C2 is identical to (4) and given by U � f �	��
���@�W8? Y�Z��q[ f �	��
���&�S]c�f �1
 with Gaussian spatial pooling kernel[ f �	��
��� with range ^ f .

Classification of an input image with C2 output _` f is
done by nearest neighbor match to previously stored tem-
plate activations _` rf for each training view s . This can be
realized e.g. by view-tuned units (VTU) in an additional S3
layer with a radial basis function characteristics according
to � rt �vu1A�w��Ix�-�M_� rt I ` f �y� f � where _� rt � ` rf is tuned to the
training C2 output of pattern s . Classification can then be
performed by detecting the maximally activated VTU.

3. EVOLUTIONARY OPTIMIZATION OF THE
NEURAL VISION SYSTEM

3.1. Evolution strategies

In evolution strategies (ES) the essential variations during
the evolutionary search are mutations which are realized by



adding normally distributed random numbers to the objec-
tive variables. The variances of the normal distribution are
called the strategy parameters of the search process and their
values determine the width of the search. The variances
have to adapt during the process to the local topology of the
search space. This process of self-adaptation is a key prin-
ciple of evolution strategies. It relies on a “second-order”
or indirect selection of the strategy parameters which are
part of each individual. The strategy parameters are also
subject to mutations. Thus, the chromosome of an individ-
ual consists of both the objective and the step-size vector,
see e.g. Schwefel [10]. In the evolutionary optimization ap-
plied here we used a global step-size-adaptation with 2 dif-
ferent step sizes, which turned out to be sufficient for this
optimization, one for the 6 nonlinearity parameters and one
for the combination filter bank weights, described in more
detail in the following sections. We used a discrete recombi-
nation for the 6 parameters and also discretely recombined
whole combination filters as the smallest parts of a combi-
nation filter bank. The strategy parameters, i.e. the global-
step-sizes, were recombined by a generalized intermediate
recombination [1]. The “ES-typical” deterministic � � 
��R�
selection was used in the experiment in Section 4.

3.2. Representation of system nonlinearities

In our vision model, we selected 6 parameters which effi-
ciently characterize the quality of the nonlinearities of the
system. These are the WTA selectivities 4 � 
 4 f , which con-
trol the competition between the different features in the
same layer, the threshold parameters G � 
G f , which control
the number of neurons firing, and the pooling ranges ^ � 
�^ f ,
which control the sizes of the Gaussian pooling kernels used
in layer C1 and C2. The parameters 4 � , 4 f , G � , G f , ^ � , ^ f
are coded as real values into the chromosome. The values
are restricted to the following interval : 4 � 
 4 f���� % 
 E�� , with
a value of E meaning that only the output of the strongest
features are transmitted, whereas

%
means, that all signals

from all features are transmitted without any reduction in
strength. The normalization of the gray values of the images
and used filters results in G � �	� % 
 E�� and G f �	� % 
�
 � . For an
adequate receptive field size for pooling we set ^ � 
8^ f �� % ! ��
�� � .
3.3. Representation of the feature bank

Additionally to the system nonlinearities the weights _�@�fm��	�@� �fS
b!c!b!c
�@��f � , which define the combination filter bank,
are coded into the chromosome. Here ��� E 
c!-!y!-
�� , where �
is the number of S2 feature planes.

This coding is often referred to as the genotype-pheno-
type-mapping [11] and plays an important role in evolution-
ary optimization. One has to guarantee the completeness,

i.e. all allowed and sensible phenotypes (i.e., network ar-
chitectures respective combination filter bank in our case)
have to be describable. No forbidden or senseless pheno-
types should be describable in order not to unnecessarily en-
large the search space. The so-called strong causality con-
dition should hold, i.e. the neighborhood relationship from
the genotype space to the phenotype space should be con-
served. The number of free parameters which describe the
genotype should be kept as small as possible to keep the
dimension of the search space low.

The coding of the combination filter bank is organized
as follows: We define the size of one filter of the combi-
nation filter bank _� �f �	� � t���� �� t � t . Each of the 4 planes
of layer C1 corresponding to 4 different local orientations
in the image are convoluted with a 3 � 3 filter. If we define� � Bf�� , with h � E 
�
�
�� 
�� , and � � E 
c!-!y!y
�� as the ith entry of�@� Bf we choose � � Bf�� ��G � 
�� � �V��� �! ��G � I h#"%$��'&("%$)
 � , with

 ��Ge���
*+, +- �eG.$/" "1032 G425"106&("%$�� 
I7�eG.$/"8&9
:"106&	"%$/�;2 G425"108&("%$)
�
%

otherwise

(5)

and 0 �<� =?> . For an easier understanding the function �	Ge� together with the used 3 shifts are displayed in Fig.
2. The advantages of this coding are the following: Firstly,
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Figure 2: Periodic function  �	Ge� displayed in the interval� % 
�
@" � together with 3 shifts. By shifting the function  ��Ge�
in the definition of the combination filter bank we yield a
soft transition from one to the other orientations brought
into the system by the convolution with the 4 Gabor filters
in the S1 layer.

only sensible combination filter banks are describable, in
the sense that entries in the same position of the 3 � 3 filters
corresponding to orthogonal local orientations in the image
are not allowed and between neighboring orientations there
is a smooth transition. Secondly, through the cyclic coding
unnecessary borders are avoided. Thirdly and most impor-
tantly, the number of free parameters could be reduced by
half. The final optimization was carried out with � �A�
filters, which showed the best performance in preliminary
optimization runs testing also � � 6,7,8,10,14,20. With 9
filters 9 � 18=162 values have to be optimized. Thus the full
optimization took place in a 162+6=168 dimensional search
space.



4. RESULT

For the evolutionary optimization of the combination fea-
tures and nonlinearity parameters we used the object data-
base COIL20 [5]. This database contains 20 different ob-
jects with 72 images of varying angles of view, reaching
from 0 to 360 degree in 5 degree steps. We train the vi-
sion system with 3 views (0, 120 and 240 degree) of each
object. In the test phase the vision system has to recognize
24 remaining views, which are equally distributed between
0 and 360 degree, of all objects by matching them to the
corresponding objects. The target of the optimization is the
minimization of the misclassification rate.

To determine certain parameters of the optimization pro-
cess itself we carried out several optimization runs with
small population sizes for testing, using a (2,20)-strategy.
After finding reasonable values for the initial and the min-
imal step size of the mutation operator and the number of
combination filters � , we started 3 optimization runs with
a (10,100)-strategy. The elitist which denotes the best indi-
vidual was always stored but did not necessarily remain in
the population.

In spite of the strict separation of training and test data
the danger of over-fitting during the optimization is still
there. This is caused by the evolutionary optimization loop
in which the test data is used to compute the fitness of a
single individual. The question is how strongly generaliza-
tion is affected by this problem. Therefore, it is important
to check the generalization ability of the final result again
with a validation dataset. For this test we use the COIL100
[5] data base and the ORL test dataset [4], containing face
images.

We first performed an optimization of the nonlinearity
parameters alone, using a feature set of 50 combination fea-
tures, that were obtained according to a local combination
enumeration as suggested by [7]. For this feature set, af-
ter manual tuning of the nonlinearities Wersing and Körner
[13] obtained a misclassification rate of E �C! � �

(COIL20),
see Fig. 3. After an optimization which at first included
only the adjustment of the 6 nonlinearity parameters 4 � , 4 f ,G � , G f , ^ � , ^ f the misclassification rate could be lowered
to a value of

� !�� �
. Thereafter, we included the filter-bank

in the optimization and the misclassification rate could be
further reduced to a value of ��! � �

. Also important is the
fact, that after evolutionary optimization of the filters only
9 are needed in contrary to 50 before. This minimizes the
hardware resources needed quite considerably. Using a se-
rial computer the recognition time of the neural vision sys-
tem was halved to about 10 ms on a standard SUN blade
1000 workstation. In a parallel computing environment cor-
respondingly less hardware would be needed. Also the gen-
eralization ability of the optimized result is good. The orig-
inal vision system using enumeration features [13] reached

on the COIL100 data base a misclassification rate of 
)��! % �

whereas the fully evolutionary optimized system reached a
value of 
���! � �

.
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Figure 3: Typical optimization run of the hierarchical neu-
ral vision system. The misclassification rates of the best 2
parents are plotted over the simulated generations. Also dis-
played is the elitist over the generations and the classifica-
tion rate of the system before any evolutionary optimization
and after optimization of the parameters 4 � , 4 f , G � , G f , ^ � ,^ f only.

To highlight the performance of the optimized recogni-
tion hierarchy we compared our model to recent results pub-
lished on the COIL100 database using the SNoW method
and a linear support vector machine [9]. For a fair compar-
ison we replaced the simple nearest neighbor match opera-
tion, see Section 2, by supervised training of a single sig-
moidal (tanh) linear discriminant for each object, based on
the C2 layer outputs. Here, we performed stochastic gradi-
ent descent on the quadratic error, choosing target outputs
as

% ! � and I % ! � for correct and incorrect objects, respec-
tively. The results reveal a good generalization of the op-
timized system (see Fig. 4). Using an identical network
feature and parameter setting, without new adaptation, the
network achieves similar performance in a face classifica-
tion task on the ORL face dataset (40 indivduals, 10 images
each, courtesy of AT&T Research Labs, Cambridge) as a
hybrid convolutional face classification approach [4], which
is fully adapted to the task.
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Figure 4: Comparison of classification rates. Part a) com-
pares the classification rates on the COIL100 dataset for
our evolutionary optimized hierarchy to results obtained by
Roth et. al. using their SNoW model, a linear support vec-
tor machine, and direct image nearest neighbor classifier
(NNC). In a wide regime of sufficient recognition task dif-
ficulty (compare NNC), our feature hierarchy achieves best
results with high generalization. Part b) shows results for
a face datase, using identical features and nonlinearity pa-
rameters. The results match the performance of the hybrid
convolutional face classification approach of Lawrence et.
al. (CN+SOM).

5. CONCLUSION

In this paper, we demonstrated how evolution strategies help
to design critical architectural parts as nonlinearities and
combination features, which are mostly built up manually.
The system optimized in this way has shown an improved
generalization ability and at the same time reduced the
needed hardware resources. The results have been com-
pared to state-of-the-art algorithms and exhibited a superior
performance in most parts. We also showed that the opti-
mized system is capable of working successfully across do-
mains. The same architecture worked for COIL objects as
well as for face images. In the future, we will extend the
representation of the neural vision system to increase the
degree of freedom for the evolutionary structuring process.
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