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Abstract

A central task in visual object recognition applications is the choice of a proper feature
space. Inspired from the human neural vision system we suggest hierarchical features for
3D object recognition, which we optimize using evolution strategies. We compare different
evolutionary design approaches for the hierarchical feature generation: Direct coding
versus a biologically more plausible indirect coding using unsupervised local learning. A
comparison to state-of-the-art recognition approaches shows the competitiveness of our
approach.

1 Introduction

A critical problem in 3D object recognition is the design of visual object features, which are in a
certain range invariant under translation, scaling and rotation of the input stimuli. We propose to use
hierarchical features inspired by the human neural vision system. There is strong biological evidence
that hierarchical processing is an important principle in the visual cortex [1]. Barlow [2] proposed
that these hierarchical neural representations are structured according to the principle of redundancy
reduction. Along this line, unsupervised local learning rules were used to obtain visual features
similar to the ones found in early visual brain areas [3]. We further use evolutionary algorithms,
which have proven their capabilities in neural system design optimization in various applications [4],
to optimize the neural structures which generate the used hierarchical features.

In order to apply evolutionary algorithms to the design of neural systems their structure and param-
eters must be represented or encoded. Most approaches [4] use direct or explicit coding, e.g., via a
connection matrix, where each entry represents a connection between two neurons. Biologically this
scheme is implausible as the amount of information needed to be stored in the genome is far too large.
This makes indirect coding approaches, where not every neuron with every connection is explicitly
encoded in the genome, attractive. By using for example a predefined building process which controls
the development of the phenotype, the only information which have to be encoded in the genome are
process control parameters [5]. The next step is not only to use a set of fixed rules for the develop-
ment, but an active learning process for the indirect coding. Interesting approaches which focus on
this combination of evolution and learning can be found [6, 7]. This scheme of an indirect coding



using local learning rules for the building process of a complex neural system is biologically far more
realistic [8, 9]. Few researchers use a form of indirect coding in their evolutionary optimizations of
neural networks. Kitano [5] suggests a graph generation grammar to indirectly code neural networks
and shows that the indirectly coded networks exhibit a magnitude of speed-up in convergence of the
evolutionary optimization. Sendhoff and Kreutz [7] have included a developmental phase - a growth
process - in the analysis of the dynamic interaction between genetic information and information
learned during development. A strongly neurobiologically inspired approach to the combination of
evolution and learning for the design of neural networks has been suggested by Rolls and Stringer [6].
Their optimized networks are restricted to three canonical architectures: pattern association memory,
auto-association network and competitive neural network. In summary, most contributions which fo-
cus on indirectly coded evolutionary optimization schemes did not approach complex tasks, like 3D
object recognition.

In our work presented here we combine biologically inspired hierarchical networks with evolution
strategies in a novel way to obtain powerful recognition architectures for general 3D object recogni-
tion. Our focus is a comparison of direct versus indirect coding of the features in the visual hierarchy
with regard to the generalization capabilities of the network. In the case of the indirect coding, we use
a coupling of evolution and different local learning processes. The target value of the optimization
is the classification performance of the vision network in a 3D object recognition task. Our vision
model architecture is introduced in Section 2. The details of the evolutionary optimization are de-
scribed in Section 3. We state and discuss the results, including a comparison to other state-of-the-art
algorithms, in Section 4. In the last section, we conclude our work.

2 The neural vision system for object recognition

In the following, we define the hierarchical model architec- Combinations
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Figure 1. Sketch of hierarchical
network.

ture that we will use for the evolutionary optimization. The
model is based on a feedforward architecture with weight-shar-
ing and a succession of feature-sensitive matching and pooling
stages (see also [10] for a discussion on the general properties
and biological relevance of this architecture). The model com-
prises three stages arranged in a processing hierarchy (see Fig-
ure 1). The input image is presented as a 64 � 64 pixel image.
The S1 layer consists of 4 Gabor feature planes at 4 orienta-
tions with a dimension of 64 � 64 each. The C1 layer subsam-
ples by pooling down to a resolution of 16 � 16 for each of the
4 S1 planes. The S2 layer contains combination coding cells
with possible local connections to all of the C1 cells. The C2
layer pools the S2 planes down to a resolution of

� � �
. The final S3 cells are tuned to particular

views, which are represented as the activity pattern of the C2 planes for an input image.
The first processing stage consists of a convolution with 4 differently oriented first-order Gabor

filters, a Winner-Take-Most (WTM) mechanism between these features and a final threshold function.
We adopt the notation, that vector indices run over the set of neurons within a particular feature plane
of a particular layer. To compute the response ������	��
��� of a neuron in the first layer S1, responsive to
feature type � at position �	��
��� , first the image vector � is multiplied with a weight vector � �� �	��
���
characterizing the receptive field profile:

� ����	��
�������� � ����	��
�����������
 (1)

where the inner product is denoted by � , i.e. for a  �! �  �! pixel image, � and � ����	��
��� are 100-



dimensional vectors. All neurons in a feature plane � have the same receptive field structure, given
by � �� �	��
��� , but shifted receptive field centers, as in a classical weight-sharing architecture [11]. In a
second step, a Winner-Take-Most mechanism is performed with

� ����	��
����� �
! if ��� ���	��
 ��� ��� � or � � !�
��� ���	��
 ���� ��� �� � � � otherwise 
 (2)

where � ������� � � �� �	��
��� and � �� � ��
��� is the response after the WTM mechanism which suppresses
sub-maximal responses and provides a model of latency-based competition [10]. The parameter ! �� �!�  controls the strength of the competition. The activity is then passed through a simple threshold
function with a common threshold " � for all neurons in layer S1:

� � � �	��
������ H # � �� � ��
���%$&" ��' 
 (3)

where H � � � �  if �)( ! and H �	� � � ! otherwise and � � � � ��
��� is the final activity of the neuron
sensitive to feature � at position �	��
��� in the S1 layer. The activities of the first layer of pooling
C1-neurons are given by *

� � �	��
�����,+��.-0/�#�1 � �	��
�����32 � � ' 
 (4)

where 1 � �	��
���� is a normalized Gaussian pooling kernel with width 4 � , identical for all features � ,
and tanh is the hyperbolic tangent function. The features in the intermediate layer S2 are sensitive to
local combinations of the features in the planes of the previous layer, and are thus called combination
neurons in the following. We also use the term feature bank to denote the set of features of a particular
layer. We introduce the layer activation vector 56 � � � 6 �� 
87�7�7 
 6:9 � � and the layer weight vector 5� �; �
�	� � �; 
�787�7 
 � � 9; � with K=4. Here � � �; � ��
��� is the receptive field vector of the S2 neuron of feature �
at position �	��
���� , describing connections to the plane < of the previous =  neurons. The combined
linear summation over previous planes is then given by � �; � ��
��� � 5� �; �	��
��� �>56 � . The weights of
these combination neurons are a main target of our evolutionary optimization. After the same WTM
procedure with strength � ; as in (2), the activity in the S2 layer is given by � �; �	��
�����@? � � �; � ��
����$A" ; �
after thresholding with a common threshold " ; . The step from S2 to C2 is identical to (4) and given
by

*
�; �	��
��� �B+��.-0/��C1 ; �	��
��� ��2 �; � 
 with Gaussian spatial pooling kernel 1 ; �	��
��� with range 4 ; . The

nonlinearity parameters � � 
D" � 
�4 � 
 � ; 
D" ; 
�4 ; will be subject to evolutionary optimization.
Classification of an input image with C2 output 56 ; is done by nearest neighbor match to previously

stored template activations 56.E; for each training view F . This can be realized e.g. by view-tuned
units (VTU) in an additional S3 layer with a radial basis function characteristics according to � E G �H �JI��K$ � �D5� EG $ 6 ; � � ; � where 5� EG � 6 E ; is tuned to the training C2 output of pattern F . Classification can
then be performed by detecting the maximally activated VTU.

3 Evolutionary optimization of the neural vision system

The described vision system will be optimized by the use of evolution strategies. Here we compare
two different types of coding: direct coding versus indirect coding coupled with an unsupervised local
learning algorithm.

3.1 Evolution strategies

We employ a standard evolution strategy (ES) [12] with a semi-global step-size-adaptation with two
different step-sizes to optimize the vision system. This turned out to be sufficient: one step-size for
the 6 nonlinearity parameters and one for the combination feature weights, described in more detail



in the following sections. In the case of the indirect coding, we need just one step-size since the com-
bination features are optimized by the local learning process. We used discrete recombination for the
6 nonlinearity parameters. The strategy parameters were recombined by a generalized intermediate
recombination. In our studies, we used the “ES-typical” deterministic � � 
�� � selection.

3.2 First and second order generalization

For the evaluation of the optimized vision systems we introduce

Classification Rate = First Order

Classification Rate = Second Order

Vision

Vision

Database B

Database A

Evolutionary

Loop
Optimization

�����
�

����
�
����
�

Views

Generalization

Generalization

System

System

Training
Views

Test

Test ViewsTraining
Views

= Fitness

����
���

Figure 2. Concept of first
and second order general-
ization.

the concept of first and second order generalization (note that the
more common terms test and validation error are not suitable, since
we are working on different databases and not on two subsets of
one database), which is displayed in Figure 2. The flow of the
evolutionary optimization of the hierarchical neural vision system
is the following: We code the vision system into the chromosome
(directly for the first two and indirectly for the next three settings).
Then we apply evolutionary operators like mutation and recombi-
nation to the population. Thereafter, we construct the offsprings –
different vision systems – and train these using a few views from
objects of an image database A. Then we test the systems with the
classification of test object views from database A, not contained in
the training set. We use the classification rate as the fitness for the
following selection of the parents, which constitute the next genera-
tion. After a sufficient number of generations we get vision systems
which are well structured and successfully classify objects of database A. We call this performance
first order generalization. With second order generalization we denote the ability of the system op-
timized on database A, to successfully classify objects from a database B, without any changes to
features or nonlinearities.

3.3 Direct coding

In the representation of the vision system we differentiate between system nonlinearities and the
combination features. The system nonlinearities are 6 parameters which efficiently characterize the
quality of the nonlinear processing steps of the system. These are: 1. the WTM selectivities � � 
 � ;	�
 !�
  �� , which control the competition between the different features at the same image location within
the same layer, 2. the threshold parameters " � 
�" ;� 
 !�
���� , which control the number of neurons
firing, and 3. the pooling ranges 4 � 
�4 ;�� 
 ! 7 ! ! !� 
���� , which control the sizes of the Gaussian pooling
kernels used in layer C1 and C2. The parameters � � , � ; , " � , " ; , 4 � , 4 ; are coded as real values into
the chromosome. Additionally, to the system nonlinearities the weights 5� �; � �	� � �; 
�7�7�7 
�� ���; � , which
define the combination feature bank, are directly coded into the chromosome, ���  
�7 7 7 
�� , where � is
the number of S2 feature planes. For comparison with the different indirect codings we explored two
different domains for the weights: a non-negative one with � � �;�� � 
 !�
� �� and one with � � �;�� � 
 $  
  �� .
The coding of the combination feature bank is organized as follows: We denote one feature of the
combination feature bank as 5� �; ��� � G���� �� G  G . Each of the 4 planes of layer C1 corresponding
to four different local orientations in the image is convolved with a � � � filter. We define � � �;�� ,
with < �  
�7 7 7 
"! , and # �  
�7 7 7 
��%$ as the ith entry of � � �; . The optimization was carried out with� �'&�
"�($�
*) ! features. With 50 features ) ! � �($ �  � ! ! values have to be optimized. Thus the full
optimization (including also the nonlinearities) took place in a 1806-dimensional (  � ! !�+,$ �  � !($ )
search space.



3.4 Indirect coding

In the indirect coding approach, we still code the nonlinearities directly like described before but we
use three different unsupervised local learning processes to determine the weights of the combination
feature bank. These are the principal component analysis (PCA), the fast independent component
analysis (fastICA) [13] and the non-negative sparse coding scheme (nnSC) [14]. The processes use
1440 randomly selected 3 � 3 pixel patches of the C1 layer (which contains 4 planes) to learn a filter
bank. These patches therefore consist of 36 entries each ( � � � � ! � �($ ). The combination feature
bank then consists of the � principal component vectors of the C1 patches for the PCA and of the �
independent component vectors in the case of the fastICA. In the case of the nnSC the bank is the
basis for a sparse coding of the patches. In contrast to PCA and fastICA it can be an overcomplete
set and � � �($ is therefore possible. This learning process is also controlled by a sparsity factor
which determines the trade-off between sparsity and reconstruction ability of the patch inputs. We
code this parameter in addition to the 6 nonlinearities into the chromosome and therefore perform
the optimization in a just 7-dimensional search space. The space for the PCA and ICA optimization
is 6-dimensional, as we have here no additional parameters which are needed. In the following, we
briefly summarize the procedure of our indirect coding scheme from the genotype to the phenotype
to the fitness evaluation: For each genotype in the population do:

1. Construction of the phenotype up to the C1 layer.

2. Generation of C1 layer activations using the database A.

3. Collecting � � � -patches of the activated C1 layer.

4. Use of unsupervised local learning for the generation of the combination feature bank using the
patches (and the sparsity parameter, which is explicitly coded in the genotype, for the case of
the nnSC).

5. Construction of the complete phenotype – the vision system – with all nonlinearities and the
combination feature bank.

6. Training of the vision system with training views of database A (storing C2 activations as a
VTU for each training view)

7. Calculation of the classification rate using test views of database A in a nearest-neighbor clas-
sification based on C2 feature output. The result is the fitness of the individual.

4 Results and Discussion

For the evolutionary optimization of the combination features and

Figure 3. Nine objects of
the COIL20 database.

nonlinearity parameters we used the object database COIL20 [15]
(see Figure 3). This database contains 20 different objects with 72
images of varying angles of rotation in depth, reaching from 0 to
360 degrees in 5 degree steps. After the vision system is generated
according to the parameters in the chromosome, it is trained with 3
views (0, 120 and 240 degrees) of each object, by simply storing the
highest order C2 feature activation vectors of each training view (see
Section 2). In the test phase, the vision system has to classify 24
remaining views, which are equally distributed between 0 and 360
degrees. These test views are matched in a nearest-neighbor fash-
ion to the stored training vectors. We note that other classifiers like



Table 1. Results of directly and indirectly coded evolutionary optimization. L=number of fea-
tures, b=best result, m=mean, and s=standard deviation of 10 runs.

direct error error
coding COIL20 COILselect

L b m s b m s

non- 9 7.9 8.6 0.5 24.2 27.6 3.0
neg. 36 7.7 8.3 0.5 23.2 26.5 2.2
CF 50 7.3 8.6 0.8 23.2 24.8 1.5
neg. 9 6.5 8.1 1.2 22.8 26.3 2.4
CF 36 7.1 7.8 0.5 22.9 24.2 1.8

50 7.1 8.1 0.7 22.4 24.3 1.7

indirect error error
coding COIL20 COILselect

L b m s b m s

9 9.4 10.6 1.1 23.4 25.1 1.2
PCA 36 8.1 9.6 1.1 23.6 25.8 3.1
fast 9 8.5 9.4 0.7 24.4 26.7 1.8
ICA 36 8.8 9.7 1.0 22.5 24.7 2.8

9 9.0 10.0 0.6 24.1 26.5 1.6
nnSC 36 8.5 9.7 1.3 22.4 24.1 1.4

50 8.8 9.5 0.6 21.7 24.2 1.4

linear discriminators could also be applied, see [10], but the nearest-
neighbor approach has the advantage of not requiring an additional weight adaptation on the view-
tuned units. The target of the optimization is the determination of the nonlinearities and the combina-
tion features in a way that the system will have a minimal classification error after training, i.e., that
the first order generalization of the hierarchical vision system is maximal. A further test for the sys-
tem is the second order generalization. For this test, we use a subset of the COIL100 [15]1 database
which contains 100 objects, also with 72 images of continually varying rotation angle. We have to
note that 17 objects of COIL20 are also contained in the COIL100 database. We excluded these ob-
jects to ensure a proper measure of the second-order generalization. We call this reduced database of
83 objects COILselect. In the following tests, we optimized each setting 10 times for 400 generations
using a (7,19)-ES, which we identified to be a good setting in preliminary studies, considering the
trade-off between evaluation time and performance. We ran 3 different settings with the number of
features contained in the combination feature bank set to � � &�
��($ 
*) ! 2.

The results are displayed in Table 1. Note that we focus in the following discussion of the results
on the mean and not on the best results achieved with a setting. When we compare the performances
with respect to the first order generalization (the errors on the COIL20), we find that the direct coding
outperforms the indirect one significantly (with respect to the Student-t test). This can be explained
by the fact that the number of degrees of freedom is in the direct case much higher than in the indirect
case and therefore the vision system could be adapted to perform particularly well on database A.
Among the direct codings the one which allows also negative values for the combination features
(denoted with “neg. CF”) performs better than the one with nonnegative values (denoted with “non-
neg. CF”) for the same reason. The possibilities of the vision system with negative values are in
that sense higher, that not only the existence of features could be combined, but also the absence of
features. The neg. CF setting again performs best with � �'�%$ features. Only 9 features seem to be
too few to represent the objects properly. With 50 features the performance degrades compared to 36
because of the larger search space dimension.

We now focus on the errors on the COILselect database which give us a measure of how good the
vision system generalizes to new databases - the second order generalization. We find that now both
main settings (direct and indirect coding) perform almost equally well. The advantage of the indirect
coding is not significant. From this result, we can draw the conclusion, that the unsupervised learning
processes have enough freedom and are capable of building up a high performing vision system with

1We converted the COIL100 color images to grey and rescaled them to 64x64 pixels.
2except for PCA and fastICA where

�
must be less or equal to the data vector dimension.



regard to second order generalization. Among the indirect coding settings the nnSC performs best,
although only positive values for the combination features are allowed in this method. Equally to the
first order generalization also here 36 features seem to be adequate as a tradeoff between adaptability
and increasing the search space too much.

In order to understand more about the properties of the optimization problem, it is interesting to
find out whether similar sets of combination features have been found during different optimization
runs. For a comparison of two sets of combination features we have to define a distance measure

�����
which is invariant under permutation of single features (as these permutations have no effect on the
fitness).

�����
is defined as follows: Starting with the first feature of one of the two CF-sets we search

for the closest (in Euclidean metric) feature in the second CF-set. We measure the distance � � between
these two features and exclude both of them from the sets. Then we repeat this procedure with the
next feature of the first set and so forth. To have a symmetric measure, we repeat the process with
the two sets interchanged. The resulting distance measure

�����
is equal to the sum of all calculated

distances divided by two:
����� � �;
	 ;��� � � � � , where L denotes the number of combination features

in each set. Using the described distance measure we observed, that there exist a large number of
significantly different CF-sets that have similar performance.

In the following we shortly discuss the case: direct coding; � � & ; negative CFs. In order to
be able to interpret the absolute distance values, we take the best vision system from the considered
10 evolution runs and add Gaussian noise to its CFs. We do this ten times and for three different
noise levels. After that, we measure

����
and the misclassification rates of the changed system. For

Gaussian noise with a standard deviation of 4���� ����� � ! 7 !��() the mean distance measure is 5����� �
 7 ! and the misclassification rate increased on average from $ 7 )�� to �J7 ��� (i.e. � 5� �  7�� ). For4���� ����� � !J7�! )�� ! 7  � , we get 5����� ���J7 $ � )J7�� � and � 5� �  .7 $ � � 7�� � . Then we calculate 5����� � ! !J7  
for all pairs of two of the best CF-sets out of the 10 optimization runs. Next, we derive 5����� for
10 randomly generated CF-sets and get 5����� � ! ! 7 ) . Comparing the similarities of optimized and
random features, we conclude, that the optimized CFs have almost no similarity to each other and
seem to be widely spread over the whole parameter space.

Another interesting question is the degree of dependence of the found combination features, and
whether in the high-dimensional cases for � � ) ! actually all features contribute to the classification.
To analyze the combination feature output of the best results we use a principal component analysis
(PCA) on the C2 layer activations. Since we are interested in the coupling of the feature output
at a common position �	��
��� in all feature planes, we generate an ensemble of 72000 vectors  � �
�
* �; �	��
��� 
 * ;; � ��
��� 
�7 7 7 
 * 9; � ��
�����"! � � � 9 at 10 random positions �	��
��� from all 7200 COIL100 images.

Here # is the number of planes of the layer C2, which is equal to � , the number of combination
features. We display this test performed on the best vision systems (with non-negative CFs for � � &
and � � ) ! ) according to the second order generalization for the direct coding and the indirect
coding3. The results are shown in Figure 4. The normalized principal components (PC) are coded
as gray values in the figure using black for negative and white for positive values. Columns in the
display correspond to single principal component vectors. Under each illustration of the eigenvectors
we display the corresponding eigenvalues determining the variance along the corresponding vector.
In the case of � � & we get similar results for the direct and the indirect coding: All # planes -
all principal components - are reasonably activated. This changes in the case of � � ) ! . Here we
can observe horizontal gaps in the PC columns for the direct coding. In addition, the eigenvalues
are more concentrated on the first components than in the indirect case. Although some activations
are detectable at the right end of the gaps, these activations correspond to very small eigenvalues.
Therefore the overall effect of these components in the nearest neighbor matching is very limited.
The fact, that the indirect coding scheme uses a larger number of principal components is caused by

3For a better comparability we took in the case of
��$&%

also the best nnSC result.
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which illustrates the more peaked distribution of variance in the direct coding case.



Table 2. Comparison of misclassification rates on COIL100 database.
30 Objects 4 Training Views

Training Views Number of Objects
Method 36 8 2 10 30 100

NNC 0 7.5 29.5 13.5 18.2 29.9
Columbia 0 4.4 32.9 7.9 15.4 23.0

SVM 0 4.8 29.0 9.0 15.1 25.4
mtVS 0 7.3 28.3 18.4 15.8 23.9
optVS 0 4.4 22.9 12.4 12.9 20.2

the applied local learning, which optimizes also the sparse use of the different features. Therefore, the
spectrum of the indirect coding is more uniformly distributed. Note also that the DC component with
all features equally activated (the leftmost PC column in the graph) is not present in the data, due to a
zero eigenvalue. This is caused by the WTM nonlinearity, which suppresses a common activation of
all features at a common position.

To assess the performance of the best result of the indirectly coded evolutionary optimization (nnSC
with L=50), we have performed a comparison to a previous, manually tuned version of the vision
system (mtVS) (also with nnSC and L=50) [14], and to other state-of-the-art systems. Here we use the
results of Roobaert & van Hulle [16], who performed an extensive study on the COIL100 database,
comparing support vector machines (SVM), and the eigenspace-based system of Nayar et al. [15]
(denoted Columbia in the table). The results are shown in Table 2, where the number of objects and
the number of training views is varied (for less than 100 objects the first � objects are taken). We see,
that the evolutionary optimization could effectively improve the performance of the manually tuned
vision system (mtVS). Compared to other classifiers the optimized vision system (optVS) is highly
competitive and shows superior performance especially in the most difficult cases of the task, where
only few training views are available and a high number of objects have to be classified. The results of
the nearest-neighbor classifier based on the plain image data (NNC) illustrate the baseline similarity
of the images in the database.

5 Conclusion

The work presented here is the first study of the evolutionary optimization of a biologically inspired
vision network, which is capable of performing a complex 3D real world object classification task. We
compared the optimization using a direct and an indirect coding of the combination feature bank. We
showed that the used biologically inspired hierarchical architecture has a very robust behavior, where
a lot of different combination feature banks are equally well suited for classification. Therefore,
the directly coded evolutionary optimization found good results with a good convergence behavior
despite the huge dimensionality of the search space for the direct coding with � � ) ! features (1806-
dimensional). Considering second order generalization, the results are even better than the ones for
only 9 features (330-dimensional). For the more difficult COILselect database, 36 or even 50 filters
for the combination feature bank seem more adequate [14] and the drawback of a harder optimization
is compensated by the enhanced representational capability of the network.

We found, that the coupling of evolutionary search with unsupervised local learning processes
yields good results. Hereby we can realize a biologically more sensible encoding and work in a
6 respectively 7 dimensional search space (compared to over 1800 before). Comparing direct and
indirect coding, we find that the direct evolutionary optimization yields significantly better results in



the first order generalization. This performance advantage stems from specialization to the database
used during evolution as the performance gain cannot be observed for the second order generalization.
Here we see even a slight advantage for the indirect coding, which, however, does not have high
statistical significance. We also showed that the optimized architecture is highly competitive with
other current high-performing recognition methods like support vector machines.
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