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Abstract

We present a new approach to the supervised learning of lateral inter-
actions for the competitive layer model (CLM) dynamic feature binding
architecture. The method is based on consistency conditions, which were
recently shown to characterize the attractor states of this linear threshold
recurrent network. For a given set of training examples the learning prob-
lem is formulated as a convex quadratic optimization problem in the lat-
eral interaction weights. An efficient dimension reduction of the learning
problem can be achieved by using a linear superposition of basis inter-
actions. We show the successful application of the method to a medical
image segmentation problem of fluorescence microscope cell images.

1 Introduction

Feature binding has been proposed to provide elegant solution strategies to the segmenta-
tion problem in perception [11, 12, 14]. A lot of feature binding models have thus tried
to reproduce groping mechanisms like the Gestalt laws of visual perception, e.g. connect-
edness and good continuation, using temporal synchronization [12] or spatial coactivation
[9, 14] for binding. Quite generally in these models, grouping is based on lateral interac-
tions between feature-representing neurons, which characterize the degree of compatibility
between features. Currently in most of the approaches this lateral interaction scheme is cho-
sen heuristically, since the experimental data on the corresponding connection patterns in
the visual cortex is insufficient. Nevertheless, in more complex feature spaces this heuristic
approach becomes infeasible, raising the question for more systematic learning methods
for lateral interactions.

Mozer et al. [4] suggested supervised learning for a dynamic feature binding model of
complex-valued directional units, where the connections to hidden units guiding the group-
ing dynamics were adapted by recurrent backpropagation learning. The application was
limited to synthetic rectangle patterns. Hofmann et al. [2] considered unsupervised texture
segmentation by a pairwise clustering approach on feature vectors derived from Gabor filter
banks at different frequencies and orientations. In their model the pairwise feature com-
patibilities are determined by a divergence measure of the local feature distributions which
was shown to achieve good segmentation results for a range of image types. The problem



of segmentation can also be phrased as a labeling problem, where relaxation labeling algo-
rithms have been used as a popular tool in a wide range of computer vision applications.
Pelillo & Refice [7] suggested a supervised learning method for the compatibility coeffi-
cients of relaxation labeling algorithms, based on minimizing the distance between a target
labeling vector and the output after iterating a fixed number of relaxation steps. The main
problem are multiple local minima arising in this highly nonlinear optimization problem.

Recent results have shown that linear threshold (LT) networks provide interesting archi-
tectures for combining properties of digital selection and analogue context-sensitive am-
plification [1, 13] with efficient hardware implementation options [1]. Xie et al. [16]
demonstrated how these properties can be used to learn winner-take-all competition be-
tween groups of neurons in an LT network with lateral inhibition. The CLM binding model
is implemented by a large-scale topographically organized LT network, and it was shown
that this leads to consistency conditions characterizing its binding states [14]. In this con-
tribution we show how these conditions can be used to formulate a learning approach for
the CLM as a quadratic optimization problem. In Section 2 we briefly introduce the com-
petitive layer binding model. Our learning approach is elaborated in Section 3. In Section
4 we show application results of the approach to a cell segmentation problem and give a
discussion in the final Section 5.

2 The CLM architecture

The CLM [9, 14] consists of a set of
�

layers of feature-selective neurons (see Fig. 1). The
activity of a neuron at position � in layer � is denoted by ����� , and a column � denotes the set
of the neuron activities ����� , �
	���������� � , sharing a common position � . With each column
a particular “feature” is associated, which is described by a set of parameters like e.g. local
edge elements characterized by position and orientation ��� � �� � �� ��� . A binding between
two features, represented by columns � and ��� , is expressed by simultaneous activities��������! and ����"#����! that share a common layer $� . All neurons in a column � are equally
driven by an external input % � , which represents the significance of the detection of feature� by a preprocessing step. The afferent input % � is fed to the activities � ��� with a connection
weight &'�( . Within each layer � the activities are coupled via lateral connections ) ���� "
which characterize the degree of compatibility between features � and �*� and which is a
symmetric function of the feature parameters, thus ) ���� " 	') �� " � . The purpose of the layered
arrangement in the CLM is to enforce an assignment of the input features to the layers
by the dynamics, using the contextual information stored in the lateral interactions. The
unique assignment to a single layer is realized by a columnar Winner-Take-All (WTA)
circuit, which uses mutual symmetric inhibitory interactions with absolute strength &+�, 
between neural activities � ��� and � ��- that share a common column � . Due to the WTA
coupling, for a stable equilibrium state of the CLM only a neuron from one layer can be
active within each column [14]. The number of layers does not predetermine the number
of active groups, since for sufficiently many layers only those are active that carry a salient
group. The combination of afferent inputs and lateral and vertical interactions is combined
into the standard linear threshold additive activity dynamics.�����/	102�����436587�&9�:%;�<06= - ����- � 3>= � " )

�����" ����"?�;@A (1)

where 5B��� � 	!CEDGFH�I J�� � . For & large compared to the lateral weights ) ���� " , the single active
neuron in a column reproduces its afferent input, �����LK'%�� . As was shown [14], the stable
states of (1) satisfy the consistency conditions

= � " )
-��� " � ��"M-LNO= � " )

������" � ��"P�� for all �GRQOS	T$�U�V� �  (2)

which express the assignment of a feature � to the layer $�<��� � with highest lateral support.
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Figure 1: The competitive layer model architecture (see text for description).

3 Learning of CLM Lateral Interactions

Formulation of the Learning Problem. The overall task of the learning algorithm is
to adapt the lateral interactions, given by the interaction coefficients ) �����" , such that the
CLM architecture performs appropriate segmentation on the labeled training data and also
generalizes to new test data. We assume that the training data consists of a set of W
labeled training patterns X4Y , Z[	\����������W , where each pattern X4Y consists of a subset] Y^	`_��GYab���������GYced�f of ghY different features with their corresponding labels $�BY����ji � . For
each labeled training pattern a target labeling vector klY is constructed by choosing

� Y���� dnm ��o 	1��p� Y��- 	, for all �rq ] Y �Q,S	T$� Y ��� � (3)

for the labeled columns, assuming %s�t	u� . Columns for features which are not contained
in the training pattern are filled with zeroes according to � Yv � 	w for all �U�x>Sq ] Y . In
the following indices x*�xb� run over all possible g features, e.g. all edges of different ori-
entations at different image positions, while �G��y� run over the subset of features realized in
a particular pattern, e.g. only one oriented edge at each image position. The assignment
vectors kzY��Z<	{����������W form the basis of the learning approach since they represent the
target activity distribution, which we want to obtain after iterating the CLM with appropri-
ately adjusted lateral interactions. In the following the abbreviation $� for $�9Y���� � is used to
keep the notation readable.

The goal of the learning process is to make the training patterns consistent, which is in
accordance with (2) expressed by the inequalities

= ��" )
-��� " � Y� " - N = ��" )

����� " � Y� " �� for all Z#��|q ] Y }Q!S	~$�U� (4)

These � � 0�� �;� Y ghY inequalities define the learning problem that we want to solve in the
following. Let us develop a more compact notation. We can rewrite (4) as

=�yv}v "��
� Y -�yv}v " ) �v}v " N  for all Z���rq ] Y RQ,S	T$�e (5)

where � Y
�}-�Gv�v " 	���� v�� �P- � ��Yv " - 0+�s�� � ��Yv " ��;� . The form of the inequalities can be simplified by

introducing multiindices � and � which correspond to �������A�x*�x ��� , �,����Z#��GRQ � and)��[��) �v}v " , �t�� � � Y
��-�yv}v " . The index � runs over all � � 0�� � � Y ghY consistency relations de-

fined for the labeled columns of the assignment vectors. The vectors � � with components

���� are called consistency vectors and represent the consistency constraints for the lateral
interaction. The index � runs over all entries in the lateral interaction matrix. The vector



� 	~��) aa�a �������}) ac<c ��������)��a�a ��������)��cec � with
� gh� components contains the corresponding

matrix entries. The inequalities (4) can then be written in the form

= � � �� )�� N  for all �B� (6)

This illustrates the nature of the learning problem. The problem is to find a weight vector
�

which leads to a lateral interaction matrix, such that the consistency vectors lie in the oppo-
site half space of the weight state space. Since the conditions (6) determine the attractivity
of the training patterns, it is customary to introduce a positive margin ���� to achieve
greater robustness. This gives the target inequalities

= � � �� ) � 3�� N  for all �B (7)

which we want to solve in
�

for given training data. If the system of inequalities admits a
solution for

�
it is called compatible. If there is no

�
satisfying all constraints, the system

is called incompatible.

Superposition of Basis Interactions. If the number of features g is large, the number
of parameters in the complete interaction matrix ) �v}v " may be too large to be robustly es-
timated from a limited number of training examples. To achieve generalization from the
training data, it is necessary to reduce the number of parameters which have to be adapted
during learning. This is also useful to incorporate a priori knowledge into the interaction.
An example is to choose basis functions which incorporate invariances such as translation
and rotation invariance, or which satisfy the constraint that the interaction is equal in all
layers. A simple but powerful approach is to choose a set of � fixed basis interactions� i with compatibilities � i �v}v "  �E	���������j�� , with an interaction ) �v�v " obtained by linear
superposition ) �v}v " 	 = i(� i

� i �v}v " 	 = i(� i
� i� (8)

with weight coefficients � i :�6	 ��������j�� . Now the learning problem of solving the in-
equalities (7) can be recast in the new free parameters � i . After inserting (8) into (7) we
obtain the transformed problem

= � � �� = i � i
� i� 3>�[	 = i � ib¡ �i 3>� N  for all �B (9)

where ¡ �i 	 � � �r��
� i� is the component of the consistency vector � � in the basis interac-

tion � i . The basis interactions can thus be used to reduce the dimensionality of the learning
problem. To avoid any redundancy, the basis interactions should be linearly independent.
Although the functions are here denoted “basis” functions, they need neither be orthogonal
nor span the whole space of interactions

� q�¢t� ce£ .
Quadratic Consistency Optimization. The generic case in any real world application is
that the majority of training vectors contains relevant information, while single spurious
vectors may be present due to noise or other disturbing factors. Consequently, in most
applications the equations (7) or (9) will be incompatible and can only be satisfied approx-
imately. This will be especially the case, if a low-dimensional embedding is used for the
basis function templates as described above. We therefore suggest to adapt the interactions
by minimizing the following convex cost function¤ QCO 	 =

�
7l= � � �� )��43>� @

� � (10)

A similar minimization approach was suggested for the imprinting of attractors for the
Brain-State-in-a-Box (BSB) model [8], and a recent study has shown that the approach is
competitive with other methods for designing BSB associative memories [6].



For a fixed positive margin ���� , the cost function (10) is minimized by making the inner
products of the weight vector and the consistency vectors negative. The global minimum
with

¤ QCO 	' is attained if the inner products are all equal to 08� , which can be interpreted
such that all consistency inequalities are fulfilled in an equal manner. Although this addi-
tional regularizing constraint is hard to justify on theoretical grounds, the later application
shows that it works quite well for the application examples considered.

If we insert the expansion of
�

in the basis of function templates we obtain according to (8)

¤ QCO 	 =
�
7l= i � ib¡ �i 3>� @

�  (11)

which results in a � -dimensional convex quadratic minimization problem in the � i param-
eters. The coefficients ¡ �i , which give the components of the training patterns in the basis

interactions, are given by ¡ �i 	 � � � ��
� i� 	 � � " � Y��"¥- � i -��� " 0 � � " � Y��"��� � i ����� " . The quadratic

optimization problem is then given by minimizing¤ QCO 	 = i�¦¨§ i�¦ � i � ¦;3 = i�© i � ie3>� �  (12)

where § i�¦ 	 �
�
¡ �i ¡ �¦ and © i 	«ª�� �

�
¡ �i . If the coefficients � i are unconstrained,

then the minimum of (12) can be obtained by solving the linear system of equations¬ ¤4 ¬
� i8	'ª � ¦ § i�¦ � ¦J3 © i8	' for all � .

4 Application to Cell Segmentation

The automatic detection and segmentation of individual cells in fluorescence micrographs
is a key technology for high-throughput analysis of immune cell surface proteins [5]. The
strong shape variability of cells in tissue, however, poses a strong challenge to any au-
tomatic recognition approach. Figure 2a shows corresponding fluorescence microscopy
images from a tissue section containing lymphocyte cells (courtesy W. Schubert). In the
bottom row corresponding image patches are displayed, where individual cell regions were
manually labeled to obtain training data for the learning process.

For each of the image patches, a training vector consists of a list of labeled edge features
parameterized by �V®A���¯l� � , where ®A� is the position in the image and ¯A� is a unit local
edge orientation vector computed from the intensity gradient. For a °± [²³°* pixel image
this amounts to a set of °± *� labeled edge features. Since the figure-ground separating mech-
anism as implemented by the CLM [14] is also used for this cell segmentation application,
features which are not labeled as part of a cell obtain the corresponding background label,
given by �´	µ� . Each training pattern contains one additional free layer, to enable the
learning algorithm to generalize over the number of layers.

The lateral interaction to be adapted is decomposed into the following weighted basis com-
ponents: i) A constant negative interaction between all features, which facilitates group
separation, ii) a self-coupling interaction in the background layer which determines the at-
tractivity of the background for figure-ground segmentation, and iii) an angular interaction
with limited range, which is in itself decomposed into templates, capturing the interac-
tion for a particular combination of the relative angles between two edges. This angu-
lar decomposition is done using a discretization of the space of orientations, turning the
unit-vector representation into an angular orientation variable �³q'¶  ;�ªy·9¶ . To achieve ro-
tation invariance of the interaction, it is only dependent on the edge orientations relative
to their mutual position difference vector ¸�	~® � 0!® a . The angles � a and � � are dis-
cretized by partitioning the interval ¶  ;�ªy·9¶ into 8 subintervals. For each combination of
the two discretized edge orientations there is an interaction template generated, which is
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a) Manually labelled training patterns b) Grouping results after learning

Figure 2: a) Original images and manually labeled training patterns from a fluorescence
micrograph. b) Test patterns and resulting CLM segmentation with learned lateral interac-
tion. Grayscale represents different layer activations, where a total of 20 layers plus one
background layer (black) was used.

only responding in this combined orientation interval. Thus the angular templates do not
overlap in the combined �V� a �� � � space, i.e. if � i � ����® a �� a � ���® � �� � ��� 	�� for a particular� , then � ¦ � ���V® a �� a � ��V® � � � � ��� 	` for all ¹ºS	»� . Since the interaction must be symmet-
ric under feature exchange, this does not result in ¼ � 	�½�° different combinations, but
only 36 independent templates. Apart form the discretization, the interaction represents
the most arbitrary angular-dependent interaction within the local neighborhood, which is
symmetric under feature exchange. We use two sets of angular templates for ¾ ¸<¾ N ¢  ª
and ¢  ª N ¾ ¸e¾ N ¢ respectively, where ¢ is the maximal local interaction range. With
the abovementioned two components, the resulting optimization problem is 36+36+2=74-
dimensional. Figure 3 compares the optimized interaction field to earlier heuristic lateral
interactions for contour grouping. See [15] for a more detailed discussion.

The performance of the learning approach was investigated by choosing a small number
of the manually labeled patterns as training patterns. For all the training examples we
used, the resulting inequalities (9) were in fact incompatible, rendering a direct solution of
(9) infeasible. After training was completed by minimizing (12), a new image patch was
selected as a test pattern and the CLM grouping was performed with the lateral interaction
learned before, using the dynamical model as described in [14]. The quadratic consistency
optimization was performed as described in the previous section, exploring the free margin
parameter � . For a set of two training patterns as shown in Fig. (2)a with a total of 1600
features each, a learning sweep takes about 4 minutes on a standard desktop computer.

Typical segmentation results obtained with the quadratic consistency optimization ap-
proach are shown in Figure 2b, where the margin was given by �'	¿�� . The grouping
results were not very sensitive to � in a range of À N � N �� � . The grouping results show
a good segmentation performance where most of the salient cells are detected as single
groups. There are some spurious groups where a dark image region forms an additional
group and some smaller cells are rejected into the background layer. Apart from these
minor errors, the optimization has achieved an adequate balancing of the different lateral
interaction components for this segmentation task.
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Figure 3: Comparison between heuristic continuity grouping interaction field and a learned
lateral interaction field for cell segmentation. The interaction depends on the difference
vector ¸ and two unit vectors ¯ a �¯ � , shown in b), encoding directed orientation. a) ex-
plains the interaction visualizations c) and d) by showing a magnification of the plot c) of
the interaction field of a single horizontal edge pointing to the left. The plots are gener-
ated by computing the interaction of the central directed edge with directed edges of all
directions (like a cylindrical plot) at a spatial grid. Black edges share excitatory, white
edges share inhibitory interaction with the central edge and length codes for interaction
strength. The cocircular continuity field in c) depends on position and orientation but is not
direction-selective. It supports pairs of edges which are cocircular, i.e. lie tangentially to a
common circle and has been recently used for contour segmentation [3, 14]. The learned
lateral interaction field is shown in d). It is direction-selective and supports pairs of edges
which “turn right”. The strong local support is balanced by similarly strong long-range
inhibition.

5 Discussion

The presented results show that appropriate lateral interactions can be obtained for the
CLM binding architecture from the quadratic consistency optimization approach. The only
a priori conditions which were used for the template design were the properties of locality,
symmetry, and translation as well as rotation invariance. This supervised learning approach
has clear advantages over the manual tuning of complex feature interactions in complex fea-
ture spaces with many parameters. We consider this as an important step towards practical
applicability of the feature binding concept.

The presented quadratic consistency optimization method is based on choosing equal mar-
gins for all consistency inequalities. There exist other approaches to large margin classifica-



tion, like support vector machines [10], where more sophisticated methods were suggested
for appropriate margin determination. The application of similar methods to the supervised
learning of CLM interactions provides an interesting field for future work.
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