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Abstract. We suggest a new approach to optimize the learning of sparse features
under the constraints of explicit transformation symmetries imposed on the set of
feature vectors. Given a set of basis feature vectors and invariance transforma-
tions, from each basis feature a family of transformed features is generated. We
then optimize the basis features for optimal sparse reconstruction of the input pat-
tern ensemble using the whole transformed feature family. If the predefined trans-
formation invariance coincides with an invariance in the input data, we obtain a
less redundant basis feature set, compared to sparse codingapproaches without
invariances. We demonstrate the application to a test scenario of overlapping bars
and the learning of receptive fields in hierarchical visual cortex models.

1 Introduction

Redundancy reduction has been proposed as an important processing principle in hier-
archical cortical networks [1]. Following this concept, wavelet-like features resembling
the receptive fields of V1 cells have been derived either by imposing sparse overcom-
plete representations [9] or statistical independence as in independent component anal-
ysis [2]. Extensions for complex cells [7, 6] and spatiotemporal receptive fields were
shown [5]. Lee & Seung [8] suggested the principle of nonnegative matrix factoriza-
tions to obtain sparse distributed representations. Simple-cell-like receptive fields and
end-stopping cells were also found using a predictive coding scheme [10]. Learning al-
gorithms used in these approaches normally get their input from local, isolated regions,
and perform a local reconstruction using the gained representation from a single group
of feature vectors. As a consequence of invariances in the input ensembles, the obtained
feature sets are usually redundant with respect to translation, rotation or scale. In certain
architectures like e.g. convolutional networks, it is, however, highly desirable to obtain
only a single representative for each structurally different feature.

Here, we consider a setting with several families of featurevector sets, where each
family is obtained from one feature of a basis set of feature vectors via invariance trans-
formations. Reconstruction of an input vector is achieved by overlapping contributions
of each of these transformation-dependent groups of feature vectors. We illustrate the
approach with the example of 2-dimensional inputs and translation in the 2D plane. In
this case the feature vectors within a family are translatedversions of each other, so
that we may sample a large input space by repeating the “same”feature vectors at every
position, imposing a translational symmetry on the featurevector set. (This is similar



to weight-sharing architectures, however, the approach presented here can be used with
any type of transformations and we are using the weight-shared representation for the
unsupervised learning of the feature vectors instead of being a processing constraint.)
This has a series of consequences. First, the input reconstruction is achieved by con-
sidering the contributions of feature vector groups anchored at different positions in an
overlapping manner. Second, after learning we have gained atranslation-independent
common set of feature vectors, and third, every input image is reconstructed indepen-
dently of its position, i.e., in a translationally invariant way. The result is a compact
representation of encoding feature vectors that reflect transformation-invariant proper-
ties of the input. The work thus addresses two problem domains. On the one hand, it
proposes a learning and encoding scheme for feature vectorsin the case of a “patchy”
reconstruction scheme that uses not only a single local input region but several regions
that interact with each other. On the other hand, it takes advantage of specific transfor-
mation properties of the input (that may be known in advance,e.g. for a neural network
that is supposed to detect input vectors at various degrees of translation, scaling, ro-
tation, etc.) to select the best representation subject to the transformation constraints,
which can be used afterwards for a transformation invariantpostprocessing stage.

In Section 2 we introduce the standard sparse coding approaches and formulate
our extension to transformation-invariant encodings. In Section 3 we derive an explicit
learning algorithm for the case of nonnegative signals and basis vectors. We give two
application examples in Sections 4 and 5 and discuss our results in Section 6.

2 Transformation-invariant sparse coding

Olshausen & Field [9] demonstrated that by imposing the properties of input reconstruc-
tion and sparse activation a low-level feature representation of images can be obtained
that resembles the receptive field profiles of simple cells inthe V1 area of the visual cor-
tex. The feature set was determined from a collection of local image patchesIp, where
p runs over patches andIp is a vectorial representation of the array of image pixels. A
set of sparsely representing features can then be obtained from minimizing
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wherewi, i = 1, . . . , B is a set ofB basis representatives,sp
i is the activation of feature

wi for reconstructing patchp, andΦ is a sparsity enforcing function. Feasible choices
for Φ(x) are log(1 + x2), and |x| [9]. The joint minimization inwi and sp

i can be
performed by gradient descent in the cost function (1).

Symmetries that are present in the sensory input are also represented implicitly
in the obtained sparse feature sets from the abovementionedapproach. Therefore, the
derived features contain large subsets of features which are rotated, scaled or translated
versions of a single basis feature. In order to avoid this redundancy, it may be desirable
to represent the symmetries explicitly by using only a single representative for each
family of transformations. For example in a translational weight-sharing architecture
which pools over degrees of freedom in space only a single representative is needed
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Fig. 1. Transformation-invariant sparse coding. From a single feature representativewi a feature
family is generated using a set of invariance transformations Tm. From this feature set, a complex
input pattern can be sparsely represented using only few of the transformed features.

for all positions. From this representative, a complete setof features can be derived
by applying a set of invariance transformations. To deal with shift invariance, nonlinear
generative models with steerable shift parameters were proposed [9]. Using this concept
as a direct coding model for natural images, Hashimoto & Kurata [4] obtained complex-
patterned feature representations which were, however, difficult to interpret.

In the following we formulate the proposed invariant generative model in a linear
framework. For a better understanding, we will consider thecase of 2D images so that
the model works using ensembles of local image patches. LetI

p ∈ RMN be a large
image patch of pixel dimensionsM × N . Let wi ∈ RM ′N ′

(usually withN ′ ≤ N
andM ′ ≤ M ) be a reference feature. We can now use a transformation matrix Tm ∈
RMN×M ′N ′

, which performs an invariance transform like e.g. shift or rotation and
maps the representativewi into the larger patchIp as visualized in Figure 1 (departing
from the notation in Eq. 1 nowwi andIp have a different dimensionality). For example,
by applying all possible shift transformations, we obtain acollection of features with
differently placed receptive field centers, which are, however, characterized by a single
representativewi. We can now reconstruct the larger local image patch from thewhole
set of transformed basis representatives by minimizing
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wheresp
im is the activation of the representativewi transformed by Tm, with m =

1, . . . , C indicating theC chosen transformations. The task of the combined minimiza-
tion of (2) in sp

im andwi is to reconstruct the input from the constructed transforms
under the constraint of sparse combined activation. For a given ensemble of patches the
optimization can be carried out by gradient descent, where first a local solution insp

im

with wi fixed is obtained. Secondly, a gradient step is done in thewi’s, with sp
im fixed

and averaging over all patchesp. For a detailed discussion of the algorithm see Section
3. Although the presented approach can be applied to any symmetry transformation,
we restrict ourselves to spatial translation in the examples. The reduction in feature



complexity results in a tradeoff for the optimization effort in finding the feature ba-
sis. Whereas in the simpler case of equation (1) a local imagepatch was reconstructed
from a set ofB basis vectors, in our invariant decomposition setting, thepatch must
be reconstructed fromC · B basis vectors (theB basis vectors, each considered atC
displacement positions, respectively) which reconstructthe input from overlapping re-
ceptive fields. The second term in the quality function (2) implements a competition
between the activations of the entire input field. This effectively suppresses the forma-
tion of redundant featureswi andwj which could be mapped onto each other via one
of the chosen transformations. Note also that, if the set of transformations Tm maps
out the whole input space, it is necessary to have a positive sparsity contribution. Oth-
erwise, the input can be trivially reconstructed from a simple “delta-peak” feature that
can be used to represent the activity independently at each point of the input.

There exist different approaches for the general sparse coding model as expressed
by the cost function (1). Due to the multiplicative couplingof thewi andsp

i either the
norms of thewi or thesp

i must be held constant. If thewi andsp
i have no sign restric-

tion, the minimization of (1) can be rephrased in the standard independent component
analysis framework. If the basis vectors and activations are constrained to be nonnega-
tive, one obtains the NMF framework forΦ(x) = 0 for all x or the nonnegative sparse
coding framework forΦ(x) > 0 for x > 0. The general invariant sparse coding ap-
proach outlined in (2) is applicable to all these models. In the following examples we
will, however, concentrate on nonnegative sparse coding.

3 Sparse Decomposition Algorithm

The invariant sparse decomposition is formulated as minimizing (2) whereIp, p =
1, . . . , P is an ensemble ofP image patches to be reconstructed, Tm, m = 1, . . . , C
is a set of invariance transformation matrices applied to the B feature representatives
wi, i = 1, . . . , B which are the target of the optimization. We assume nonnegativity
for thewi, i.e.wi = 0 componentwise. We choose the sparsity enforcing function as
Φ(x) = λx, with λ = 0.5 as strength of the sparsity term [6]. We use∗ to denote
the inner product between two vectorially represented image patches. The algorithm
consists of two steps [9]. First for fixedwi’s a local solution for thesp

im for all patches
is found by performing gradient descent. In the second step agradient descent step with
fixed stepsize is performed in thewi’s with thesp

im fixed. The first gradient is given by
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subject to ofsp
im ≥ 0 can be found by the following asynchronous update algorithm:

1. Choosei, p, m randomly.
2. Updatesp

im = σ
(
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)

/cim
im. Goto 1 till convergence.

Let σ(x) = max(x, 0). This update converges to a local minimum of (3) according
to a general convergence result on asynchronous updates by Feng [3] and exhibits fast
convergence properties in related applications [11].
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Fig. 2. Bar example. In a), 7 out of 1000 input images generated by overlaying 1-4 bars (randomly
horizontal/vertical) are shown. The overlapping coding scheme was used to extract the basis
vectors that best encode the input set under consideration of translational invariance. The result
for 2 basis vectors are single bars at horizontal and vertical orientations as shown in b). In c) and
d) 4 and 8 basis vectors were used, resulting in increasinglycomplex basis vectors. The basis
vectors form an efficient sparse code for the ensemble using translations.

The second step is done performing a single synchronous Euler gradient step in the
wi’s with a fixed stepsizeη. For allwi set
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whereσ is applied componentwise. The stepsize was set toη = 0.0001. After each
update step thewi are normalized to unit norm.

4 Example: Translationally invariant bar decomposition

We applied the algorithm of Section 3 to an input image set that was gained by com-
bining horizontal and vertical bars at different positions, thus containing translational
symmetries in its components. The expected outcome would bea compact set of basis
vectors (the representative set of underlying feature vectors from which the transformed
feature vectors for the reconstruction are ultimately gained) that, together with the trans-
formations, encodes the input. The entire input set can be described fairly well with only
two basis vectors, and their superposition at different positions.

The input images and feature vectors were images of size7×7 pixels. We used 1000
input images containing between 1 and 4 bars each, with pixelvalues 0 (background)
and 1 (bar parts), such that the bars do not add linearly at intersections. A subset of the
input images is shown in Fig. 2 (a). The transformation set Tm was composed of all
possible translations of the basis vectors that influenced the7 × 7 input/reconstruction
image region. Contributions of the transformed basis vectors were considered only for
pixels inside of the input image patch, resulting in a well-defined transformation set
Tm : RM ′×N ′

→ RM×N where pixels outside of the input image region do not
contribute to measuring the reconstruction error in (2). Effectively, this means thatC =
(7 + 6)2 transformations had to be taken into account for full translation invariance.

The simulations were run for 100 steps and with different numbers of basis vectors
B = {2, 4, 8}. In Fig. 2 (b), the result for 2 basis vectors is shown. The outcome are
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Fig. 3. Learning of receptive fields for complex-cell-integratingneurons. a) shows two examples
from the natural image input patch ensemble with the obtained complex cell output, which is
aligned vertically for the four considered orientations. In b) we show a subset of 25 features from
a set of 144 features learned using the nonnegative sparse coding approach suggested by Hoyer
& Hyvärinen. Each column characterizes the weights from the 4 complex cell output patches to
the integrating cell. Features are collinear with different lengths and anchor positions. In c) we
show the result of applying the invariant sparse coding approach with translation invariance. We
optimized a set of 16 features with4 × 4 receptive field dimensions. The feature set contains
collinear features, but with more structural than positional variation as in b).

the two expected horizontal and vertical bar representatives. When we expand the basis
vector set to 4 (see Fig. 2c), the same result is obtained for two of the basis vectors, while
the remaining two converge to basis vectors that efficientlydescribe larger components
of the input images, in our example double bars (here the encoding is efficient because
the activation is sparser when using a single basis vector for describing an input image
with double bars, than when using two horizontal or verticalbasis vectors). For 8 basis
vectors, yet other statistically frequent components appear, such as 2 aligned bars with
a gap and two perpendicular bars forming crosses, as shown inFig. 2 (d). Note that
without the overlapping encoding scheme, the resulting feature vectors are first bars
at all different horizontal and vertical positions (i.e., 14 in total), and then the more
complex features such as double bars and crosses, again at all different positions.

5 Learning of Visual Cortex Receptive Fields

Recently Hoyer & Hyvärinen [6] applied a nonnegative sparse coding framework to
the learning of combination cells driven by orientation selective complex cell outputs.
To take into account the nonnegativity of the complex cell activations, the optimization
was subject to the constraints of both coefficientssp

i and vector entries of the basis
representativeswi being nonnegative. These nonnegativity constraints are similar to
the method of nonnegative matrix factorization (NMF), as proposed by [8]. Differing
from the NMF approach they also added a sparsity enforcing term like in (1). The
optimization of (1) under combined nonnegativity and sparsity constraints gives rise to
short and elongated collinear receptive fields, which implement combination cells being



sensitive to collinear structure in the visual input. As Hoyer and Hyvärinen noted, the
approach does not produce curved or corner-like receptive fields.

We repeated the experiments with the non-overlapping setupas was done by Hoyer
& Hyvärinen and compared this with results gained from our overlapping sparse recon-
struction approach for translation invariance. The patch ensemble was generated in the
following way (see also [6]). First a set of24×24 pixel patches was collected from im-
ages containing natural scenes. On each patch the response of a simple cell pair which
consisted of an even and an odd Gabor filter was computed on a6×6 grid (see Figure 3).
The complex cell output was obtained by a simple sum of squares of a quadrature filter
pair. At each grid position, four Gabor orientations were considered. Therefore a total
patch activation vectorIp consisted of6×6×4 = 144 components. We generated a set
of 10000 patches and applied the nonnegative sparse coding learning rule as described
in [6] for a set of 144 feature vectors using the gradient-based relaxation as described in
Section 3, but without overlaps. As shown in Figure 3 we couldessentially reproduce
the results in [6], consisting of collinear features of differing lengths and positions.

We then investigated the invariant sparse coding scheme by considering all possible
translations of the features on the complex cell output patches for a basis of 16 features.
Due to computational performance constraints we reduced the patch size to4×4 pixels
(resulting inC = (4 + 3)2 = 49) and reduced the number of patches to 2000. In this
setting the optimizations takes about 1-2 days on a standard1 GHz CPU. The result
shows that we obtained a less redundant feature set with respect to translations. The
set contains collinear features of differing lengths (or width), with a greater emphasis
on the vertical and horizontal directions for long edges. There are some rather local
features which combine two local neighboring orientations, and which may be used to
capture a local residual that is not covered by the other features.

6 Summary and Discussion

We have demonstrated how to exploit explicitly formulated transformation symmetries
for the overlapping reconstruction of input vectors and thelearning of an optimal en-
coding scheme subject to given transformation constraints. Although we have shown
these capabilities using an example with translational symmetries and transforms only,
the presented algorithm can be used for any transformation set Tm. One could think of
rotational, scaling and other transforms in addition to thetranslational transform. This
would result (after learning) in a network that is able to reconstruct an input stimulus
equally well for different translations, rotations and scaling operations. Such a transfor-
mation invariant preprocessing could well be a necessary step to achieve transformation
invariant classification/detection in a hierarchical system. Posterior stages could take
advantage of the known transformation properties to achieve a transformation invariant
response, like e.g. pooling over transformed variants of the same feature. Future work
on the subject may therefore include the extension of the shown principle to incorporate
additional transforms and its application in a larger, hierarchical network.

We have shown in the two examples that the invariant sparse coding approach al-
lows to describe an input ensemble using fewer features thana direct sparse encoding.
This reduction of free parameters is achieved by using a morepowerful representa-



tional architecture, which in turn is paid by a greater effort of estimating the model. For
the receptive-field learning example the representationaleffort scales linearly with the
number of pixels in the input patches. The same scaling, however, also holds for the
direct sparse encoding, since the number of representing features must be large enough
to carry all possible translated versions of a particular local feature.

Could the implemented encoding scheme be part of a biological neural system, e.g.
for feature learning and input representation in the early visual pathway? On a first
glance, the spread of receptive field profiles suggests a sampling of the visual input
with inhomogeneous “feature” vectors, conflicting with theidea of general basis vec-
tors from which the individual feature vectors are drawn. Nevertheless, on a semi-local
basis, the brain has to deal with transformation symmetriesthat could be exploited in
the proposed way. There is no reason to specifically learn allfeature vectors at every
position anew, if they turn out to be translated/transformed versions of each other. The
biological feasibility of the basis vector learning rule (4) is, therefore, a matter of debate.
On the other hand, one could certainly devise neural-like mechanisms for the activity
adjustment rule (3), since the equation for thesp

im can be seen as a shortcut of a re-
laxation dynamics of graded-response type with a positive rectifying nonlinearity. The
constraint of the activations to positive values even adds to the biological plausibility of
this rule, since a biologically plausible rate coding implies positive activation variables.
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