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Abstract. We suggest a new approach to optimize the learning of spaasarés
under the constraints of explicit transformation symnestimposed on the set of
feature vectors. Given a set of basis feature vectors aratiamce transforma-
tions, from each basis feature a family of transformed festis generated. We
then optimize the basis features for optimal sparse reeaigin of the input pat-
tern ensemble using the whole transformed feature fanilyelpredefined trans-
formation invariance coincides with an invariance in theundata, we obtain a
less redundant basis feature set, compared to sparse agpngaches without
invariances. We demonstrate the application to a test soavfaoverlapping bars
and the learning of receptive fields in hierarchical visuatex models.

1 Introduction

Redundancy reduction has been proposed as an importamisging principle in hier-
archical cortical networks [1]. Following this concept,weéet-like features resembling
the receptive fields of V1 cells have been derived either hyoising sparse overcom-
plete representations [9] or statistical independence emlependent component anal-
ysis [2]. Extensions for complex cells [7, 6] and spatiotenab receptive fields were
shown [5]. Lee & Seung [8] suggested the principle of nontieganatrix factoriza-
tions to obtain sparse distributed representations. ®iroell-like receptive fields and
end-stopping cells were also found using a predictive apdaineme [10]. Learning al-
gorithms used in these approaches normally get their impat focal, isolated regions,
and perform a local reconstruction using the gained reptatien from a single group
of feature vectors. As a consequence of invariances in the ansembles, the obtained
feature sets are usually redundant with respect to trams|aibtation or scale. In certain
architectures like e.g. convolutional networks, it is, leser, highly desirable to obtain
only a single representative for each structurally difffeature.

Here, we consider a setting with several families of featator sets, where each
family is obtained from one feature of a basis set of featexars via invariance trans-
formations. Reconstruction of an input vector is achiewed\erlapping contributions
of each of these transformation-dependent groups of feaertors. We illustrate the
approach with the example of 2-dimensional inputs and kaéios in the 2D plane. In
this case the feature vectors within a family are translatdions of each other, so
that we may sample a large input space by repeating the “skaatire vectors at every
position, imposing a translational symmetry on the featetor set. (This is similar



to weight-sharing architectures, however, the approaebgmted here can be used with
any type of transformations and we are using the weighteshagpresentation for the
unsupervised learning of the feature vectors instead efgo@iprocessing constraint.)
This has a series of consequences. First, the input recetistr is achieved by con-
sidering the contributions of feature vector groups anetiat different positions in an
overlapping manner. Second, after learning we have gairiethalation-independent
common set of feature vectors, and third, every input imagecdonstructed indepen-
dently of its position, i.e., in a translationally invartamay. The result is a compact
representation of encoding feature vectors that reflesstommation-invariant proper-
ties of the input. The work thus addresses two problem dos&in the one hand, it
proposes a learning and encoding scheme for feature veottive case of a “patchy”
reconstruction scheme that uses not only a single locat iggion but several regions
that interact with each other. On the other hand, it takesuaidge of specific transfor-
mation properties of the input (that may be known in advaaag,for a neural network
that is supposed to detect input vectors at various degffeearslation, scaling, ro-
tation, etc.) to select the best representation subjedtadransformation constraints,
which can be used afterwards for a transformation invapastprocessing stage.

In Section 2 we introduce the standard sparse coding apmesaand formulate
our extension to transformation-invariant encodings.ént®n 3 we derive an explicit
learning algorithm for the case of nonnegative signals asisbvectors. We give two
application examples in Sections 4 and 5 and discuss outs@sBection 6.

2 Transformation-invariant sparse coding

Olshausen & Field [9] demonstrated that by imposing the @iriigs of input reconstruc-
tion and sparse activation a low-level feature represiemtatf images can be obtained
that resembles the receptive field profiles of simple celfeéi/1 area of the visual cor-
tex. The feature set was determined from a collection ofllmcage patche$?, where

p runs over patches arlé is a vectorial representation of the array of image pixels. A
set of sparsely representing features can then be obtaimchiinimizing

Br= 2SI = stwil 4+ 30 S a(sh), 1
P j4 7

%

wherew;,i = 1,..., Bis a set ofB basis representatives, is the activation of feature
w; for reconstructing patch, and® is a sparsity enforcing function. Feasible choices
for &(x) arelog(1 + z?), and|z| [9]. The joint minimization inw; and s? can be
performed by gradient descent in the cost function (1).

Symmetries that are present in the sensory input are alsesepmted implicitly
in the obtained sparse feature sets from the abovementapmdach. Therefore, the
derived features contain large subsets of features whelogated, scaled or translated
versions of a single basis feature. In order to avoid thismedncy, it may be desirable
to represent the symmetries explicitly by using only a snglpresentative for each
family of transformations. For example in a translation&ight-sharing architecture
which pools over degrees of freedom in space only a singleeseptative is needed
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Fig. 1. Transformation-invariant sparse coding. From a singleufearepresentativer; a feature
family is generated using a set of invariance transformatiB”. From this feature set, a complex
input pattern can be sparsely represented using only fehedfansformed features.

for all positions. From this representative, a completecddeatures can be derived
by applying a set of invariance transformations. To deah sftift invariance, nonlinear
generative models with steerable shift parameters weposed [9]. Using this concept
as a direct coding model for natural images, Hashimoto & K] obtained complex-

patterned feature representations which were, howevgcudii to interpret.

In the following we formulate the proposed invariant getigeamodel in a linear
framework. For a better understanding, we will considercse of 2D images so that
the model works using ensembles of local image patchesILet RMY be a large
image patch of pixel dimension x N. Letw; € RM' N’ (usually with N’ < N
andM'’ < M) be a reference feature. We can now use a transformatiomxriatr €
RMNxM'N' “\which performs an invariance transform like e.g. shift ofation and
maps the representative; into the larger patcli® as visualized in Figure 1 (departing
from the notation in Eq. 1 nowr; andI” have a different dimensionality). For example,
by applying all possible shift transformations, we obtaioodlection of features with
differently placed receptive field centers, which are, heavecharacterized by a single
representativev;. We can now reconstruct the larger local image patch fromvthae
set of transformed basis representatives by minimizing
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wheres? is the activation of the representative transformed by T, with m =
1,...,C indicating theC' chosen transformations. The task of the combined minimiza-
tion of (2) ins”  andw; is to reconstruct the input from the constructed transforms
under the constraint of sparse combined activation. Forenggnsemble of patches the
optimization can be carried out by gradient descent, whesedilocal solution irs? |

with w; fixed is obtained. Secondly, a gradient step is done inthig, with s = fixed

and averaging over all patchgsFor a detailed discussion of the algorithm see Section
3. Although the presented approach can be applied to any symprnansformation,
we restrict ourselves to spatial translation in the examplée reduction in feature



complexity results in a tradeoff for the optimization effar finding the feature ba-
sis. Whereas in the simpler case of equation (1) a local imatgh was reconstructed
from a set of B basis vectors, in our invariant decomposition setting,thtch must
be reconstructed fror@' - B basis vectors (thé basis vectors, each considered’at
displacement positions, respectively) which reconstueinput from overlapping re-
ceptive fields. The second term in the quality function (2pliements a competition
between the activations of the entire input field. This d@ffety suppresses the forma-
tion of redundant features; andw; which could be mapped onto each other via one
of the chosen transformations. Note also that, if the setasfsformations T maps
out the whole input space, it is necessary to have a posjpaessy contribution. Oth-
erwise, the input can be trivially reconstructed from a $afpelta-peak” feature that
can be used to represent the activity independently at eziohqf the input.

There exist different approaches for the general sparsegadodel as expressed
by the cost function (1). Due to the multiplicative couplioigthe w; ands? either the
norms of thew; or thes? must be held constant. If the; ands? have no sign restric-
tion, the minimization of (1) can be rephrased in the stashitzslependent component
analysis framework. If the basis vectors and activatioescanstrained to be nonnega-
tive, one obtains the NMF framework fd(x) = 0 for all « or the nonnegative sparse
coding framework ford(z) > 0 for x > 0. The general invariant sparse coding ap-
proach outlined in (2) is applicable to all these modelshimfollowing examples we
will, however, concentrate on nonnegative sparse coding.

3 Sparse Decomposition Algorithm

The invariant sparse decomposition is formulated as minigi (2) wherel?,p =

., P is an ensemble aP image patches to be reconstructed’,, » = 1,...,C
is a set of invariance transformation matrices applied éoBHheature representatives
w;,i = 1,..., B which are the target of the optimization. We assume noniatyat

for thew,, i.e.w; = 0 componentwise. We choose the sparsity enforcing functson a
&(x) = Az, with A = 0.5 as strength of the sparsity term [6]. We us¢o denote
the inner product between two vectorially represented ampatches. The algorithm
consists of two steps [9]. First for fixes;'s a local solution for the? = for all patches

is found by performing gradient descent. In the second stgpdient descent step with
fixed stepsize is performed in tiwe;’s with the s? | fixed. The first gradient is given by
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whereb}, | = (T"w;)+I” andciy, = (T"w;) (T™ w,). Alocal solution to2Zz = 0

subject to ofs? > 0 can be found by the following asynchronous update aIgonthm

1. Choosa’,p,mrandomly
2. Updates},, = o (b, — X (jm)(im) Come Sims — A) /¢~ Goto 1 till convergence.

Let o(z) = max(z,0). This update converges to a local minimum of (3) according
to a general convergence result on asynchronous updatesnigy[8] and exhibits fast
convergence properties in related applications [11].
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Fig. 2. Bar example. In a), 7 out of 1000 input images generated byayirg 1-4 bars (randomly
horizontal/vertical) are shown. The overlapping codingesne was used to extract the basis
vectors that best encode the input set under consideratimarslational invariance. The result
for 2 basis vectors are single bars at horizontal and véditantations as shown in b). In ¢) and
d) 4 and 8 basis vectors were used, resulting in increasitmiyplex basis vectors. The basis
vectors form an efficient sparse code for the ensemble usinglations.

The second step is done performing a single synchronous gadient step in the
w;'s with a fixed stepsize. For allw; set
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whereo is applied componentwise. The stepsize was set to 0.0001. After each
update step thes; are normalized to unit norm.

4 Example Trandationally invariant bar decomposition

We applied the algorithm of Section 3 to an input image setws gained by com-
bining horizontal and vertical bars at different positiptigis containing translational
symmetries in its components. The expected outcome wouiddmenpact set of basis
vectors (the representative set of underlying featureovedtom which the transformed
feature vectors for the reconstruction are ultimately gdjrthat, together with the trans-
formations, encodes the input. The entire input set can geritbed fairly well with only
two basis vectors, and their superposition at differenttjprs.

The inputimages and feature vectors were images ofrsiZepixels. We used 1000
input images containing between 1 and 4 bars each, with pataks 0 (background)
and 1 (bar parts), such that the bars do not add linearly etsiettions. A subset of the
input images is shown in Fig. 2 (a). The transformation sétwas composed of all
possible translations of the basis vectors that influenved & 7 input/reconstruction
image region. Contributions of the transformed basis veat@re considered only for
pixels inside of the input image patch, resulting in a welfided transformation set
T™ . RM'xN'" _, RMxN where pixels outside of the input image region do not
contribute to measuring the reconstruction error in (2ieéfively, this means that' =
(7 + 6)* transformations had to be taken into account for full trafish invariance.

The simulations were run for 100 steps and with different bera of basis vectors
B = {2,4,8}. In Fig. 2 (b), the result for 2 basis vectors is shown. Theoute are
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Fig. 3. Learning of receptive fields for complex-cell-integratimgurons. a) shows two examples
from the natural image input patch ensemble with the obthizwmplex cell output, which is
aligned vertically for the four considered orientationsb) we show a subset of 25 features from
a set of 144 features learned using the nonnegative spadgeycapproach suggested by Hoyer
& Hyvarinen. Each column characterizes the weights from4ttomplex cell output patches to
the integrating cell. Features are collinear with différemgths and anchor positions. In ¢) we
show the result of applying the invariant sparse coding @ggr with translation invariance. We
optimized a set of 16 features withx 4 receptive field dimensions. The feature set contains
collinear features, but with more structural than posdiorariation as in b).

the two expected horizontal and vertical bar represematiWhen we expand the basis
vector set to 4 (see Fig. 2¢), the same result is obtainedrfoot the basis vectors, while
the remaining two converge to basis vectors that efficiadlscribe larger components
of the input images, in our example double bars (here thedingas efficient because
the activation is sparser when using a single basis vectatdscribing an input image
with double bars, than when using two horizontal or vertizadis vectors). For 8 basis
vectors, yet other statistically frequent components apeich as 2 aligned bars with
a gap and two perpendicular bars forming crosses, as shoWwigir? (d). Note that
without the overlapping encoding scheme, the resultingufeavectors are first bars
at all different horizontal and vertical positions (i.e4 ih total), and then the more
complex features such as double bars and crosses, agdidiffea¢nt positions.

5 Learning of Visual Cortex Receptive Fields

Recently Hoyer & Hyvarinen [6] applied a nonnegative sparsding framework to
the learning of combination cells driven by orientatiorestive complex cell outputs.
To take into account the nonnegativity of the complex cdilvations, the optimization
was subject to the constraints of both coefficiesftsand vector entries of the basis
representativesy; being nonnegative. These nonnegativity constraints anédasi to
the method of nonnegative matrix factorization (NMF), aspmsed by [8]. Differing
from the NMF approach they also added a sparsity enforcing tike in (1). The
optimization of (1) under combined nonnegativity and sipronstraints gives rise to
short and elongated collinear receptive fields, which imm@et combination cells being



sensitive to collinear structure in the visual input. As dognd Hyvarinen noted, the
approach does not produce curved or corner-like recepélasi

We repeated the experiments with the non-overlapping setwgas done by Hoyer
& Hyvarinen and compared this with results gained from owartapping sparse recon-
struction approach for translation invariance. The pat@demble was generated in the
following way (see also [6]). First a set Bd x 24 pixel patches was collected from im-
ages containing natural scenes. On each patch the respoamseple cell pair which
consisted of an even and an odd Gabor filter was compute@ 16 grid (see Figure 3).
The complex cell output was obtained by a simple sum of sguafra quadrature filter
pair. At each grid position, four Gabor orientations weresidered. Therefore a total
patch activation vectds, consisted 06 x 6 x 4 = 144 components. We generated a set
of 10000 patches and applied the nonnegative sparse cadingng rule as described
in [6] for a set of 144 feature vectors using the gradienebdaelaxation as described in
Section 3, but without overlaps. As shown in Figure 3 we cadsentially reproduce
the results in [6], consisting of collinear features of €iffig lengths and positions.

We then investigated the invariant sparse coding schemerigidering all possible
translations of the features on the complex cell outputEsdor a basis of 16 features.
Due to computational performance constraints we redueefatch size td x 4 pixels
(resulting inC = (4 + 3)% = 49) and reduced the number of patches to 2000. In this
setting the optimizations takes about 1-2 days on a starid@tiz CPU. The result
shows that we obtained a less redundant feature set witeaesp translations. The
set contains collinear features of differing lengths (odtw), with a greater emphasis
on the vertical and horizontal directions for long edgeseréhare some rather local
features which combine two local neighboring orientatj@msl which may be used to
capture a local residual that is not covered by the otheufeat

6 Summary and Discussion

We have demonstrated how to exploit explicitly formulateshsformation symmetries
for the overlapping reconstruction of input vectors andl#aning of an optimal en-
coding scheme subject to given transformation constrafitaough we have shown
these capabilities using an example with translationalmsgiries and transforms only,
the presented algorithm can be used for any transformagiofi’s. One could think of
rotational, scaling and other transforms in addition tottheslational transform. This
would result (after learning) in a network that is able toamstruct an input stimulus
equally well for different translations, rotations andlstgoperations. Such a transfor-
mation invariant preprocessing could well be a necessapytetachieve transformation
invariant classification/detection in a hierarchical eyst Posterior stages could take
advantage of the known transformation properties to aetagvansformation invariant
response, like e.g. pooling over transformed variants efstime feature. Future work
on the subject may therefore include the extension of the/sipeinciple to incorporate
additional transforms and its application in a larger, &iehical network.

We have shown in the two examples that the invariant spadieg@pproach al-
lows to describe an input ensemble using fewer featuresdtthirect sparse encoding.
This reduction of free parameters is achieved by using a rpoveerful representa-



tional architecture, which in turn is paid by a greater dfédrestimating the model. For
the receptive-field learning example the representatieffiait scales linearly with the
number of pixels in the input patches. The same scaling, hervalso holds for the
direct sparse encoding, since the number of representitgréess must be large enough
to carry all possible translated versions of a particulaaldeature.

Could the implemented encoding scheme be part of a biolbgézaal system, e.g.
for feature learning and input representation in the eadyial pathway? On a first
glance, the spread of receptive field profiles suggests alsargf the visual input
with inhomogeneous “feature” vectors, conflicting with idea of general basis vec-
tors from which the individual feature vectors are drawnvédtheless, on a semi-local
basis, the brain has to deal with transformation symmethiascould be exploited in
the proposed way. There is no reason to specifically learfeallire vectors at every
position anew, if they turn out to be translated/transfaimersions of each other. The
biological feasibility of the basis vector learning rulg {gl therefore, a matter of debate.
On the other hand, one could certainly devise neural-likeharisms for the activity
adjustment rule (3), since the equation for e can be seen as a shortcut of a re-
laxation dynamics of graded-response type with a positeéifiying nonlinearity. The
constraint of the activations to positive values even addise biological plausibility of
this rule, since a biologically plausible rate coding ineglpositive activation variables.
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