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Abstract

Analyzing human gait has become popular in computer
vision. So far, however, contributions to this topic almost ex-
clusively considered the problem of person identification. In
this paper, we will view gait analysis from a different angle
and shall examine its use as a means to deduce the physical
condition of people. Understanding the detection of unusual
movement patterns as a two class problem leads to the idea
of using support vector machines for classification. We will
thus present a homeomorphisms between 2D lattices and bi-
nary shapes that provides a robust vector space embedding
of body silhouettes. Experimental results will underline that
feature vectors obtained from this scheme are well suited to
detect abnormal gait. Wavering, faltering, and falling can
be detected reliably across individuals without tracking or
recognizing limbs or body parts.

1. Introduction
In times of increased interest in biometrics for authen-

tication and access control, it comes with little surprise to
see that gait analysis is an increasingly active area of com-
puter vision research. Indeed, dealing with the problem of
person identification, human gait is appealing for two rea-
sons: in contrast to fingerprint or retina scans, gait can be
analyzed from a distance but is yet as significant as the for-
mer. The fact that even though no two body movements are
ever the same gait is a unique personal characteristic was
first noted by Bernstein in the 1920s. Medical studies from
the 1960s systematically corroborated this observation [13]
and psychological experiments conducted in the 1970s re-
vealed that humans effortlessly recognize people by the way
they walk [5].

The spectrum of methods that have been proposed in vi-
sion based gait analysis is vast (see [7, 12, 16] for detailed
surveys). However, it is noticeable that although early con-
tributions to the problem did not extract human silhouettes
from image sequences [14] the majority of recent work re-
lies on shape analysis. Little and Boyd [11] derive the shape
of motion from optical flow and compute characteristic fea-

tures therefrom. Bobick and Johnson [2] subdivide the bi-
nary silhouette of walking people into body parts and mea-
sure different relations among limbs. While Collins et al. [4]
propose template matching of body silhouettes as a baseline
algorithm in gait recognition, Sarkar et al. [16] favor simi-
larity detection based on temporal shape statistics. Tolliver
and Collins [17] store normalized silhouettes as vertices of
similarity graphs and recover significant parts of the walk-
ing cycle from computing the eigenvectors of the Laplacian
matrix of these graphs. BenAbdelkader et al. [1] compute
self-similarity plots from silhouettes and apply subspace
methods to recognize individuals therefrom. Other authors
base their work on a statistical theory of shape developed by
Kendal [10]: Boyd [3], Veeraraghavan et al. [18] and Wang
et al. [19] apply Procrustean distances to compare and clas-
sify human silhouettes.

Apart from the popularity of shape based approaches,
the papers considered in this rough survey reveal that gait
analysis is almost exclusively being applied in identifica-
tion tasks. However, gait can disclose more than identity.
Human subjects easily recognize different types of motion
(e.g. walking, dancing, wavering, . . . ) when asked to inter-
pret moving light displays (obtained from filming subjects
wearing light bulbs on their joints) or sequences of body sil-
houettes [9]. Consider, for example, Fig. 1. It shows two se-
ries of shapes that were extracted from videos of walking
people. While there is nothing unusual in the upper series
which shows a subject moving away from the camera, the
subject in the lower series obviously has difficulties walk-
ing. The movements captured in this sequence suggest the
person is in a dubious condition.

As there are numerous applications for the detection of
abnormal gait, it seems worthwhile to explore techniques
that can accomplish this. The work presented in the follow-
ing is a first step in this direction. First, we will describe
a robust shape encoding scheme that allows characteriz-
ing types of movements across individuals. Then, we will
present experimental results obtained from support vector
classification of gait. A summary and an outlook will close
this contribution.



(a) Person walking away from the camera

(b) Person wavering towards the camera

Figure 1. Silhouettes extracted from videos of walking people. Apparently, the information contained
in sequences of shapes allows to distinguish between normal and abnormal gait.

2. Robust Shape Encoding

Our approach to detecting abnormal gait from video was
guided by the following considerations: Figure 1 indicates
that shape dynamics provide a strong cue to distinguish nor-
mal from abnormal gait. Therefore, it appears natural to fol-
low the general trend identified in the introduction and to
base gait classification on shape analysis. In its most rudi-
mentary form, the classification task can be treated as a
two class problem and as such might be solved using sup-
port vector machines. Applying support vector machines,
in turn, requires a vector space embedding of the silhou-
ettes we are concerned with. In contrast to the identification
task, abnormal gait detection should abstract from personal
traits. The required vector space embedding should thus
capture general aspects of body silhouettes. Moreover, ide-
ally it would be insensitive to noisy boundaries and would
not require much computational effort.

The shape encoding scheme presented in this section
meets all these criteria.

Given binary images as shown in Fig. 1 which result
from a suitable segmentation process, we understand a
shape S to be a set of L pixels, S = {pk ∈ R

2 | k =
1, . . . , L}. Figure 2 visualizes the following simple proce-
dure which computes an m × n array of boxes that can be
thought of as a coarser representation of a shape:

1. compute the bounding box B(S) of a pixel set S
(s. Fig. 2(a))

2. subdivide it into n vertical slices; (s. Fig. 2(b))

3. compute the bounding box B(Sj) of each resulting
pixel set Sj where j = 1, . . . , n; (s. Fig. 2(c))

4. subdivide each B(Sj) into m horizontal slices;
(s. Fig. 2(d))

5. compute the bounding box B(Sij) of each resulting
pixel set Sij where i = 1, . . . ,m; (s. Fig. 2(e))

Obviously, this procedure is linear in mn. Neither does
it require the computation of interpixel relations nor itera-
tive maximization (or minimization). Its average complex-
ity therefore amounts to O(mnp̂) where p̂ denotes the aver-
age number of pixels in a box B(Sij).

Moreover, as indicated in Fig. 3, each box B(Sij) can be
understood as a generalized pixel of height hij and width
wij at location xij . The storage requirement of a coarse
shape representation is therefore a mere 4mn. For small val-
ues of m and n bounding box splitting will thus yield a fast
and storage efficient abstraction of shapes. Figure 3 also ex-
emplifies that already moderate array dimensions m×n can
produce fairly accurate representations. This subjective im-
pression is objectified by the figures in Table 1. It summa-
rizes measurements obtained from 1178 silhouettes of an
average size of 18878 pixels that were extracted from 6 se-
quences of walking people. Given the height h and width
w of a shape’s initial bounding box, the array dimension m



(a) (b) (c) (d) (e)

Figure 2. Example of using bounding box splitting to map a 6 × 6 lattice onto a shape.

(a) 8 × 4 (b) 17 × 8 (c) 34 × 16 (d) 69 × 32 (e) 139 × 64 (f) original

Figure 3. Approximation of a binary shape by means of box arrays of increasing dimensions m × n.

was computed as a function of n:

m(n) =

⌊

h

w
n

⌋

(1)

where bxc indicates rounding x ∈ R to the nearest lower in-
teger, i.e. bxc = sup{y ∈ N | y ≤ x}. The table lists the av-
erage compression rate, the normalized Hamming distance
D = dH(S,B)/L between a shape S and its coarse repre-
sentation as a box array B as well as the variance of these
distances. While the compressions rate decreases slowly for
growing values of n, the normalized reconstruction error de-
creases quickly. At a compression rate of about 93%, it al-
ready drops below 4%.

Therefore, even box arrays of small sizes provide de-
scriptions that capture the essential properties of a silhou-
ette. The runtime required for bounding box splitting will
thus be far from threatening real time constraints that are
important in most video based applications.

Furthermore, note that this simple method relying on ba-
sic computational geometry realizes a homeomorphism be-
tween 2D shapes and 2D lattices: boxes B(Sij) below other
boxes will always have lesser lattice coordinates i, boxes
left of other boxes will always come along with lesser lattice
coordinates j and vice versa (s. Fig. 4). Due to this topology
preserving nature of the box array representation of shapes,
a consistent vector space embedding of shapes is straight-
forward.

If the vector v denotes the location of the bottom left
corner of the initial bounding box of S, w and h denote its
width and height and the vector uij denotes the center of
box B(Sij), then the coordinates

µ
ij =

(

(uij
x − vx)/w

(uij
y − vy)/h

)

(2)

provide a scale invariant representation of S. Sampling k
points of an m×n lattice therefore allows to represent S as



Figure 4. A sample of k = 30 points on a 16× 10 lattice and examples of how it is mapped onto differ-
ent silhouettes.

n compression rate D σ2

4 99.5 % 0.127 0.00136
8 98.3 % 0.065 0.00030

16 93.1 % 0.037 0.00005
32 81.3 % 0.026 0.00002
64 72.6 % 0.005 0.00001

Table 1. Average compression rates, normal-
ized Hamming distances D and variances of
these distances obtained from box arrays of
dimensions m × n. The number of columns
n was chosen as indicated; the correspond-
ing number of rows m resulted from Eq. 1.

a vector

r = [µi(1)j(1)
x , µi(1)j(1)

y , . . . , µi(k)j(k)
x , µi(k)j(k)

y ] ∈ R
2k

where i(α) < i(β) if α < β and likewise for the index j.
Note that while this embedding is scale invariant, it is not

invariant against rotations. However, since shapes of walk-
ing people usually appear to be upright, rotation invariance
is not of primary concern for our application. On the con-
trary, exceptional feature vectors that result from mapping
a lattice onto a somewhat rotated silhouette will be a strong
indicator of abnormal gait.

3. Features for Gait Classification
Choosing array dimensions m× n that cope with the re-

quirements listed at the beginning of section 2 seems an
arbitrary task. Obviously, too fine a grid would be more
sensitive against distorted shapes or individual traits than
a coarser one. A meshing that is too coarse, however, might
not capture essential silhouette dynamics. As a compromise
between these extremes, a grid size of 16 × 10 was cho-
sen for our experiments.

In fact, there is another justification for this choice which
we borrowed from a field rather loosely related to computer
vision: in fine arts, the ratio 3 : 5 : 8 is often considered
to be a pleasing measure of the relative sizes of head, torso
and legs of the human body. The three shapes on the left of
Fig. 4 illustrate that this rule of thumb indeed is reasonable
for upright silhouettes. Given this esthetic basis for choos-
ing m = 16 rows, our choice for the number of columns fol-
lowed a similar path. Observe that 3:5 and 5:8 are approxi-
mations of the golden ratio φ = 1

2 (1 +
√

5) = 1.618. . . So,
with geometric number theory already manifest in our con-
siderations, we chose n = 10 to approximate a golden rect-
angle – a rectangle with a side ratio of 1 : φ and which is
generally considered esthetically pleasing.

Having decided the lattice dimensions, it remains to de-
termine which lattice points to sample in order to provide a
suitable vector representation for gait classification. Here,
our choice resulted from inspecting exemplary series of
shapes. It appeared that relations between head and shoul-
ders and between the feet provide reliable cues to distin-
guish normal upright walking from any kind of wobbling.
Figure 4 exemplifies this. The three shapes on the left cor-
respond to instances of the gait cycle of three subjects walk-
ing normally. In each case, the head is well above the shoul-
ders, shoulders and arms nearly enclose a right angle and
the feet are not too far apart. The silhouettes on the right,
in contrast, were extracted from video sequences showing
abnormal gait. Here, the relation between head and shoul-
ders as well as between the feet varies arbitrarily. More-
over, taking another look at Fig. 1 indicates that normal gait
is also characterized by periodic motion of almost constant
frequency of arms and feet whereas abnormal movements
are aperiodic and random. A sample of lattice points that
correspond to those parts of a silhouette which depict the
head and shoulders and the arms and feet will thus provide
valuable information for gait classification.

At this stage, the simple mapping between 2D lattices
and shapes introduced above reveals its full potential. Due



to the mapping’s topology preserving properties, a sample
of points with lattice coordinates on the upper and lower
border of the lattice will usually, i.e. in the case of upright
silhouettes, correspond to head, shoulders, arms, and feet.
Figure 4 displays the k = 30 lattice points we used in
our experiments and where they are located on different sil-
houettes. Obviously, for normal gait this scheme allows to
roughly keep track of limbs. Neither a feature tracking al-
gorithm nor a recognition procedure have to be applied to
infer the location of significant body parts.

Since gait is a phenomenon of inherent temporal nature,
information about a single instance of a gait cycle might not
be sufficient to determine whether normal or abnormal gait
is being observed. In order to incorporate temporal context
into the classification process, at each time step t we con-
sider concatenated feature vectors

st = rt ⊕ rt−1 ⊕ . . . ⊕ rt−∆ (3)

where for each tl ∈ {t, . . . , t − ∆} we have

rtl
= [µi(k)j(k)

x (tl), µ
i(k)j(k)
y (tl)], k = 1, . . . , 30 (4)

A shape and its recent history will therefore be character-
ized by means of a high dimensional feature vector st ∈
R

2k(∆+1). For the experiment described in the next section,
∆ was set to 1, 10 and 20, respectively, i.e. the the 60 dimen-
sional shape descriptors of the current frame and its prede-
cessors were combined into feature vectors st of up to 1260
dimensions.

4. Experiments

In order to test the feasibility of our approach to abnor-
mal gait detection, we experimented with a set of videos
recorded in our lab. Seven subjects were asked to walk in a
normal fashion as well as in an unusual way, e.g. as if they
were suffering a balance deficiency such as dizziness. Each
of the resulting sequences shows a single person walking in
front of a homogeneous background (s. Fig. 5); the move-
ment is either towards or away from the camera and the an-
gle to the camera varies between 0 and about 45 degrees.

Motion segmentation from these sequences was done us-
ing a statistical background model. Subsequent filtering us-
ing a 5×5 median followed by a connected component anal-
ysis provides shapes as seen throughout this paper.

Concerning our goal of distinguishing between normal
and abnormal gait, many pattern recognition techniques
would be applicable. We opted for support vector machines
with radial basis kernel function because they are known
to yield highly reliable class boundaries for two class prob-
lems. However, dealing with feature vectors of high dimen-
sionality, training SVMs can be burdensome for it requires
solving a quadratic optimization problem. We thus applied

∆ #frames #frames leave one
normal abnormal out error

1 1359 1128 26.5%
10 1323 1101 11.6%
20 1283 1071 6.1%

Table 2. Training parameters and results.

∆ gait #frames accuracy

1 normal 1227 73%
abnormal 1413 61%

10 normal 1195 77%
abnormal 1382 70%

20 normal 1157 72%
abnormal 1350 82%

Table 3. Test parameters and results.

the SVMlight algorithm [8] that tackles this issue by decom-
posing the training process into a series of smaller tasks.

Table 2 summarizes the training parameters of three se-
ries of experiments. In each series, the same set of 7 videos
showing 4 individuals was used for training. Four of these
videos display normal walking, the remaining 3 are exam-
ples of abnormal gait. Because of the varying length of tem-
poral context, the number of frames available for training
is different in each experiment. Choosing a temporal con-
text of ∆ = 20, for instance, implies that the first twenty
frames of each training sequence have to be skipped from
training. The figures in the last column of the table are an
estimate of the quality of the resulting SVM. Performing
a test on the training data produced the listed error rates.
Since the error rates do not vanish, the feature space ar-
eas of normal and abnormal gait obviously overlap. How-
ever, if the the temporal context increases, i.e. if the dimen-
sion of the feature space grows, the overlap and thus the er-
ror rate decrease. This agrees with intuition and mathemati-
cal wisdom: deciding whether or not a person moves abnor-
mal will be more reliable the longer the person is being ob-
served. Also, in higher dimensional vector spaces data will
be more sparse and there will be more space for partition-
ing.

Parameters and results of testing are shown in Table 3.
Here, we considered 7 videos of 5 individuals, 4 of which
show abnormal gait and 3 display usual walking behavior.
Again, due to the different temporal context, the number
of frames varies among the experiments. What is notice-
able, is that while a growing temporal context considerably
improves the detection of abnormal gait, its effect on nor-



Figure 5. Example of abnormal gait detection over a period of 35 frames; the temporal context for
classification was set to ∆ = 20 frames. The status bar at the right of each panel indicates the per-
centage of gait instances that were classified abnormal during the last 40 frames. Thus at the begin-
ning of this sequence, the subject’s gait appeared to be fairly normal whereas at the end each of his
last 40 movements has been classified as abnormal gait.

mal gait detection is inconsistent. Overall, especially for a
temporal depth of ∆ = 20, the frame-wise recognition ac-
curacy can be considered acceptable. However, the rate of
false positives seems to be too high if we imagine real world
applications of abnormal gait detection.

A solution for this problem is depicted in Fig. 5. The fig-
ure covers a period of 35 frames taken from a sequence of
an abnormally walking subject. The status bar at the right of
each panel indicates the percentage of frames that were clas-

sified abnormal during the last 40 frames. The more frames
appear to be dubious the higher is the red bar. At the be-
ginning of the part of the sequence that is shown here, only
a few frames have been classified as abnormal gait. Corre-
sponding to the wavering movement of the subject, how-
ever, the percentage of abnormal frames rises continously
throughout the sequence and reaches 100% in the panel at
the bottom right.

The status bar thus illustrates the use of temporal context



on a higher level of abstraction. It can be seen as a temporal
filter that acts on the results of frame-wise classification. If
one or several frames of a sequence are misclassified, it will
have little effect on the general tendency or confidence level
that becomes apparent from temporal filtering.

For real world surveillance applications, it is thus possi-
ble to trigger an alarm once a certain level of abnormal gait
has been detected over a given period of time.

5. Summary and Outlook

This paper considered automatic gait analysis as a means
to deduce if an observed walking pattern appears to be
normal or not. In contrast to the majority of gait analysis
techniques known from literature, the problem dealt with
in this paper hence requires a representation that abstracts
from individual gait characteristics but allows the classifica-
tion of gait across individuals. Addressing this requirement,
we presented a homeomorphism between 2D lattices and
shapes that enables a robust vector space embedding of sil-
houettes. Sampling suitable lattice points allows to roughly
track the movement of limbs without that limbs have to be
recognized.

Combining shape representations derived from several
frames into lager feature vectors provides temporal con-
text for the classification task. Experimental results under-
line that gait classification using support vector machines
yields satisfiable accuracy. Temporal filtering of the classi-
fication results further improves the reliability of the pre-
sented framework because it lessens the effect of sporadic
misclassifications.

Currently, we are working on porting the presented ap-
proach to a real world scenario. This requires us to cope
with two phenomena not considered in this paper. First, in-
homogeneous, noisy, and non-static backgrounds are ham-
pering shape segmentation. Preliminary tests where we ap-
plied background modeling techniques similar to the ones
proposed in [6] have shown promising potential to over-
come this problem. Second, our approach to abnormal gait
detection will have to be adapted to situations with sev-
eral walking people who will inevitably occlude each other.
Here, we are experimenting with very robust tracking tech-
niques as introduced in [15] so that several silhouettes can
be extracted and analyzed simultaneously.
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