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Abstract 
W e  are interested in the content analysis of video 

f rom a collection of spatially distant cameras viewing 
a single environment. W e  address the task of counting 
the number of different people walking through such an 
environment, which requires that the system can iden- 
tify which observations from different cameras show 
the same person. Our system achieves this by com- 
bining visuul appearance matching with mutual con- 
tent constraints between the cameras. W e  present re- 
sults from a system with four very different camera 
views that counts people walking through and around 
a research lab. 

1 Introduction 
In the past few years cameras and digitizers have 

become widely available, which has created a criti- 
cal need for tools to  analyze the content of digital 
imagery. Several well-known journals have devoted 
special issues to this topic (including IEEE Transac- 
tions on Pattern Analysis and Machine Intelligence, 
IEEE Computer, and Communications of the ACM) 
but there has been little work on content-based analy- 
sis of video from multiple cameras. The most promi- 
nent advantage of using multiple cameras is that  it 
becomes possible to  cover spatially extended or clut- 
tered environments, such as the inside of buildings. 

One of the tasks that arise in multi-camera sys- 
tems is that  of counting the number of different people 
that move through the environment. This problem 
could not be solved by counting the people present 
in each video stream independently and adding them 
up, because some people would be counted several 
times as they move around. This task can only be 
solved by analyzing the content of multiple camera 
streams together. I t  is especially important t o  au- 
tomate such multi-camera content analysis tasks be- 
cause it is very difficult for humans to  attend to  mul- 
tiple video streams at the same time. 

In this paper we address a multiple camera setup 
where the cameras are so far apart that  their view 
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fields do not overlap, because we assume that cam- 
eras with overlapping view fields can be treated as a 
single virtual camera. In such an environment it be- 
comes difficult for a program to determine how many 
different people were seen, because views of the same 
person from different cameras can be quite dissimilar 
from a machine point of view. This precludes the use 
of traditional Compute Vision techniques for match- 
ing images (such as motion or stereo), which assume 
that the views are very similar. 

Our principal innovation lies in the use of contex- 
tual constraints t o  help solve the problem of recogni- 
tion between different camera views . In a very gen- 
eral class of multi-camera setups, the content of video 
in each camera strongly constrains the content of the 
other camera streams. These mutual constraints can 
facilitate the content analysis of the video streams 
considerably. Consider the top of figure 1, where Rose 
starts to  walk through an office environment. When 
she disappears from camera 1, we can infer from the 
floor plan that she will reappear next in either cam- 
era 2 or 4, but not in camera 3 because she will be 
seen in camera 2 before she can reach the location of 
camera 3. The bottom of the figure illustrates the 
problem we try to  solve: people walking past cameras 
lead to  observations, ordered in time. The system’s 
task is to  link those observations that show the same 
person. To achieve this task, we consider not only the 
floor topology, but also global consistency constraints 
and the temporal dependency of successive camera 
appearances of people walking along corridors. 

In the following section we will describe how a va- 
riety of mutual content constraints can be exploited to  
facilitate the content analysis of multi-camera video, 
and how a solution can be found in an efficient man- 
ner. We will give a short survey of related work in 
section 4, before we present some experimental data 
from a four camera implementation that counts peo- 
ple walking through and around a lab. We conclude 
by discussing some future work. 
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Figure 1: Top: A schematic tracking situation with 
4 cameras. The arrows depict the walking trail of 
each person. Bottom: the resulting tracking inter- 
vals, assuming that Rose wears red, Bob blue, and 
Chris cyan. Time increases from left to  right, and 
the arrows are the correct links that our system is 
supposed to reconstruct. 

2 Exploiting content constraints 
By modeling the relationship between the differ- 

ent cameras video streams, we can significantly sim- 
plify the problem of counting people. 
2.1 Anticipated changes in appearance 

Our approach begins by tracking people as long 
as they are visible in a single camera. We detect and 
segment moving objects by using a background sub- 
traction scheme followed by a variant of Boykov, Vek- 
sler and Zabih’s [2] semi-global algorithm that seg- 
ments an image into maximal regions of pixels that 
look and move similarly to their neighboring pixels. 
This usually has the effect that background pixels 
with only a light shadow or reflection of the pedes- 
trian are grouped with the (stationary) background, 
and are therefore removed from the area of moving 
pixels.’ This leads to a collection of frame cutouts 
for each short interval of time during which a person 
is visible in a camera. In the following, we will refer 
to such a collection of frame cutouts as an observation 
interval. The core task in the people-counting prob- 
lem is that of determining whether two observation 
intervals resulted from the same person. In princi- 

lNote that reflections and shadows are difficult as they move 
at the same speed as the pedestrians. 

ple, people’s visual appearance changes little in our 
task, since people tend not to  change their clothing 
in corridors. Our system learns a statistical model of 
visual appearance for each observation interval. This 
model is then used to  determine if future observa- 
tion intervals are likely to  stem from the same per- 
son as the observation interval for which the model 
was constructed. Unfortunately, a person can look 
very different for a machine if viewed from different 
cameras, due to  changing light conditions, differing 
camera angles, and partial occlusions. Instead of di- 
rectly modeling how the appearance of objects will 
change between each pair of cameras, we opted for the 
computationally more efficient solution of normaliz- 
ing the lighting conditions of all cameras with respect 
to  a single reference camera and using a represen- 
tation of visual appearance that is inherently robust 
to  many of the anticipated changes. We currently 
histogram the pixels of each frame cutout by table 
lookup into a 32-bin color space after normalizing the 
lighting. Our color space was designed to  capture the 
subtle difference between popular clothing colors such 
as beige and gray, while not making overly fine dis- 
tinctions of colors such as red that span a wide range 
of the HSV color space but are perceived as rather 
uniform by humans. We then quantize the counts 
in each histogram bin into chunks of one fifth of the 
blob area and model the number of such chunks per 
histogram bin as Poisson-distributed variables. This 
ensures invariance to changes in size of the blob area 
and makes the representation quite robust with re- 
spect to changes in viewing angle. 

2.2 Reoccurrence locations and times 
If it would be feasible to completely normalize vi- 

sual appearance (as humans seem able to do), one 
could solve the task of counting people by group- 
ing together all those views that show the same per- 
son, without considering at which location and time 
each frame was recorded. However, current machine 
recognition technology is not yet robust to changes 
in viewing angle for objects that were learned on the 
fly under rather uncontrolled conditions. Therefore, 
the recognition performance can be improved if other 
constraints are used to limit the number of potential 
match candidates. Our system exploits knowledge of 
the corridor topology and usual walking speed of peo- 
ple to form expectations about the time windows and 
the locations in which people will reappear next. Most 
corridors only lead to  limited numbers of other corri- 
dors, which means that oftentimes, the resulting tran- 
sition probabilities alone already constrain strongly in 
which camera streams a person could appear next. If 
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one makes the simplifying assumption that people’s 
decision on where to go next from a location does 
not depend on where they came from, then the lo- 
cation and time of reoccurrence of each person can 
be modeled as a semi-Markov model [5]. These ’soft’ 
constraints serve as Bayesian priors for the recogni- 
tion. 

It is important to note that a solution for all ob- 
servations cannot be simply found by determining the 
best successing appearance for each observation, since 
this would most probably lead to inconsistent solu- 
tions, for example solutions that state that an ob- 
served person was seen at  multiple locations at once. 
We have derived an a posteriori expression for the 
probability that a certain grouping of all observations 
into views of one person each is the correct explana- 
tion of all observations. The approach and derivation 
is an extension and modification of a probabilistic for- 
mulation of‘ a radar tracking problem [7] due to Poore. 
The expression considers other factors as well, such as 
the frequency with which new people enter the envi- 
ronment at different locations.’ An optimal solution 
can then be found by maximizing this probability ex- 
pression. The following section will explain how to 
efficiently optimize this probability in a way that en- 
sures that only consistent solutions (i.e., mutually ex- 
clusive chains) are considered. 

2.3 Mutual exclusion of content 
Each person walking through the environment 

will cause a chain of observations in the different cam- 
eras, and these chains will not branch if we assume 
non-overlapping cameras, because each person can 
only be in one place at  a time. Fortunately, it is pos- 
sible to determine that set of non-overlapping, non- 
branching chains of observations which has the high- 
est a posteriori probability without having to search 
through all possible sets of observation chains. In or- 
der to find such an optimal set of chains in a computa- 
tionally efficient way, we do not maximize the above 
mentioned a posteriori expression directly. Instead, 
we maximize the relative improvement of a hypothe- 
sis with respect to a reference hypothesis which states 
that all observations stem from different people. By 
making a few simplifying assumptions and applying 
some algebraic transformations, it is then possible to 
arrive at a set of terms each of which expresses the 
goodness of a hypothesized chain link. For these link 
terms, it holds that maximizing their product leads 
to solutions that are optimal under the assumptions 

’Due to spatial limitations, we refer the reader to a forth- 
coming technical report for details of the derivation and math- 
ematical formulation 

we made. The main assumptions that our approach 
makes are that people’s movement can be modeled 
as a semi-Markov process and that visual similarity 
is transitive, in the sense that we only consider how 
similar an observation is to  the observation that is hy- 
pothesized to be its immediate successor, and not to 
any previous observations. It further assumes that the 
visual appearance of a person is independent of other 
people’s appearance or behavior and that the observa- 
tions intervals returned by the low-level tracking show 
all people that pass a camera, and only one person 
per observation interval. Maximizing the link term 
product will lead to a solution that observes the con- 
straints on the visual appearance and spatio-temporal 
reoccurrence of successive observations. The addi- 
tional mutual exclusivity constraints are enforced by 
treating this constrained optimization problem as a 
weighted assignment problem, which is a special case 
of a linear program. Weighted assignment problems 
can be solved optimally and efficiently, for example 
by the Munkres algorithm [3] which we currently use 
to find a solution. 

3 Handling entrances and exits 
In order to handle people entering the environ- 

ment, we add a virtual observation ‘NEW’ that will 
be assigned as preceding occurrence if the best ex- 
planation of an observation is that it belongs to a 
person who just entered. The solution of the linear 
program represents exits by simply not linking any 
later observation to the last occurrence of a person. 
The probability expression for the a priori probabil- 
ity of a set of chains from which we derive the linear 
program contains terms that regulate the number of 
people entering the system and the typical length of 
a chain of observations. 

Incidentally, the explicit modeling of new persons 
entering the environment also allows us to limit the 
number of previous observations that have to be con- 
sidered as potential match candidates: if it is already 
clear from the space and time relation of two observa- 
tions that they are less likely to be immediate succes- 
sors of each other than the hypothesis that the current 
observation stems from a new object, then the two ob- 
servations’ visual appearances do not even have to be 
compared. This intuition can also be proven in terms 
of probabilities. For each camera pair, it leads to a 
(relative) time window in the past that  specifies in 
which time range previous observations at  the first 
camera have to lie if they can at  all be the immedi- 
ately preceding occurrence of an observation in the 
second camera. Finally, if we store the observations 
of each camera ordered by time, then these time win- 
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dows allow us to  retrieve the set of potential match 
candidates very efficiently. 

4 Related work 
Boyd et al. [I] presented an architecture designed 

for multiple sensors observing a dynamically chang- 
ing environment. However, their cameras overlap and 
the view fields are transformed into one view field via 
standard techniques. Although their architecture is 
quite general, it seems difficult to  apply it to tasks 
such as ours where observed objects are invisible for 
extended periods of time. 

Grimson’s research group [4] has built a multi- 
camera system that also assumes overlapping camera 
fields: he envisions observing activities by a set of 
cameras that are strewn out in an environment and 
that determine automatically how to map their local 
view fields into one coherent view field. They then 
learn classes of observed behavior. 

Finally, Huang and Russell [6] have designed a 
system that performs a task similar to ours: they 
monitor a highway at two consecutive locations and 
try to find matching cars in order to  count the num- 
ber of cars and to measure link times. They concen- 
trate on appearance constraints. They also transform 
their problem into a weighted assignment problem, al- 
though with different link weights and problem struc- 
ture, since they start from different premises than our 
derivation. Their solution is confined to setups where 
cameras are placed alongside a single path so that 
the movement of the objects is deterministic, with the 
exception of objects entering and exiting the environ- 
ment. Our solution is much more general by allow- 
ing arbitrary corridor systems in which pedestrians 
can choose paths. Therefore, our system is able to 
reconstruct the paths of all objects through an envi- 
ronment, which is interesting for some tasks. For ex- 
ample, traffic planners might want to optimize traffic 
light controls such that traffic flow is least interrupted 
for the most popular routes through a city. 

5 Experimental evaluation 
In order to  evaluate our prototype, we set up a 

small surveil lance system of 4 cameras in  and around 
our Systems Research Lab. The floor plan is depicted 
in figure 2, together with background snapshots from 
the 4 cameras. We conducted an experiment of about 
8 minutes, where two subjects walked separately and 
together as many paths through the system as they 
could think of, always changing clothes in between 
different paths so as to  impersonate different people. 
Since the experiment was conducted on a summer 
morning, only three additional people walked through 

Cam 4 

4 

Figure 2: Floor plan of the camera setup and back- 
ground snapshots from the 4 cameras. 

our setup. The experiment resulted in a total of 28 
observation intervals from 14 true tracks. We count 
the tracks that two people walked together as one 
track because the basic tracker consistently merged 
the two people together and therefore also into one 
observation interval. Figure 3 shows observation in- 
tervals and the correct observation links from a subse- 
quence of the experiment. Our initial results are quite 
promising: only two observation intervals were linked 
incorrectly, and one link was broken as a result of one 
of the wrong linkages. In both cases of the wrong 
additional links, the transition times of the suggested 
links were likely, and the clothing of the correct and 
wrong matches had similar color and differed only in 
the pants’ length. However, the data also contains two 
cases in which the same person appears twice after an 
unnaturally long disappearance time (thus violating 
the modeling assumption that people would just walk 
along the corridors). In these cases, the system la- 
bels the second appearance as ‘NEW’. Taken together 
however, the system counts 13 different people, which 
compares well to the 14 true  track^.^ 

These first results were obtained in difficult light- 
ing situations and with a very weak representation 
of visual appearance, as well as significant segmenta- 
tion  error^.^ But they nonetheless suggest that our 

3We obtain this number by forgiving the system for marking 
reappearances after unnaturally long disappearance times as 
new people. Without this assumption, there are 12 true tracks. 

*The segmentation errors were due to strong reflections and 
shadows on the hallway floor. 
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Figure 3: An example subsequence of the experimen- 
tal  8 min sequence. Observation intervals are repre- 
sented by the observation in the middle of the interval. 

approach performs well and is quite robust. Our fo- 
cus sets led to  reasonable time windows and ensured 
that each observation only had to  be compared with 
a very limited number of other observations. The av- 
erage size of the focus sets in this experiment was 1.6, 
while without the focus sets we would have needed to  
compare an observation with an average of 13.5 other 
observations. 

6 Future work 
At present, the parameters for all the probability 

density functions, usually frequencies, were estimated 
from experimental data and then given to the sys- 
tem as input. However, it is very straightforward to  
update these parameters a t  runtime by reestimating 
over a limited time window, or simply by using sliding 
averages tha.t discount past data points exponentially. 

I t  is also easy to think of additional constraints 
that  could be exploited, such as the direction of a per- 
son's movement when visible in one camera. This in- 
formation could be used to  discredit hypotheses that 
include U-turns: one could split each camera location 
into several virtual locations that are distinguished 
by the different dominant movement directions of ob- 
jects in this location. Each of these virtual loca- 
tions would then have different transition probabil- 
ities which would make U-turns unlikely. 

We are also interested in applying our framework 
to  other tasks and environments, such as car traffic. 
Our system should perform quite well for car traffic 
since there is more structure in the movement of cars 
than in the somewhat random behavior of pedestri- 
ans. 

7 Conclusion 
In this paper we described how mutual content 

constraints of multiple camera streams can be ex- 
ploited to  solve tasks that would otherwise be diffi- 
cult. We proposed technical solutions for several dif- 
ferent types of mutual content constraints and demon- 
strated the viability of our approach with a system 
that counts the number of different people appearing 
in any of multiple cameras viewing an indoor environ- 
ment. 

Acknowledgements 
We would like to  thank Carlos Saavedra for help- 

ing out as one of the subjects in the experiment. 
This research has been supported by a grant from 
Microsoft. 

References 
J. Boyd, E. Hunter, P. Kelly, L. Tai, C. Phillips, 
and R. Jain. MPI-video infrastructure for dy- 
namic environments. In IEEE Conference on Mul- 
timedia Computing and Systems, pages 249-254, 
1998. 

Yuri Boykov, Olga Veksler, and Ramin Zabih. A 
variable window approach to  early vision. IEEE 
Transactions on Pattern Analysis and Machine 
Intelligence, 20 (12) : 1283-1 294, December 1998. 
An earlier version of this work appeared in CVPR 
'9 7. 

F. Burgeois and J.-C. Lasalle. An extension of 
the Munkres algorithm for the assignment prob- 
lem to rectangular matrices. Communications of 
the ACM,  142302-806, 1971. 

W.E.L. Grimson, C. Stauffer, R. Romano, and 
L. Lee. Using adaptive tracking to  classify and 
monitor activities in a site. In IEEE Confer- 
ence on Computer Vision and Pattern Recogni- 
tion, pages 22-29, 1998. 

R.A. Howard. Dynamic Probabilistic Systems. Wi- 
ley, 1971. 

Tim Huang and Stuart Russell. Object identifica- 
tion: a Bayesian analysis with application to  traf- 
fic surveillance. Artificial Intelligence, 103: 1-17, 
1998. 

A.B. Poore. Multidimensional assignment formu- 
lation of data association problems arising from 
multitarget and multisensor tracking. Compu- 
tational Optimization and Applications, X27-57, 
1994. 

271 


