
Object Recognition with Shape Prototypes in a

3D Construction Scenario

Martin Ho�henke and Ipke Wachsmuth

Universit�at Bielefeld
Technische Fakult�at, Arbeitsgruppe Wissensbasierte Systeme

D-33594 Bielefeld
email: fmartinh, ipkeg@TechFak.Uni-Bielefeld.DE

Abstract. This paper is concerned with representations which enable
a technical agent to recognize objects and aggregates from mechanical
parts as they evolve in an ongoing construction task. The general goal
is that the technical agent has a detailed understanding of the task sit-
uation such that it can execute instructions issued by a human user in
a dynamically changing situation. A levelled approach for comprehen-
sive shape representation is presented which is motivated by a cognitive
model of pictorial shape representations (prototypes). In particular, our
system is able to derive and represent spatial properties (such as orien-
tation) and geometric features (e.g., axes or planes) that can be ascribed
to the developing construct.

1 Introduction

The context of this work is a human-machine-integrated construction scenario.
This paper is concerned with representations which enable a technical agent to
recognize objects and aggregates from mechanical parts as they evolve in an
ongoing construction task. The general goal is that the technical agent has a de-
tailed understanding of the task situation such that it can serve as an intelligent
assistant and execute instructions issued by a human user.

What are the general challenges that have to be met by a representation
system employed by the agent? Firstly, the system needs to provide knowledge
about the mechanical objects, their properties, and how they can be mounted,
and also knowledge about the assembly groups that are being built up in a dy-
namically changing situation. As is typical in a construction scenario, aggregates
of generic building parts form new meaningful objects in which the individual
parts can change with respect to their function and role. Secondly, the system
should be able to derive and represent spatial properties (such as orientation)
and geometric features (e.g., axes or planes) that can be ascribed to the de-
veloping construct. A representation of shape could provide a more profound
understanding of aggregate objects through enriching the representation by spa-
tial attributes like intrinsic orientations, axis positions or directions (Fig. 1).



Fig. 1. General shape of an undercarriage. The line is the intrinsic axis which denotes
the possible direction of movement restricted by the wheels. An intrinsic orientation
(front and back) will be assigned to the undercarriage when mounted to a vehicle.

While the �rst aspect has been dealt with by way of propositional descrip-
tions in some approaches (e.g., [11], [16]), the problem of representing generic
shape has insu�ciently been tackled in previous literature. For instance, in ear-
lier work (e.g., [14], [4]), two- or three-dimensional shape models were employed
in the recognition and classi�cation of 2D camera percepts. But with respect
to construction scenarios in which 3D camera percepts are provided, these ap-
proaches are still lacking solutions of the following problems:

{ the representation of shape on di�erent levels of abstraction to describe
spatial structure at various levels of detail

{ the ascription of additional spatial properties by which spatial references
could be handled, as in the instruction 'Mount the bumper to the back side
of the car'

{ a greater complexity of recognition implied by the usage of 3D percepts

The present paper describes an approach to solve these problems, based on the
idea of levelled shape prototypes. Our scenario is a complex construction task in
which a human instructor supervises a robotic agent in the execution of various
construction steps. The robot has stereo cameras and is thus able to utilize 3D
percepts of the construction scene1. Our results have so far been evaluated in a
3D assembly simulation, the Virtual Constructor, that was also used by (Jung et
al). The Virtual Constructor can perform all manipulations with virtual building
blocks that are physically possible with their real counterparts.

The paper is organized as follows. In Section 2, we give a brief description of
the task setting and how the Virtual Constructor is able to simulate construction
steps based on a structural (propositional) representation. Section 3 describes
the motivations and general goals and features for our novel approach of lev-
elled shape prototypes. In Section 4, we present our approach in more detail and
describe results how shape prototypes were used to build up spatial represen-
tations in the construction scenario. In Section 5 we conclude that the levelled
approach has the advantage to enable both a very abstract shape recognition
and an appropriate shape re�nement by an integrated representation.

1 To avoid misunderstandings: the percept is a threedimensional reconstruction of the
current scene, not a bitplane.



2 A virtual construction scenario

The testbed we use for the evaluation of our shape prototypes is the Virtual
Constructor, a tool able to simulate a construction scenario with a human being
as instructor and a technical system as constructor. The instructor can manip-
ulate the virtual scene containing a variety of di�erent mechanical objects of
a construction kit. Manipulations can be issued by simple natural language in-
structions (Fig. 2) or directly via the mouse input device. Scene manipulations
can be: moving objects, connecting objects, disconnecting objects, and rotating
objects within an aggregate.

Fig. 2. Screenshot of the Virtual Constructor. The undercarriage will be attached to
the airplane via a natural language instruction.

The Virtual Constructor uses a frame language to represent knowledge about
the mechanical parts (how they can be connected with other parts) and knowl-
edge about the aggregates which can be constructed. It allows to de�ne a precise
building-up of assembly groups by using containment, connection and simple
spatial relations like parallelism of two bars. It also allows to de�ne roles that
speci�c building blocks can take on in the context of an assembly group. A bolt
for example can become an axle in the context of an undercarriage. This way
the bolt can be referred to in the following instructions by role like: 'Attach the
axle to the green block'. Such a structural description of an assembly group is
not very exible against arbitrary but shape-invariant variations and it is bound
to and restricted by a certain construction kit.

Shape prototypes as introduced in the following section are not for de�ning
precise assembly groups out of a special construction kit. Rather, they enrich
the construction system with knowledge about the rough appearance of objects
belonging to a category. Shape prototypes describe the generic shape of complex
objects with parametric geometry models. They are able to represent knowledge
about spatial properties of objects like an intrinsic orientation, thus it is possible
to handle instructions like: 'Attach the propeller to the front of the airplane'.



3 Object representation with shape prototypes

The idea we develop in this paper is based on a cognitive motivation. A vari-
ety of psychological investigations in the last 20 years have shown that human
beings store and process information not only in an abstract-structural manner
but also often make use of a pictorial concept of things and situations (e.g.,
[12], [2], [8]). Especially for the description of object categories, prototypical
pictorial representations have been postulated. Pictorial representations seem
advantageous in that they provide a more 'natural', i.e. intrinsic representation
([13]) of geometrical and spatial properties than propositional representations.
It is assumed that by using intrinsic representations the classi�cation of objects
should be faster and more robust against variations and should give clues for a
subsequent structural analysis, which is a motivation for our technical approach.

Fig. 3. Property inheritance from shape prototypes: the individual bolts inherit the
�tting direction from the bolt shape prototype shown in the upper part.

3.1 Two aspects of shape prototypes

For an intuitive interaction with a human partner the technical agent needs
to have a similar understanding of the common subject of their interaction.
In the construction scenario aggregates often become meaningful for a human
being by their overall shape. For example, the instructor calls two wheels an
undercarriage when �tted together by an axle. This is the case when something
looks like something known. To enable this act of recognition in a technical system
it is necessary to model the prototypical shape properties of such objects. With
structural representations (like frames) it is not possible to recognize objects
which are similar by their rough appearance but which are built up in a varied
way or with parts of some other construction kit. This is especially true for
the recognition of the overall shape of multi-part objects. In contrast, shape
prototypes just represent the rough shape and do not take the speci�c building
parts into consideration.

Besides the aspect of recognition there is another important aspect to proto-
types when used in the interaction with human beings, which is the ascription



of properties even when they are not relevant for classi�cation. But when for
example speaking about the front side of an airplane this implies an intrinsic
orientation (this means a spatial segmentation by the object's point of view).
Another example is shown in Fig. 3. Each individual bolt has a �tting direction
that can be inherited from the prototypical bolt shown in the top of the �gure.
Like classical property inheritance in propositional representations, our aim is
a property inheritance of spatial attributes from a pictorial representation. As-
cribing such spatial attributes to a part or a construct should enable a technical
agent to handle instructions like:

{ Place the bolt upside down.

{ Attach the propeller at the front side of the airplane.

{ Show the bottom side of the airplane.

Fig. 4. Examples of di�erently shaped entities of the category airplane.

3.2 Levels of abstraction

There are two conicting requirements to be achieved by a pictorial shape rep-
resentation. On the one hand it must be able to represent shape in the most
abstract manner, in order to recognize a wide variety of objects that have a sim-
ilar shape. On the other hand it must be able to distinguish between super- and
subcategories by discriminating further shape properties. This means that shape
prototypes must be able to describe categories at di�erent levels of abstraction,
like 'airplane' and 'jet'.

There are a variety of approaches to represent shape found in the literature.
Some contributions just deal with 2D representations. For instance [9] uses a
boundary representation; [3], [14], [15] are working with symmetry-axis repre-
sentations. Some early contributions have suggested to use 3D representations
([10], [2]). Especially in image recognition (e.g., [4], [5]), 3D representations are
often used to permit a viewer-independent description of objects. But these ap-
proaches are restricted to an isolated kind of representation and thus do not
permit the modelling of category-adequate abstractions for shape prototypes.



Basically, the above-mentioned approaches restrict to a single type of object or
even a single object. They do not provide a universal model of a shape prototype
which realizes the conicting requirements mentioned above. Thus we pursue an
integrated approach of gradually abstracted levelled shape prototypes.

The �rst requirement for a shape prototype is to represent shape in the most
abstract manner. This can be illustrated by the category airplane. The entities of
this category are typically comprised by a wide variety of di�erent shapes (Fig.
4). So, what is the characteristic shape of an airplane? Especially the model
airplane built up with blocks of a toy construction kit (Fig. 4, bottom) illus-
trates that not constructional detail, but overall shape is typical for an airplane.
Even with holes in the wings and propeller-blades and untypical features on the
airplane's top the object is recognized as an airplane by human beings at �rst
sight. The object is classi�ed as an airplane by its typical spatial layout. Thus the
three-dimensional skeleton-model shown in Fig. 5 provides an adequate shape
representation for the most abstract shape description of an airplane.

Fig. 5. Shape representation of an abstract airplane (skeleton-model).

The second requirement for shape prototypes is the possibility of modelling
further discriminating shape properties. A skeleton-model is not su�cient for this
because di�erences often just occur in a two- or three-dimensional expression of
a shape (for example, the characteristic delta-shape of the �ghter plane in Fig.
4). Thus we need to represent also higher dimensional shape properties. This is
why we developed a representation scheme that integrates shape descriptions at
levels of di�erent expressiveness.

4 A levelled approach for comprehensive shape

representation

As was argued before, we cannot restrict ourselves to a single kind of shape
representation, for the requirements on di�erent levels of abstraction are too
unlike by far. Thus the aim is to create a framework in which the various shape
representations can be integrated.

There are two main aspects to be considered: First, the inclusion of the
prototypes in a uniform conception to reach an inter-operability between them
and, second, to save the individual properties of the di�erent kinds of shape
prototypes in their speci�c expressiveness. Note that the abstract expressiveness
of a prototype is not only relevant for its (geometric) shape-model but also in
the classi�cation algorithm working on it.



Fig. 6. Cascaded levels of shape prototypes: skeleton-model, plane-structure-model,
volumetric model.

To keep the individual characteristics of each kind of prototype, they are
embedded (with shape-model and classi�cation algorithm) in a levelled archi-
tecture with a uniform input/output-structure and ordered like a cascade with
respect to decreasing abstraction, as motivated by Fig. 6. This way the archi-
tecture takes care of an increasing di�erentiation of shape. In our approach we
use three di�erent levels of abstraction:

{ The skeleton model represents objects on the most abstract level. Objects
are described just by their major spatial extensions. All three objects in Fig.
7 can be recognized as an airplane on this level. Even the airplane with the
swept back wings will be recognized, because on this level of abstraction the
'wing-line' does not stand for a straight line, but for a spatial extent at this
position and direction.

{ The second level (plane-structure model) takes also two-dimensional aspects
(at-shape elements) into account. This is why the left object in Fig. 7 would
not be recognized as an airplane on this level (that is, it is not 'as good' an
airplane as the other two objects).

{ The third level (volumetric model) uses three-dimensional shape prototypes.
Thus it is possible to discriminate shape elements of the objects by their
volumetric shape. The middle and the right airplane in Fig. 7 can be distin-
guished between more special types of airplane like visualized in Fig. 6.

Any shape model on a more abstract level subsumes all less abstract models.

Fig. 7. Some examples of aggregates recognized as airplanes.



The classi�cation process starts by comparing the percept with the shape
prototype on the most abstract level (e.g., the skeleton airplane as represented
in Fig. 9). If the shape properties of the prototype matches the percept (like
visualized in Fig. 8), a hypothesis (e.g., Fig. 10) is generated. This hypothesis
serves as additional information for the matching process with the prototype on
the next lower level of abstraction. If it is possible to verify the hypothesis on
this level, a new hypothesis with enriched information is generated and passed
on to the next lower level.

Fig. 8. Classi�cation of the model airplane with the shape prototype of an airplane.

4.1 Object recognition with shape prototypes

We now describe in detail how the fully implemented shape recognizer for the
skeleton model is used in object recognition. As an example Fig. 9 shows the
skeleton prototype of the airplane that is visualized in Fig. 8 (upper left). The
prototype contains several shape elements represented by line segments. Each
line segment has a default position and some degrees of freedom (tolerance) for
its relative position, rotation, and size (TRANSLATION, ROTATION and SCALE).
Another important slot is the Significance-value. This value rates the expres-
siveness of a shape prototype as illustrated in Fig. 11. The level of abstraction of
an expressive prototype is much lower for a low-structured object (like the wing)
than for a high-structured object (like the airplanes in Fig. 6). So the skeleton
model of the wing has a much smaller signi�cance value than the airplane has
on this level of abstraction.
The recognition process like visualized in Fig. 8 works as follows:

1. Transformation of the main axis of the prototype parallel to the main axis
of the object by a principle-component-analysis. For a reduction of ambigu-
ity we make use of the prototype's intrinsic top orientation as a clue for a
preferred orientation.

2. For a �rst rough hypothesis the prototype is scaled to an object-similar size
and centered.



Fig. 9. Coded description of the skeleton-model of an airplane visualized in Fig. 8,
left-upper side (range values in TRANSLATION denote tolerances).



3. Search for shape elements of the object (building blocks) which are near
and similar-oriented to the main shape element of the prototype (de�ned as
FIX in Fig. 9). The prototype is corrected in position, orientation, and size
accordingly.

4. Step by step now the other shape elements are searched for in the object
with respect to their degrees of freedom in translation, rotation, and size.

Fig. 10. Description of the instance of the airplane shape prototype in Fig. 8 (right).

If the shape prototype matches the perceived object, an instance of the pro-
totype is created as exempli�ed in Fig. 10 (and visualized in Fig. 8, right). The
instance contains information about the individual shape elements which are
passed as clue to the recognizer on the next abstraction level, together with an
estimate of quality. Such a clue consists of:

{ the type of the object
{ the position, orientation and size of the object and its individual shape ele-

ments



{ the building blocks by which the individual shape elements are formed

This estimate of quality is composed by di�erent factors like the activation of
the related category and the signi�cance value of the actual shape-prototype.

4.2 Property inheritance of spatial attributes

As described in Section 3.1, the technical agent needs knowledge about spatial
properties that goes beyond the shape aspects important for recognition. So
shape prototypes have to contain information that provides additional spatial
knowledge about the prototype. As an example, Fig. 9 shows the coded skeleton
shape prototype of an airplane. The prototype contains, beside the shape ele-
ments, spatial properties describing the intrinsic orientation of an airplane. In
this example, the Orientation-slots de�ne the front and the top direction. When
an instance of a shape prototype is created, it inherits the spatial properties like
the intrinsic orientation in Fig. 10 or the �tting direction in Fig. 3.

5 Conclusion and future work

In this paper we presented an integrated approach to model shape prototypes on
di�erent levels of abstraction. The object recognizer working on these prototypes
is able to recognize and classify objects that are similar to a very general shape
prototype on the one hand and, on the other hand, to di�erentiate among more
special prototypes. The shape prototypes can be enriched with spatial attributes
that are inherited to the instances of the prototypes. Thus it is possible to ascribe
spatial properties like an intrinsic orientation to an object.

Fig. 11. An expressive prototype for a low-structured object like the wing is provided
on a low level of abstraction.

First experiences show that our recognition system based on shape proto-
types is up to two times faster than the frame-based recognizer provided with
the Virtual Constructor (cf. Section 2). More importantly, it can recognize a
diverse variety of di�erent instances of a category like the di�erent airplanes
shown in Fig. 7. So far, the recognition time depends much on the complexity of
the percept. We expect to get better results by preprocessing the percept with
perceptual-grouping methods (e.g., [1]).

Another aspect of future work is the integration of a cognitive process model
([7]) which allows us to take category activation into account. This means that
if, for example, some parts or aggregates are recognized as parts of an airplane,
then other (generic) parts in this context will be classi�ed more likely as airplane
parts, too.
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