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Introdu
tionThe determination of the fun
tion of proteins is amongthe most fundamental problems in mole
ular biology.In prin
iple, this task requires elaborate experimentalstudies for ea
h protein in question. The genome era
onfronts us with large numbers of protein sequen
esof unknown fun
tion. S
ientists now strive for a larges
ale understanding of protein fun
tion. In view of thenew sequen
e data produ
ed by the genome proje
ts, itis 
ru
ial to ask for fast and easy methods of fun
tionalanalysis. Roughly speaking, proteins with similar fun
-tion des
end from 
ommon an
estors. They have beenrandomly altered by mutation events; however, natu-ral sele
tion has extinguished those mutant mole
ulesthat do not preserve the protein's fun
tion. At thelevel of sequen
es, 
ommon fun
tion is often re
e
tedin terms of 
onserved regions of the sequen
es. Thestandard approa
h is to 
ompare unknown sequen
es toproteins with known fun
tion. Bioinformatitians have
ontributed to this proje
t in that they have developedlarge assortments of 
omputer based methods for ex-tra
ting information from mole
ular sequen
es via se-quen
e 
omparison, 
hara
terization, and 
lassi�
ation.Related WorkClassi�
ation of proteins on the basis of 
ommon 
on-servation patterns is a standard approa
h in 
omputa-tional biology. One 
olle
ts families of proteins withknown fun
tion and then, given an un
hara
terized
andidate protein sequen
e, the question is, whetherthis sequen
e �ts into one of the known families. Inthis setting, several methods have been developed, in-
luding templates (Taylor, 1986), pro�les (Gribskov,M
La
hlan, & Eisenberg, 1987; Luthy, Xenarios, &Bu
her, 1994), hidden Markov models (Krogh et al.,1994; Baldi et al., 1994; Eddy, Mit
hison, & Durbin,1995), Bayesian models 
al
ulating posterior distribu-tions on possible motifs in a family (Liu, Neuwald, &Lawren
e, 1995), and dis
riminative approa
hes like the
ombination of support ve
tor ma
hines and the Fisherkernel method (Jaakkola, Diekhans, & Haussler, 1999).The �rst four methods have a 
ommon rationale:First one extra
ts the information 
ommon to all se-quen
es of a family, and then one tests the unknown



... I H F V P R D N Y L K Y ...

... I H V V P R G G Y L K Y ...

... A G - C L T K G Y L K Y ...

... S G F C L T K - Y L K L ...

... S G F C L T K G Y L R Y ...

... A A Y L A E D N L L R Y ...

... A A Y - - E D - Y L K Y ...Figure 1: Part of a an (arti�
ial) multiple alignment ofa family 
onsisting of 7 sequen
es, whi
h subdivide into3 subfamilies. The bars on the left indi
ate the subfam-ilies, the dotted boxes highlight 
onservation patterns.sequen
e for existen
e of these family-spe
i�
 features.This requires a \summary" of the protein family whi
h
an be derived from a multiple alignment. The lastmethod in 
ontrast is a dis
riminative approa
h whi
hfo
uses on di�eren
es between family members and nonfamily members.The ProblemFigure 1 shows some 
olumns of a multiple alignmentthat exhibits a typi
al problem of the \summary" ap-proa
h. One 
an 
learly observe that the 7 sequen
essubdivide into 3 subfamilies, whi
h is indi
ated by theshaded bars on the left. A �rst approa
h for summa-rizing the information in the alignment is to pro
eed
olumn by 
olumn: In the �rst 
olumn, we observe ei-ther an `I', an `S' or an `A', in the se
ond 
olumn it is`H',`G' or `A', et
. If one wants to de
ide whether a 
an-didate sequen
e �ts into this family, one 
an align it tothe family and then look site by site whether the residueof the 
andidate sequen
e is identi
al or similar to oneof the residues in the family alignment at this position.This verti
al view on a multiple alignment is the basis ofmost sequen
e 
lassi�
ation methods. Pro�les 
onsistof 
olumn spe
i�
 s
ores, representing the residue dis-tribution in these 
olumns. Essentially the same is truefor the emission distributions of hidden Markov mod-els and the produ
t multinomial distributions of blo
kmotifs in the Bayesian alignment approa
h. However,there is more information 
ontained in the alignment:In 
olumn 4 we 
an frequently observe a `C', but ifthere is a `C' at this position, it is part of the 
onservedpattern `C L T K'. This information is obs
ured in a
olumn based summary of the alignment. A horizontalview on the alignment reveals this. The importan
e ofthis information be
omes obvious in Figure 2.The alignment in Figure 2 is the same as in Fig-ure 1. In addition, we have aligned a 
andidate sequen
eshown below the dashed line. Taking the verti
al pointof view, one would 
learly say that the 
andidate se-quen
e �ts very well into the family sin
e for almostall residues of the 
andidate sequen
e the same residue
an be found several times among the family sequen
es
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... S H Y C P E K N L I R A ...Figure 2: The alignment of Figure 1 and a 
andidatesequen
e aligned to it (below the dashed line). Residuesthat are identi
al in the family alignment and the 
an-didate sequen
e are highlighted.at the same site. However, none of the individual se-quen
es in the family is very similar to the 
andidate se-quen
e whi
h speaks against a membership in the fam-ily. The verti
al view indi
ates a good �t of the 
andi-date sequen
e to the family; however, this indi
ation isbased on a \wild hopping" through the alignment, asis shown by the highlighted residues in Figure 2. Thisproblem is aggravated if we 
onsider an alignment 
on-sisting of a large number of sequen
es from a divergentfamily. In su
h a 
ase one has many alternative residuesfor most sites and hen
e one has a very high probabilityof 
han
e hits, due to the \hopping phenomenon".Both pro�les and hidden Markov models are basedon s
oring a query sequen
e versus the 
olumns of analignment. Sin
e both approa
hes model 
olumns in-dependently from ea
h other, they do not keep tra
kwhi
h sequen
es in the alignment 
ontributed to a highs
ore for a 
ertain residue in a 
ertain 
olumn. Conse-quently, both approa
hes are subje
t to hopping, andhopping 
auses noise in sequen
e 
lassi�
ation.Our Approa
hClearly, we are talking about 
orrelations betweenalignment positions. Our approa
h, however, is notto model these 
orrelations statisti
ally, but to redu
ethe negative e�e
t of hopping by means of a new algo-rithm. We will des
ribe a dynami
 programming algo-rithm that lo
ally aligns the 
andidate sequen
e to onereferen
e sequen
e in the multiple alignment, and inaddition allows that the referen
e sequen
e may 
hangewithin the alignment. This enables us to make use ofthe many alternative residues for a 
ertain 
olumn inthe alignment. But in order to avoid \wild hopping",we penalize ea
h jump. In this way, we redu
e thetotal number of jumps and hen
e redu
e noise. Thejumping alignment method is algorithmi
ally relatedto a method used to dete
t 
himeri
 sequen
es (Ko-matsoulis & Waterman, 1997) and to another methodused to �nd alternative spli
ings (Gelfand, Mironov, &Pevzner, 1996).



Organization of the PaperIn the next se
tion we brie
y review the 
on
ept of dy-nami
 programming for 
al
ulating lo
al pairwise align-ments. The following se
tion 
ontains a detailed de-s
ription of the jumping alignment algorithm. In theResults se
tion, we derive the optimal jump 
ost pa-rameter. Based on this parameter, we 
ompare theperforman
e of our algorithm to the well establishedHMMER pa
kage of hidden Markov models. The Dis-
ussion addresses zero and in�nite jump 
osts as wellas the statisti
s of the jumping alignment s
ore.Lo
al AlignmentIt is well known that the 
on
ept of dynami
 pro-gramming is well suited for many sequen
e alignmentproblems. For example, the Smith-Waterman algo-rithm (Smith & Waterman, 1981) is one of the mostwidely used pro
edures for aligning pairs of mole
ularsequen
es.The algorithm presented in this paper is also basedon the dynami
 programming paradigm. In fa
t it 
anbe viewed as an extension of the Smith-Waterman al-gorithm to the 
ase where one wants to add a singlenew sequen
e to a set of already aligned sequen
es. Be-fore we des
ribe this algorithm, we brie
y review the
on
ept of dynami
 programming in the simpler 
ase oflo
al pairwise alignments.Here we are interested in �nding and aligning similarsegments in a pair of sequen
es. This requires a formalde�nition of sequen
e similarity, whi
h is usually doneby introdu
ing a s
ore matrix w that provides a s
orefor every pair of amino a
ids. In general, similar or iden-ti
al amino a
ids are assigned positive s
ores, whereasdissimilar amino a
ids obtain negative s
ores. The ex-pe
tation value of the s
ore must be negative in orderto ensure that the alignments are lo
al. In addition, oneneeds to s
ore the gap positions in an alignment. Forthe moment, we assume this is done by penalizing ea
hposition in a gap by the same 
onstant value, 
alledgap
ost .Given a lo
al alignment, one obtains an alignments
ore by summing up all similarity s
ores of positionswhere two amino a
ids are aligned to ea
h other, andthen subtra
ting all gap 
osts. The problem is to
onstru
t a lo
al alignment with an optimal similar-ity s
ore among all possible lo
al alignments of the twosequen
es.There is a simple dynami
 programming algorithmfor solving this optimization problem rigorously (Smith& Waterman, 1981). Assume we are given two se-quen
es S = s1; : : : ; sn and T = t1; : : : ; tm of lengthn and m, respe
tively. The algorithm runs on an(n + 1) � (m + 1) matrix D, 
alled the edit matrix.For 0 � i � n, 0 � j � m, 
ell D(i; j) holds the s
ore ofthe best lo
al alignment that ends with the positions siand tj . The leftmost 
olumn and the top row of D areinitialized by D(i; 0) = D(0; j) = 0. Figure 3 illustrates

?
i

jj-1

i-1Figure 3: The 
omputation of entry (i; j) of matrixD from its three \prede
essor" 
ells D(i � 1; j � 1),D(i� 1; j), and D(i; j � 1).how the remainder of D is 
omputed re
ursively byD(i; j) = max8><>: 0D(i� 1; j � 1) + w(si; tj)D(i� 1; j)� gap
ostD(i; j � 1)� gap
ost :The optimal lo
al alignment s
ore is the largest entryin the edit matrix, D(imax; jmax), say.This algorithm runs in time O(nm) and uses O(nm)spa
e to store the matrix D. The alignment itselfis obtained by tra
ing ba
k through the matrix fromD(imax; jmax) following the 
hoi
es that were made inthe maximization, until a 
ell with entry 0 is rea
hed.It is a standard te
hnique, however, to redu
e the mem-ory usage to O(n + m) by a method introdu
ed byHirs
hberg (1975), and extended to the 
ontext of lo-
al alignment by Huang, Hardison, & Miller (1990), atthe expense of essentially only doubling the 
omputa-tion time. If we are only interested in the s
ore of thebest lo
al alignment, however, it is mu
h easier to re-du
e spa
e. Assuming a row-wise 
omputation order, to
ompute entries in row i, say, we only need values fromrows i and i � 1. Hen
e, it suÆ
es to store only twoneighboring rows at any time of the algorithm whi
hredu
es spa
e requirements to O(m).We have des
ribed the algorithm in the 
ase of lineargap 
osts where the penalty for a gap is proportionalto the length of the gap. It is widely a
knowledged,however, that a long gap should be penalized less thantwo shorter gaps of the same length in total. Sin
e
omputationally 
heap, so-
alled aÆne gap 
osts are in
ommon use. Here, the initiation of a gap is penalizedby a high value gapinit , and ea
h additional 
hara
terof the gap is penalized by another, usually smaller valuegapext . Based on ideas �rst published by Gotoh (1982),Huang, Hardison, & Miller (1990) show how to in
or-porate aÆne gap 
osts in lo
al alignments without anoverhead in 
omputational 
omplexity.The Jumping Alignment AlgorithmWe now extend the dynami
 programming approa
h tojumping alignments where the s
enario is the follow-ing. We are given a multiple alignment, 
alled the seedalignment, 
onsisting of a few sequen
es whi
h repre-sent a protein family, and a database of other sequen
es.The question is, whi
h of the database sequen
es, 
alled
andidate sequen
es, �t into this family. Our method



to test the �t of a 
andidate sequen
e to a seed align-ment is to 
ompute their optimal lo
al jumping align-ment s
ore, where, in addition to the standard lo
alalignment s
ore, hopping from one sequen
e to anothersequen
e in the alignment is penalized.Formally, the jumping alignment problem is de-s
ribed as follows. Let S = s1; : : : ; sn denote the 
andi-date sequen
e and let A be the seed alignment with Krows and m 
olumns, A = (Ak;j)k�K;j�m. A jumpingalignment of S and A is a lo
al alignment of S and the
olumns of A with an additional annotation that tellsfor ea
h 
olumn of the jumping alignment, whi
h ofthe rows of the seed alignment the 
andidate sequen
eis aligned to. The jumping alignment 
ost of su
h analignment is the standard alignment 
ost of the 
an-didate sequen
e and the sele
ted alignment sequen
e,as des
ribed above, minus a penalty jump
ost for ea
hjump, i.e., for ea
h position where the row-annotationve
tor 
hanges its value. The problem we want to solveis to �nd among all jumping alignments of S and A analignment that maximizes the jumping alignment s
ore.An algorithm to solve this problem is des
ribed next.In order to simplify the exposition, we des
ribe thealgorithm stepwise, starting with a simple variant, andthen adding more advan
ed features whi
h improve itsperforman
e. We start with linear gap 
osts. The s
or-ing s
heme thus 
onsists of the s
ore matrix (w), thepenalty for a gap position (gap
ost), and the penaltyfor jumping from one referen
e sequen
e to another(jump
ost).Basi
 AlgorithmWe solve the optimization problem by an extension ofthe Smith-Waterman algorithm. Instead of the oneedit matrix D(i; j), we now employ K edit matri
esD1(i; j); : : : ; DK(i; j), one for ea
h sequen
e in the seedalignment. For 1 � k � K, Dk(i; j) holds the maximals
ore of all jumping alignments whi
h end with posi-tions si and Ak;j , see Figure 4. For 
al
ulating Dk(i; j)one needs to know the value of 3K prede
essors 
ells: 3prede
essor 
ells in Dk as in the 
ase of pairwise align-ment, and 3 additional prede
essor 
ells in ea
h of theK � 1 other edit matri
es Dk0 , k0 6= k. The maximalentry in the set of all edit matri
es gives the optimaljumping alignment s
ore for the 
andidate sequen
e andthe seed. Obviously, this algorithm runs in O(nmK2)time and uses O(nmK) spa
e.Speedup of the Basi
 AlgorithmThe time 
omplexity 
an be improved. Sin
e a jumpfrom one sequen
e to another sequen
e has the same
ost for all alignment sequen
es, we do not have to
ompute the best jump individually for ea
h alignmentsequen
e. Instead, we pre-
ompute the optimal valuesfor the three prede
essor 
ells diagonal (d), verti
al (v),and horizontal (h) over all alignment sequen
es, whi
h
an be done in O(K) time. To be more pre
ise, assumethe 
omputation of 
ell Dk(i; j) for all values of k. Let

?

Figure 4: The edit matri
es used to 
ompute the bestjumping alignment.kd, kv , kh be the sequen
es with the best s
ores in thethree prede
essor 
ells of the 
urrent 
ell:kd = argmaxk02f1;:::;Kg fDk0(i� 1; j � 1)g ;kv = argmaxk02f1;:::;Kg fDk0(i� 1; j)g ;kh = argmaxk02f1;:::;Kg fDk0(i; j � 1)g :Then, when 
omputing Dk(i; j), we need not maximizeover all other sequen
es, but only 
onsider sequen
es k,kd, kv , and kh. This redu
es the time 
omplexity toO(nmK).AÆne Gap CostsAÆne gap 
osts pose the next problem. The algorithmdes
ribed by Huang, Hardison, & Miller (1990) 
anbe used as a guideline for 
al
ulating optimal jumpingalignments with aÆne gap penalties.However, one has to be 
areful how exa
tly to s
oreaÆne gaps in the setting of jumping alignments. Onehas to distinguish between gaps that are introdu
ed bythe jumping alignment algorithm and gaps that alreadyexist in the seed alignment. And in parti
ular one hasto answer the question how to s
ore gaps in the 
an-didate sequen
e that run parallel to gaps in the seedalignment. Table 1 summarizes the di�erent types ofgaps in the jumping alignment setting, and how theyare s
ored in our algorithm. The full gap penalty onlyapplies if the gap is inserted into the seed alignment (1)or if it is inserted into the 
andidate sequen
e and doesnot run parallel to gaps in the seed alignment (2). A gapin the 
andidate sequen
e that runs parallel to a gap inthe seed alignment shows that the 
andidate sequen
eis \similar" to at least one of the seed sequen
es andis thus not penalized (3). Next, one needs to 
onsiderthe rare 
ase where letters in the 
andidate sequen
erun parallel to gap 
hara
ters in the seed alignment(4). These gaps are penalized only by the gap exten-sion penalty to a

ount for the fa
t that there are othersequen
es in the alignment that do 
ontain 
hara
ters



(1) (2) (3) (4)
andidate ***** *---* *---* *****seed *---* ***** *...* *...*gap penalty gapinit + 2 � gapext gapinit + 2 � gapext 0 3 � gapextTable 1: AÆne gaps in jumping alignment. Asterisks denote amino a
ids, dots denote gaps in the seed alignment,dashes denote gaps that are introdu
ed by the jumping alignment algorithm.in this region. Finally, there is the possibility for a jumpfrom a gap in one alignment sequen
e into a gap in an-other alignment sequen
e, as is shown in Figure 5. Inthis 
ase we apply the jump 
ost, but the gap is treatedlike a single gap, 
onsequently the gap initiation penaltyis imposed only on
e.In order to in
lude aÆne gap 
osts, similar to Huang,Hardison, & Miller (1990) we use auxiliary matri
es Vand H that hold the s
ore of the best alignments endingwith a gap in either sequen
e: Vk(i; j) 
ontains the max-imal s
ore when si is aligned with a gap, and Hk(i; j)
ontains the maximal s
ore when Ak;j is aligned with agap. We pre
ompute the two sequen
es with the bestverti
al and horizontal prede
essor in the matri
es Vand H , respe
tively:kV = argmaxk02f1;:::;Kg fVk0 (i� 1; j)g ;kH = argmaxk02f1;:::;Kg fHk0 (i; j � 1)g :Then the following re
urren
es 
ompute the optimal lo-
al jumping alignment 
ost with aÆne gap 
osts as de-�ned above:Vk(i; j) = max8><>: Dk(i� 1; j)� gapinitVk(i� 1; j)� gapextDkv (i� 1; j)� gapinit � jump
ostVkV (i� 1; j)� gapext � jump
ostHk(i; j) = max8><>: Dk(i; j � 1)� gapinitHk(i; j � 1)�Gk(j)Dkh(i; j � 1)� gapinit � jump
ostHkH (i; j � 1)�Gk(j)� jump
ostDk(i; j) = max8>>>>>>>>>><>>>>>>>>>>:
0Dk(i� 1; j � 1) + w(si; Ak;j)Dkd(i� 1; j � 1) +w(si; Ak;j)�jump
ostVk(i; j)Hk(i; j)Dk(i; j � i)Dkh(i; j � 1)�jump
ost) if Ak;j = gap
harwhereGk(j) = � 0 if Ak;j = gap
hargapext otherwise:Finally, it is straight forward to apply the spa
e sav-ing te
hnique by Huang, Hardison, & Miller (1990) toour jumping alignment algorithm. This redu
es thespa
e 
omplexity to O((n+m)K), while the time 
om-plexity is not in
reased by the introdu
tion of aÆne gap

seed alignment 8<: ******************************.........*********************..........******************************
andiate sequen
e *****---------------*****Figure 5: A jump inside a gap. Asterisks denoteamino a
ids, dots denote existing gaps in the alignment,dashes denote gaps that are introdu
ed by the jumpingalignment pro
edure.
osts nor by the redu
tion of the spa
e 
omplexity. Itis O(nmK).ImplementationWe have implemented the above algorithm in
ludingaÆne gap 
osts in a program 
alled JALI (short forJumping ALIgnments). Given a seed alignment anda 
andidate sequen
e, the program provides the opti-mal jumping alignment s
ore as well as one alignmentobtaining this s
ore. A se
ond program 
alled JSEARCHis available for using the jumping alignment algorithmin a database sear
h 
ontext. The programs are writtenin standard C and have been 
ompiled on several UNIXplatforms. In order to obtain the programs and for fur-ther information, see http://www.dkfz-heidelberg.de/tbi/servi
es/jali/jali.html.ResultsThe jumping alignment method is designed for the pur-pose of sear
hing mole
ular databases for remote ho-mologues of a given protein family. In general, proteinsuperfamilies subdivide into families whi
h are less di-vergent than the entire superfamily. By a superfamilywe denote a maximal set of homologous sequen
es. Bya subfamiliy we denote a subset of a superfamily withthe property that, if one knows one of its members, one
an easily �nd all other subfamily members by standarddatabase sear
h methods su
h as BLAST (Alts
hul etal., 1990) or FASTA (Pearson, 1990). The 
hallenge isto dete
t new subfamilies of a given superfamily.Choi
e of Evaluation DataFor evaluation purposes we need a data set 
onsist-ing of superfamilies with annotated subfamily stru
-ture. However, membership to a superfamily shouldnot only be based on sequen
e similarity. Su
h a depen-den
e of annotation and methods 
reates a \
hi
ken and



egg" problem (Brenner, Chothia, & Hubbard, 1998):Assume, we used a test set where superfamily mem-bership is assessed on the basis of sequen
e similaritythat was reported as being signi�
ant by some sear
hmethod. Clearly, any evaluation pro
edure based onthis data would test for the 
apability of our methodto reprodu
e the method that was used for annotation.The only way to 
ir
umvent this problem is to use adatabase of known homologies that is not based on se-quen
e 
omparison only.The SCOP database (Murzin et al., 1995; Hubbardet al., 1999) is su
h a database. It has been usedseveral times for the 
omparison of database sear
hmethods (Brenner, Chothia, & Hubbard, 1998; Parket al., 1997; Jaakkola, Diekhans, & Haussler, 1999).The SCOP database 
lassi�es protein domains a

ord-ing to the 
ategories 
lass, fold, superfamily, and sub-family1. A SCOP superfamily 
omprises sequen
es thatmight have low sequen
e similarity, but whose stru
-ture and fun
tion suggest a 
ommon evolutionary ori-gin. Folds and 
lasses are more abstra
t and 
ontain se-quen
es that have stru
tural similarities but are not re-lated. SCOP superfamilies are subdivided into subfam-ilies whi
h are less divergent with respe
t to sequen
e,stru
ture, and fun
tion. Note that the SCOP 
lassi�
a-tion into superfamily and subfamily in
ludes stru
turaland fun
tional knowledge. This is an important featureto 
ir
umvent the \
hi
ken and egg" problemmentionedabove. On the other hand, while being based on di�er-ent 
on
epts, the SCOP data set meets our de�nition ofthe superfamily-subfamily relation. SCOP superfami-lies are divergent sets of homologous sequen
es, and aSCOP subfamily 
onsists of sequen
es with 
lose evolu-tionary relationships; in general 
lose enough su
h thatif one has dete
ted one member, one 
an easily �ndthe rest by using this sequen
e as query in a standarddatabase sear
h.The SCOP database of release 37 
ontains 11,822 pro-tein domains. This database is 
alled pdb100d. Fur-thermore, there is a subset of 2,670 sequen
es that donot share more than 95% sequen
e similarity 
alledpdb95d, one of 2,466 sequen
es that do not share morethan 90% sequen
e similarity (pdb90d), and �nallypdb40d, 
onsisting of 1,434 sequen
es.Evaluation SettingFor evaluating our method we used a setting �rst de-s
ribed by Jaakkola, Diekhans, & Haussler (1999). Inorder to emulate the dis
overy of unknown subfamilies,we split o� one subfamily from a SCOP superfamily,thus dividing this SCOP superfamily into two parts,the subfamily whi
h we 
all the ex
luded subfamily andits 
omplement whi
h we 
all the seed. We used se-quen
es from the seed to 
onstru
t a seed alignment,1In the original SCOP notation, what we 
all a subfam-ily is 
alled a family. To emphasize the di�eren
e to thesuperfamily 
ategory, however, we de
ided to use the termsubfamily.

and then we sear
hed a database for members of theex
luded subfamily.This setup mat
hes the problem of dis
overing newsubfamilies of a known superfamily. Ex
luding sub-families is essential to obtain a fair assessment of themethod. Sin
e we are looking for unknown subfamilies,in
luding all available data in the training set wouldnot mat
h the real problem. Note that this setup givesus relatively hard problems of homology dete
tion. Alarge number of false positives is a 
ommon observa-tion. Hen
e we need a sensible measure to evaluate theperforman
e of the sear
h method. Counts of false pos-itives (Park et al. (1998); Jaakkola, Diekhans, & Haus-sler (1999)) are well suited for this purpose. We used aslight modi�
ation of this measure whi
h is motivatedby the possibility of iterated sear
hes.More pre
isely, we looked for the ex
luded sequen
ewith the highest s
ore and 
ounted the number of non-superfamily members that ranked above this sequen
e.Let 
 be the maximal number of false positives that oneis willing to a

ept before one would 
onsider the sear
hto have failed. If the number of false positives fp is be-low 
, then the FP-
ount is this number, otherwise itis 
: FP-
ount = min(fp; 
). We speak of an FP-
ountwith 
uto� 
. Instead of the FP-
ount whi
h only de-pends on the highest s
ore of an ex
luded sequen
e,Jaakkola, Diekhans, & Haussler (1999) used the me-dian and the maximum of the false positive rates of allex
luded sequen
es. We think that our modi�
ation isjusti�ed sin
e in view of iterative sear
h methods, de-te
ting a single member of the ex
luded subfamily isequivalent to dete
ting the entire subfamily.We 
all a SCOP superfamily divided into an ex
ludedsubfamily and a seed a test set. In total we used 80 testsets, in
luding test sets from the same superfamily butwith di�erent ex
luded subfamilies. These 80 test setswere divided into two parts of 40 test sets ea
h. The�rst part was used to 
hoose appropriate parameters forthe jumping alignment algorithm. We 
all it the 
ali-bration data. The se
ond part was used to 
ompare theperforman
e of our method with the HMMER imple-mentation of the hidden Markov model approa
h. We
all these test sets the evaluation data.From ea
h seed we 
olle
ted all sequen
es that 
analso be found in the pdb90d database. From thesesequen
es we automati
ally generated multiple align-ments using the CLUSTALW program (Thompson,Higgins, & Gibson, 1994) with default parameters.From these aligned sequen
es we then fet
hed all se-quen
es that are 
ontained in the pdb40d database.This yielded a multiple alignment 
onsisting of a setof divergent members of the seed. Note that there is nosequen
e of the ex
luded subfamily in this alignmentand there was no su
h sequen
e in the initial largeralignment.We used these 40 alignments as seed alignments forthe jumping alignment algorithm and sear
hed themagainst the pdb95d database. In all experiments shown,we used the VT160 s
ore matrix (M�uller & Vingron, to
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Figure 6: Plot of the jump 
osts versus the sum of FP-
ounts of all 40 test sets. For ea
h of the individual 40FP-
ounts a 
uto� of 
 = 25 was applied.appear) with gap initiation 
ost 8 and gap extension
ost 4.Calibration of the Jump CostIn the des
ribed setting we tested several values forthe jump 
ost parameter. For several values betweenjump
ost = 0 and jump
ost = 50, and for jump
ost =1, we added the FP-
ounts of all test sets from the
alibration data. Figure 6 shows the jump 
osts plot-ted versus the sum of the FP-
ounts of all 40 test sets.For ea
h of the individual FP-
ounts we used a 
uto�of 
 = 25.One 
an 
learly observe the 
onvex shape of the 
urvewhi
h has a minimum for a jump 
ost of 22. The twoextreme 
ases, zero jump 
osts (purely verti
al point ofview; data not shown) and in�nite jump 
osts (purelyhorizontal point of view) perform worse than intermedi-ate jump 
osts. This indi
ates that neither the verti
alnor the horizontal point of view is optimal, but a wellbalan
ed 
ombination of both. We have also tested var-ious other 
ombinations of the gap 
osts and di�erents
ore matri
es (data not shown). The e�e
t of theseparameters is smaller than that of the jump 
ost. Our
hoi
e, however, is optimal for the 40 test sets of the
alibration data.Comparison to HMMsThe dashed horizontal line in Figure 6 indi
ates theperforman
e of the hidden Markov model implemen-tation HMMER on the same data. A general advan-tage of hidden Markov models is that the 
omputationtime of a database sear
h is independent of the num-ber of sequen
es used to train the model. Therefore weused the entire pdb90d alignments to train the hiddenMarkov models, whereas we only used the mu
h smallerpdb40d alignments as seeds for the jumping alignments.
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Figure 7: Comparison of the overall performan
e of thejumping alignment algorithm and the HMMER pa
kageof hidden Markov models. The 
uto� 
 is plotted versusthe total number of test sets where not more than 
 falsepositives were found with a higher s
ore than the �rstsequen
e from the ex
luded subfamily. The dotted lineindi
ates the total number of test sets in the evaluationdata.Hen
e, the hidden Markov models had mu
h more se-quen
es at their disposal than the jumping alignments.However, this seems to be fair sin
e the sequen
es areavailable. It is the time 
omplexity of the jumpingalignment algorithm that makes it impra
ti
al to ex-plore this information. The HMMs were 
onstru
tedby the program hmmbuild from the HMMER-pa
kage(version 2.1.1) (http:://hmmer.wustl.edu). We builtboth semi-global and lo
al HMMs. Sin
e the lo
al ver-sions performed 
onsiderably worse (data not shown)and we again 
onsider it to be fair to use the HMMs inthe best possible way, we restri
ted our 
omparison tothe semi-global versions. The sear
h was a

omplishedby hmmsear
h from the same suite of programs.Performan
e on Evaluation DataFor an optimal 
hoi
e of jump 
osts, the jumping align-ment algorithm seems to be superior. However, we have
hosen the parameters su
h that they perform well onthese 40 test sets whi
h leads to a biased view on the
omparison of jumping alignments and hidden Markovmodels. Therefore, we used the evaluation data for
omparing these methods. We sear
hed the pdb95ddatabase for the ex
luded families of the 40 test sets,using both HMMER and our algorithm. Figure 7 sum-marizes the results.The horizontal axis shows the 
uto� 
. On the verti-
al axis the total number of test sets is plotted wherewe found not more than 
 false positives before the �rstex
luded sequen
e is found. The dotted line indi
atesthe total number of test sets in the evaluation setting.First, note that 12 of the 40 test sets show more than



250 false positives for both methods. This 
learly in-di
ates the general limitations of sequen
e based ho-mology dete
tion. For small values of 
, that is, if oneis very relu
tant to tolerate any false positives, thereis no signi�
ant di�eren
e in the performan
e of bothmethods. However, if one in
reases the 
uto� to val-ues higher than 5, the jumping alignment pro
edure�nds more sequen
es from ex
luded subfamilies thanthe HMMs. For very high 
uto� values this di�eren
ein performan
e shrinks again. Obviously, for diÆ
ultproblems one has to deal with a 
ertain amount of falsepositives, and it is in this setup of hard problems, wherethe jumping alignments outperform the hidden Markovmodels. These results need to be interpreted with 
are.We have observed several test sets where the hiddenMarkov models provide better results than the jumpingalignments and others where the opposite holds. Thereare even a few test sets where pairwise 
omparison (in-�nite jump 
ost) seems to be the optimal method. Inthe overall evaluation of all 40 test sets, Figure 7 showsthat jumping alignments 
ompare favorably to hiddenMarkov models. Dis
ussionWe have developed a novel dynami
 programming algo-rithm for dete
ting remote subfamilies of a given pro-tein superfamily. The general idea is to exploit bothhorizontal and verti
al information of a multiple align-ment in a well balan
ed manner. We 
all this algorithmthe jumping alignment algorithm. While the work onjumping alignments is in a very early stage, our perfor-man
e evaluation shows that it 
an 
ompete with su
hmature, elaborated and established methods as hiddenMarkov models.The idea of jumping alignments suggests that remotehomologues frequently are 
himera of the other mem-bers of a protein family. Only few of the data that wehave examined, however, seems to support this 
onje
-ture. Therefore, we would like to stress that this viewis not our main emphasis. Our arguments are moremethodi
al. They are based on the hopping e�e
t andhow it 
auses noise in database sear
hes. We use thejumping alignment s
ore as a measure of �t to a proteinfamily. Of 
ourse we 
ould tra
eba
k the jumping align-ment path, and our program a
tually allows to do so.That would provide us with a new multiple alignmentwith the 
andidate sequen
e as an additional sequen
ealigned to the seed alignment. However, this is only ofinterest if the 
andidate sequen
e belongs to the fam-ily. Our intention, in 
ontrast, is to de
ide whether itbelongs to the family.Jumping alignments balan
e the horizontal and theverti
al information of a multiple sequen
e alignment.However, this is done lo
ally. When enlarging the align-ment, the jumping alignment algorithm takes both ahorizontal look at the next residues in the referen
e se-quen
e as well as a verti
al look on alternative residuesin the 
urrent position in other sequen
es. The method


an not 
ope with long range 
orrelations of residuesthat are in spatial vi
inity in the folded protein.It is instru
tive to have a look at the two extreme
ases where one 
hooses either zero or in�nite jump
osts. Clearly, zero jump 
osts refer to a purely verti
alpoint of view as implemented in pro�le sear
h meth-ods, and in�nite jump 
osts refer to a purely horizontalpoint of view, equivalent to a standard database sear
hwhi
h returns the database sequen
e most 
losely re-lated to the 
andidate sequen
e. A 
ombination is onlygiven for intermediate jump 
osts. In our evaluations,zero jump 
osts performed signi�
antly bad (data notshown). There are two explanations for the failure ofthe algorithm for this 
hoi
e of parameters. First, themethod is a very 
rude version of a pro�le sear
h. Theestablished pro�le sear
h methods are mu
h more elab-orate using sequen
e weighting and Bayesian estima-tors for the amino a
id distribution at ea
h position.Furthermore, the pro�le approa
h is mostly restri
tedto 
onserved blo
ks of a protein family. In 
ontrastto zero jump 
osts, in�nite jump 
osts perform surpris-ingly well. In this 
ase the jumping alignment algorithmis redu
ed to a very simple method, whi
h is only basedon pairwise 
omparisons. A similar approa
h has beendes
ribed by Grundy (1998), and also there the pairwise
omparisons performed quite well.The jumping alignment s
ore is a lo
al alignments
ore. As in the 
ase of pairwise lo
al alignments, wefa
e the problem that when sear
hing a database, longdatabase entries have a higher 
han
e of obtaining ahigh s
ore than short ones, even if they are not relatedat all, see for example Karlin & Alts
hul (1990); Water-man & Vingron (1994) or Spang & Vingron (1998). Inaddition we expe
t that phase transition laws exist forthe jump 
osts as well as for the gap 
osts, 
ompare Ar-ratia & Waterman (1994). However, the setting seemsto be mu
h more 
ompli
ated than in the 
ase of pair-wise sequen
e alignments. We think that simulationsfor every individual seed alignment will be appropriateto derive the parameters for length 
orre
tion, the dis-tribution of s
ores, and the phase transition lines. Inaddition to the length normalization, this kind of statis-ti
al analysis would yield pra
ti
al p-values whi
h indi-
ate the statisti
al signi�
an
e of a jumping alignments
ore. However, this work remains to be done.A
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