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IntrodutionThe determination of the funtion of proteins is amongthe most fundamental problems in moleular biology.In priniple, this task requires elaborate experimentalstudies for eah protein in question. The genome eraonfronts us with large numbers of protein sequenesof unknown funtion. Sientists now strive for a largesale understanding of protein funtion. In view of thenew sequene data produed by the genome projets, itis ruial to ask for fast and easy methods of funtionalanalysis. Roughly speaking, proteins with similar fun-tion desend from ommon anestors. They have beenrandomly altered by mutation events; however, natu-ral seletion has extinguished those mutant moleulesthat do not preserve the protein's funtion. At thelevel of sequenes, ommon funtion is often reetedin terms of onserved regions of the sequenes. Thestandard approah is to ompare unknown sequenes toproteins with known funtion. Bioinformatitians haveontributed to this projet in that they have developedlarge assortments of omputer based methods for ex-trating information from moleular sequenes via se-quene omparison, haraterization, and lassi�ation.Related WorkClassi�ation of proteins on the basis of ommon on-servation patterns is a standard approah in omputa-tional biology. One ollets families of proteins withknown funtion and then, given an unharaterizedandidate protein sequene, the question is, whetherthis sequene �ts into one of the known families. Inthis setting, several methods have been developed, in-luding templates (Taylor, 1986), pro�les (Gribskov,MLahlan, & Eisenberg, 1987; Luthy, Xenarios, &Buher, 1994), hidden Markov models (Krogh et al.,1994; Baldi et al., 1994; Eddy, Mithison, & Durbin,1995), Bayesian models alulating posterior distribu-tions on possible motifs in a family (Liu, Neuwald, &Lawrene, 1995), and disriminative approahes like theombination of support vetor mahines and the Fisherkernel method (Jaakkola, Diekhans, & Haussler, 1999).The �rst four methods have a ommon rationale:First one extrats the information ommon to all se-quenes of a family, and then one tests the unknown
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... A A Y - - E D - Y L K Y ...Figure 1: Part of a an (arti�ial) multiple alignment ofa family onsisting of 7 sequenes, whih subdivide into3 subfamilies. The bars on the left indiate the subfam-ilies, the dotted boxes highlight onservation patterns.sequene for existene of these family-spei� features.This requires a \summary" of the protein family whihan be derived from a multiple alignment. The lastmethod in ontrast is a disriminative approah whihfouses on di�erenes between family members and nonfamily members.The ProblemFigure 1 shows some olumns of a multiple alignmentthat exhibits a typial problem of the \summary" ap-proah. One an learly observe that the 7 sequenessubdivide into 3 subfamilies, whih is indiated by theshaded bars on the left. A �rst approah for summa-rizing the information in the alignment is to proeedolumn by olumn: In the �rst olumn, we observe ei-ther an `I', an `S' or an `A', in the seond olumn it is`H',`G' or `A', et. If one wants to deide whether a an-didate sequene �ts into this family, one an align it tothe family and then look site by site whether the residueof the andidate sequene is idential or similar to oneof the residues in the family alignment at this position.This vertial view on a multiple alignment is the basis ofmost sequene lassi�ation methods. Pro�les onsistof olumn spei� sores, representing the residue dis-tribution in these olumns. Essentially the same is truefor the emission distributions of hidden Markov mod-els and the produt multinomial distributions of blokmotifs in the Bayesian alignment approah. However,there is more information ontained in the alignment:In olumn 4 we an frequently observe a `C', but ifthere is a `C' at this position, it is part of the onservedpattern `C L T K'. This information is obsured in aolumn based summary of the alignment. A horizontalview on the alignment reveals this. The importane ofthis information beomes obvious in Figure 2.The alignment in Figure 2 is the same as in Fig-ure 1. In addition, we have aligned a andidate sequeneshown below the dashed line. Taking the vertial pointof view, one would learly say that the andidate se-quene �ts very well into the family sine for almostall residues of the andidate sequene the same residuean be found several times among the family sequenes
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... S H Y C P E K N L I R A ...Figure 2: The alignment of Figure 1 and a andidatesequene aligned to it (below the dashed line). Residuesthat are idential in the family alignment and the an-didate sequene are highlighted.at the same site. However, none of the individual se-quenes in the family is very similar to the andidate se-quene whih speaks against a membership in the fam-ily. The vertial view indiates a good �t of the andi-date sequene to the family; however, this indiation isbased on a \wild hopping" through the alignment, asis shown by the highlighted residues in Figure 2. Thisproblem is aggravated if we onsider an alignment on-sisting of a large number of sequenes from a divergentfamily. In suh a ase one has many alternative residuesfor most sites and hene one has a very high probabilityof hane hits, due to the \hopping phenomenon".Both pro�les and hidden Markov models are basedon soring a query sequene versus the olumns of analignment. Sine both approahes model olumns in-dependently from eah other, they do not keep trakwhih sequenes in the alignment ontributed to a highsore for a ertain residue in a ertain olumn. Conse-quently, both approahes are subjet to hopping, andhopping auses noise in sequene lassi�ation.Our ApproahClearly, we are talking about orrelations betweenalignment positions. Our approah, however, is notto model these orrelations statistially, but to reduethe negative e�et of hopping by means of a new algo-rithm. We will desribe a dynami programming algo-rithm that loally aligns the andidate sequene to onereferene sequene in the multiple alignment, and inaddition allows that the referene sequene may hangewithin the alignment. This enables us to make use ofthe many alternative residues for a ertain olumn inthe alignment. But in order to avoid \wild hopping",we penalize eah jump. In this way, we redue thetotal number of jumps and hene redue noise. Thejumping alignment method is algorithmially relatedto a method used to detet himeri sequenes (Ko-matsoulis & Waterman, 1997) and to another methodused to �nd alternative spliings (Gelfand, Mironov, &Pevzner, 1996).



Organization of the PaperIn the next setion we briey review the onept of dy-nami programming for alulating loal pairwise align-ments. The following setion ontains a detailed de-sription of the jumping alignment algorithm. In theResults setion, we derive the optimal jump ost pa-rameter. Based on this parameter, we ompare theperformane of our algorithm to the well establishedHMMER pakage of hidden Markov models. The Dis-ussion addresses zero and in�nite jump osts as wellas the statistis of the jumping alignment sore.Loal AlignmentIt is well known that the onept of dynami pro-gramming is well suited for many sequene alignmentproblems. For example, the Smith-Waterman algo-rithm (Smith & Waterman, 1981) is one of the mostwidely used proedures for aligning pairs of moleularsequenes.The algorithm presented in this paper is also basedon the dynami programming paradigm. In fat it anbe viewed as an extension of the Smith-Waterman al-gorithm to the ase where one wants to add a singlenew sequene to a set of already aligned sequenes. Be-fore we desribe this algorithm, we briey review theonept of dynami programming in the simpler ase ofloal pairwise alignments.Here we are interested in �nding and aligning similarsegments in a pair of sequenes. This requires a formalde�nition of sequene similarity, whih is usually doneby introduing a sore matrix w that provides a sorefor every pair of amino aids. In general, similar or iden-tial amino aids are assigned positive sores, whereasdissimilar amino aids obtain negative sores. The ex-petation value of the sore must be negative in orderto ensure that the alignments are loal. In addition, oneneeds to sore the gap positions in an alignment. Forthe moment, we assume this is done by penalizing eahposition in a gap by the same onstant value, alledgapost .Given a loal alignment, one obtains an alignmentsore by summing up all similarity sores of positionswhere two amino aids are aligned to eah other, andthen subtrating all gap osts. The problem is toonstrut a loal alignment with an optimal similar-ity sore among all possible loal alignments of the twosequenes.There is a simple dynami programming algorithmfor solving this optimization problem rigorously (Smith& Waterman, 1981). Assume we are given two se-quenes S = s1; : : : ; sn and T = t1; : : : ; tm of lengthn and m, respetively. The algorithm runs on an(n + 1) � (m + 1) matrix D, alled the edit matrix.For 0 � i � n, 0 � j � m, ell D(i; j) holds the sore ofthe best loal alignment that ends with the positions siand tj . The leftmost olumn and the top row of D areinitialized by D(i; 0) = D(0; j) = 0. Figure 3 illustrates
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i-1Figure 3: The omputation of entry (i; j) of matrixD from its three \predeessor" ells D(i � 1; j � 1),D(i� 1; j), and D(i; j � 1).how the remainder of D is omputed reursively byD(i; j) = max8><>: 0D(i� 1; j � 1) + w(si; tj)D(i� 1; j)� gapostD(i; j � 1)� gapost :The optimal loal alignment sore is the largest entryin the edit matrix, D(imax; jmax), say.This algorithm runs in time O(nm) and uses O(nm)spae to store the matrix D. The alignment itselfis obtained by traing bak through the matrix fromD(imax; jmax) following the hoies that were made inthe maximization, until a ell with entry 0 is reahed.It is a standard tehnique, however, to redue the mem-ory usage to O(n + m) by a method introdued byHirshberg (1975), and extended to the ontext of lo-al alignment by Huang, Hardison, & Miller (1990), atthe expense of essentially only doubling the omputa-tion time. If we are only interested in the sore of thebest loal alignment, however, it is muh easier to re-due spae. Assuming a row-wise omputation order, toompute entries in row i, say, we only need values fromrows i and i � 1. Hene, it suÆes to store only twoneighboring rows at any time of the algorithm whihredues spae requirements to O(m).We have desribed the algorithm in the ase of lineargap osts where the penalty for a gap is proportionalto the length of the gap. It is widely aknowledged,however, that a long gap should be penalized less thantwo shorter gaps of the same length in total. Sineomputationally heap, so-alled aÆne gap osts are inommon use. Here, the initiation of a gap is penalizedby a high value gapinit , and eah additional haraterof the gap is penalized by another, usually smaller valuegapext . Based on ideas �rst published by Gotoh (1982),Huang, Hardison, & Miller (1990) show how to inor-porate aÆne gap osts in loal alignments without anoverhead in omputational omplexity.The Jumping Alignment AlgorithmWe now extend the dynami programming approah tojumping alignments where the senario is the follow-ing. We are given a multiple alignment, alled the seedalignment, onsisting of a few sequenes whih repre-sent a protein family, and a database of other sequenes.The question is, whih of the database sequenes, alledandidate sequenes, �t into this family. Our method



to test the �t of a andidate sequene to a seed align-ment is to ompute their optimal loal jumping align-ment sore, where, in addition to the standard loalalignment sore, hopping from one sequene to anothersequene in the alignment is penalized.Formally, the jumping alignment problem is de-sribed as follows. Let S = s1; : : : ; sn denote the andi-date sequene and let A be the seed alignment with Krows and m olumns, A = (Ak;j)k�K;j�m. A jumpingalignment of S and A is a loal alignment of S and theolumns of A with an additional annotation that tellsfor eah olumn of the jumping alignment, whih ofthe rows of the seed alignment the andidate sequeneis aligned to. The jumping alignment ost of suh analignment is the standard alignment ost of the an-didate sequene and the seleted alignment sequene,as desribed above, minus a penalty jumpost for eahjump, i.e., for eah position where the row-annotationvetor hanges its value. The problem we want to solveis to �nd among all jumping alignments of S and A analignment that maximizes the jumping alignment sore.An algorithm to solve this problem is desribed next.In order to simplify the exposition, we desribe thealgorithm stepwise, starting with a simple variant, andthen adding more advaned features whih improve itsperformane. We start with linear gap osts. The sor-ing sheme thus onsists of the sore matrix (w), thepenalty for a gap position (gapost), and the penaltyfor jumping from one referene sequene to another(jumpost).Basi AlgorithmWe solve the optimization problem by an extension ofthe Smith-Waterman algorithm. Instead of the oneedit matrix D(i; j), we now employ K edit matriesD1(i; j); : : : ; DK(i; j), one for eah sequene in the seedalignment. For 1 � k � K, Dk(i; j) holds the maximalsore of all jumping alignments whih end with posi-tions si and Ak;j , see Figure 4. For alulating Dk(i; j)one needs to know the value of 3K predeessors ells: 3predeessor ells in Dk as in the ase of pairwise align-ment, and 3 additional predeessor ells in eah of theK � 1 other edit matries Dk0 , k0 6= k. The maximalentry in the set of all edit matries gives the optimaljumping alignment sore for the andidate sequene andthe seed. Obviously, this algorithm runs in O(nmK2)time and uses O(nmK) spae.Speedup of the Basi AlgorithmThe time omplexity an be improved. Sine a jumpfrom one sequene to another sequene has the sameost for all alignment sequenes, we do not have toompute the best jump individually for eah alignmentsequene. Instead, we pre-ompute the optimal valuesfor the three predeessor ells diagonal (d), vertial (v),and horizontal (h) over all alignment sequenes, whihan be done in O(K) time. To be more preise, assumethe omputation of ell Dk(i; j) for all values of k. Let
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Figure 4: The edit matries used to ompute the bestjumping alignment.kd, kv , kh be the sequenes with the best sores in thethree predeessor ells of the urrent ell:kd = argmaxk02f1;:::;Kg fDk0(i� 1; j � 1)g ;kv = argmaxk02f1;:::;Kg fDk0(i� 1; j)g ;kh = argmaxk02f1;:::;Kg fDk0(i; j � 1)g :Then, when omputing Dk(i; j), we need not maximizeover all other sequenes, but only onsider sequenes k,kd, kv , and kh. This redues the time omplexity toO(nmK).AÆne Gap CostsAÆne gap osts pose the next problem. The algorithmdesribed by Huang, Hardison, & Miller (1990) anbe used as a guideline for alulating optimal jumpingalignments with aÆne gap penalties.However, one has to be areful how exatly to soreaÆne gaps in the setting of jumping alignments. Onehas to distinguish between gaps that are introdued bythe jumping alignment algorithm and gaps that alreadyexist in the seed alignment. And in partiular one hasto answer the question how to sore gaps in the an-didate sequene that run parallel to gaps in the seedalignment. Table 1 summarizes the di�erent types ofgaps in the jumping alignment setting, and how theyare sored in our algorithm. The full gap penalty onlyapplies if the gap is inserted into the seed alignment (1)or if it is inserted into the andidate sequene and doesnot run parallel to gaps in the seed alignment (2). A gapin the andidate sequene that runs parallel to a gap inthe seed alignment shows that the andidate sequeneis \similar" to at least one of the seed sequenes andis thus not penalized (3). Next, one needs to onsiderthe rare ase where letters in the andidate sequenerun parallel to gap haraters in the seed alignment(4). These gaps are penalized only by the gap exten-sion penalty to aount for the fat that there are othersequenes in the alignment that do ontain haraters



(1) (2) (3) (4)andidate ***** *---* *---* *****seed *---* ***** *...* *...*gap penalty gapinit + 2 � gapext gapinit + 2 � gapext 0 3 � gapextTable 1: AÆne gaps in jumping alignment. Asterisks denote amino aids, dots denote gaps in the seed alignment,dashes denote gaps that are introdued by the jumping alignment algorithm.in this region. Finally, there is the possibility for a jumpfrom a gap in one alignment sequene into a gap in an-other alignment sequene, as is shown in Figure 5. Inthis ase we apply the jump ost, but the gap is treatedlike a single gap, onsequently the gap initiation penaltyis imposed only one.In order to inlude aÆne gap osts, similar to Huang,Hardison, & Miller (1990) we use auxiliary matries Vand H that hold the sore of the best alignments endingwith a gap in either sequene: Vk(i; j) ontains the max-imal sore when si is aligned with a gap, and Hk(i; j)ontains the maximal sore when Ak;j is aligned with agap. We preompute the two sequenes with the bestvertial and horizontal predeessor in the matries Vand H , respetively:kV = argmaxk02f1;:::;Kg fVk0 (i� 1; j)g ;kH = argmaxk02f1;:::;Kg fHk0 (i; j � 1)g :Then the following reurrenes ompute the optimal lo-al jumping alignment ost with aÆne gap osts as de-�ned above:Vk(i; j) = max8><>: Dk(i� 1; j)� gapinitVk(i� 1; j)� gapextDkv (i� 1; j)� gapinit � jumpostVkV (i� 1; j)� gapext � jumpostHk(i; j) = max8><>: Dk(i; j � 1)� gapinitHk(i; j � 1)�Gk(j)Dkh(i; j � 1)� gapinit � jumpostHkH (i; j � 1)�Gk(j)� jumpostDk(i; j) = max8>>>>>>>>>><>>>>>>>>>>:
0Dk(i� 1; j � 1) + w(si; Ak;j)Dkd(i� 1; j � 1) +w(si; Ak;j)�jumpostVk(i; j)Hk(i; j)Dk(i; j � i)Dkh(i; j � 1)�jumpost) if Ak;j = gapharwhereGk(j) = � 0 if Ak;j = gaphargapext otherwise:Finally, it is straight forward to apply the spae sav-ing tehnique by Huang, Hardison, & Miller (1990) toour jumping alignment algorithm. This redues thespae omplexity to O((n+m)K), while the time om-plexity is not inreased by the introdution of aÆne gap

seed alignment 8<: ******************************.........*********************..........******************************andiate sequene *****---------------*****Figure 5: A jump inside a gap. Asterisks denoteamino aids, dots denote existing gaps in the alignment,dashes denote gaps that are introdued by the jumpingalignment proedure.osts nor by the redution of the spae omplexity. Itis O(nmK).ImplementationWe have implemented the above algorithm inludingaÆne gap osts in a program alled JALI (short forJumping ALIgnments). Given a seed alignment anda andidate sequene, the program provides the opti-mal jumping alignment sore as well as one alignmentobtaining this sore. A seond program alled JSEARCHis available for using the jumping alignment algorithmin a database searh ontext. The programs are writtenin standard C and have been ompiled on several UNIXplatforms. In order to obtain the programs and for fur-ther information, see http://www.dkfz-heidelberg.de/tbi/servies/jali/jali.html.ResultsThe jumping alignment method is designed for the pur-pose of searhing moleular databases for remote ho-mologues of a given protein family. In general, proteinsuperfamilies subdivide into families whih are less di-vergent than the entire superfamily. By a superfamilywe denote a maximal set of homologous sequenes. Bya subfamiliy we denote a subset of a superfamily withthe property that, if one knows one of its members, onean easily �nd all other subfamily members by standarddatabase searh methods suh as BLAST (Altshul etal., 1990) or FASTA (Pearson, 1990). The hallenge isto detet new subfamilies of a given superfamily.Choie of Evaluation DataFor evaluation purposes we need a data set onsist-ing of superfamilies with annotated subfamily stru-ture. However, membership to a superfamily shouldnot only be based on sequene similarity. Suh a depen-dene of annotation and methods reates a \hiken and



egg" problem (Brenner, Chothia, & Hubbard, 1998):Assume, we used a test set where superfamily mem-bership is assessed on the basis of sequene similaritythat was reported as being signi�ant by some searhmethod. Clearly, any evaluation proedure based onthis data would test for the apability of our methodto reprodue the method that was used for annotation.The only way to irumvent this problem is to use adatabase of known homologies that is not based on se-quene omparison only.The SCOP database (Murzin et al., 1995; Hubbardet al., 1999) is suh a database. It has been usedseveral times for the omparison of database searhmethods (Brenner, Chothia, & Hubbard, 1998; Parket al., 1997; Jaakkola, Diekhans, & Haussler, 1999).The SCOP database lassi�es protein domains aord-ing to the ategories lass, fold, superfamily, and sub-family1. A SCOP superfamily omprises sequenes thatmight have low sequene similarity, but whose stru-ture and funtion suggest a ommon evolutionary ori-gin. Folds and lasses are more abstrat and ontain se-quenes that have strutural similarities but are not re-lated. SCOP superfamilies are subdivided into subfam-ilies whih are less divergent with respet to sequene,struture, and funtion. Note that the SCOP lassi�a-tion into superfamily and subfamily inludes struturaland funtional knowledge. This is an important featureto irumvent the \hiken and egg" problemmentionedabove. On the other hand, while being based on di�er-ent onepts, the SCOP data set meets our de�nition ofthe superfamily-subfamily relation. SCOP superfami-lies are divergent sets of homologous sequenes, and aSCOP subfamily onsists of sequenes with lose evolu-tionary relationships; in general lose enough suh thatif one has deteted one member, one an easily �ndthe rest by using this sequene as query in a standarddatabase searh.The SCOP database of release 37 ontains 11,822 pro-tein domains. This database is alled pdb100d. Fur-thermore, there is a subset of 2,670 sequenes that donot share more than 95% sequene similarity alledpdb95d, one of 2,466 sequenes that do not share morethan 90% sequene similarity (pdb90d), and �nallypdb40d, onsisting of 1,434 sequenes.Evaluation SettingFor evaluating our method we used a setting �rst de-sribed by Jaakkola, Diekhans, & Haussler (1999). Inorder to emulate the disovery of unknown subfamilies,we split o� one subfamily from a SCOP superfamily,thus dividing this SCOP superfamily into two parts,the subfamily whih we all the exluded subfamily andits omplement whih we all the seed. We used se-quenes from the seed to onstrut a seed alignment,1In the original SCOP notation, what we all a subfam-ily is alled a family. To emphasize the di�erene to thesuperfamily ategory, however, we deided to use the termsubfamily.

and then we searhed a database for members of theexluded subfamily.This setup mathes the problem of disovering newsubfamilies of a known superfamily. Exluding sub-families is essential to obtain a fair assessment of themethod. Sine we are looking for unknown subfamilies,inluding all available data in the training set wouldnot math the real problem. Note that this setup givesus relatively hard problems of homology detetion. Alarge number of false positives is a ommon observa-tion. Hene we need a sensible measure to evaluate theperformane of the searh method. Counts of false pos-itives (Park et al. (1998); Jaakkola, Diekhans, & Haus-sler (1999)) are well suited for this purpose. We used aslight modi�ation of this measure whih is motivatedby the possibility of iterated searhes.More preisely, we looked for the exluded sequenewith the highest sore and ounted the number of non-superfamily members that ranked above this sequene.Let  be the maximal number of false positives that oneis willing to aept before one would onsider the searhto have failed. If the number of false positives fp is be-low , then the FP-ount is this number, otherwise itis : FP-ount = min(fp; ). We speak of an FP-ountwith uto� . Instead of the FP-ount whih only de-pends on the highest sore of an exluded sequene,Jaakkola, Diekhans, & Haussler (1999) used the me-dian and the maximum of the false positive rates of allexluded sequenes. We think that our modi�ation isjusti�ed sine in view of iterative searh methods, de-teting a single member of the exluded subfamily isequivalent to deteting the entire subfamily.We all a SCOP superfamily divided into an exludedsubfamily and a seed a test set. In total we used 80 testsets, inluding test sets from the same superfamily butwith di�erent exluded subfamilies. These 80 test setswere divided into two parts of 40 test sets eah. The�rst part was used to hoose appropriate parameters forthe jumping alignment algorithm. We all it the ali-bration data. The seond part was used to ompare theperformane of our method with the HMMER imple-mentation of the hidden Markov model approah. Weall these test sets the evaluation data.From eah seed we olleted all sequenes that analso be found in the pdb90d database. From thesesequenes we automatially generated multiple align-ments using the CLUSTALW program (Thompson,Higgins, & Gibson, 1994) with default parameters.From these aligned sequenes we then fethed all se-quenes that are ontained in the pdb40d database.This yielded a multiple alignment onsisting of a setof divergent members of the seed. Note that there is nosequene of the exluded subfamily in this alignmentand there was no suh sequene in the initial largeralignment.We used these 40 alignments as seed alignments forthe jumping alignment algorithm and searhed themagainst the pdb95d database. In all experiments shown,we used the VT160 sore matrix (M�uller & Vingron, to
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Figure 6: Plot of the jump osts versus the sum of FP-ounts of all 40 test sets. For eah of the individual 40FP-ounts a uto� of  = 25 was applied.appear) with gap initiation ost 8 and gap extensionost 4.Calibration of the Jump CostIn the desribed setting we tested several values forthe jump ost parameter. For several values betweenjumpost = 0 and jumpost = 50, and for jumpost =1, we added the FP-ounts of all test sets from thealibration data. Figure 6 shows the jump osts plot-ted versus the sum of the FP-ounts of all 40 test sets.For eah of the individual FP-ounts we used a uto�of  = 25.One an learly observe the onvex shape of the urvewhih has a minimum for a jump ost of 22. The twoextreme ases, zero jump osts (purely vertial point ofview; data not shown) and in�nite jump osts (purelyhorizontal point of view) perform worse than intermedi-ate jump osts. This indiates that neither the vertialnor the horizontal point of view is optimal, but a wellbalaned ombination of both. We have also tested var-ious other ombinations of the gap osts and di�erentsore matries (data not shown). The e�et of theseparameters is smaller than that of the jump ost. Ourhoie, however, is optimal for the 40 test sets of thealibration data.Comparison to HMMsThe dashed horizontal line in Figure 6 indiates theperformane of the hidden Markov model implemen-tation HMMER on the same data. A general advan-tage of hidden Markov models is that the omputationtime of a database searh is independent of the num-ber of sequenes used to train the model. Therefore weused the entire pdb90d alignments to train the hiddenMarkov models, whereas we only used the muh smallerpdb40d alignments as seeds for the jumping alignments.
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Figure 7: Comparison of the overall performane of thejumping alignment algorithm and the HMMER pakageof hidden Markov models. The uto�  is plotted versusthe total number of test sets where not more than  falsepositives were found with a higher sore than the �rstsequene from the exluded subfamily. The dotted lineindiates the total number of test sets in the evaluationdata.Hene, the hidden Markov models had muh more se-quenes at their disposal than the jumping alignments.However, this seems to be fair sine the sequenes areavailable. It is the time omplexity of the jumpingalignment algorithm that makes it impratial to ex-plore this information. The HMMs were onstrutedby the program hmmbuild from the HMMER-pakage(version 2.1.1) (http:://hmmer.wustl.edu). We builtboth semi-global and loal HMMs. Sine the loal ver-sions performed onsiderably worse (data not shown)and we again onsider it to be fair to use the HMMs inthe best possible way, we restrited our omparison tothe semi-global versions. The searh was aomplishedby hmmsearh from the same suite of programs.Performane on Evaluation DataFor an optimal hoie of jump osts, the jumping align-ment algorithm seems to be superior. However, we havehosen the parameters suh that they perform well onthese 40 test sets whih leads to a biased view on theomparison of jumping alignments and hidden Markovmodels. Therefore, we used the evaluation data foromparing these methods. We searhed the pdb95ddatabase for the exluded families of the 40 test sets,using both HMMER and our algorithm. Figure 7 sum-marizes the results.The horizontal axis shows the uto� . On the verti-al axis the total number of test sets is plotted wherewe found not more than  false positives before the �rstexluded sequene is found. The dotted line indiatesthe total number of test sets in the evaluation setting.First, note that 12 of the 40 test sets show more than



250 false positives for both methods. This learly in-diates the general limitations of sequene based ho-mology detetion. For small values of , that is, if oneis very relutant to tolerate any false positives, thereis no signi�ant di�erene in the performane of bothmethods. However, if one inreases the uto� to val-ues higher than 5, the jumping alignment proedure�nds more sequenes from exluded subfamilies thanthe HMMs. For very high uto� values this di�erenein performane shrinks again. Obviously, for diÆultproblems one has to deal with a ertain amount of falsepositives, and it is in this setup of hard problems, wherethe jumping alignments outperform the hidden Markovmodels. These results need to be interpreted with are.We have observed several test sets where the hiddenMarkov models provide better results than the jumpingalignments and others where the opposite holds. Thereare even a few test sets where pairwise omparison (in-�nite jump ost) seems to be the optimal method. Inthe overall evaluation of all 40 test sets, Figure 7 showsthat jumping alignments ompare favorably to hiddenMarkov models. DisussionWe have developed a novel dynami programming algo-rithm for deteting remote subfamilies of a given pro-tein superfamily. The general idea is to exploit bothhorizontal and vertial information of a multiple align-ment in a well balaned manner. We all this algorithmthe jumping alignment algorithm. While the work onjumping alignments is in a very early stage, our perfor-mane evaluation shows that it an ompete with suhmature, elaborated and established methods as hiddenMarkov models.The idea of jumping alignments suggests that remotehomologues frequently are himera of the other mem-bers of a protein family. Only few of the data that wehave examined, however, seems to support this onje-ture. Therefore, we would like to stress that this viewis not our main emphasis. Our arguments are moremethodial. They are based on the hopping e�et andhow it auses noise in database searhes. We use thejumping alignment sore as a measure of �t to a proteinfamily. Of ourse we ould traebak the jumping align-ment path, and our program atually allows to do so.That would provide us with a new multiple alignmentwith the andidate sequene as an additional sequenealigned to the seed alignment. However, this is only ofinterest if the andidate sequene belongs to the fam-ily. Our intention, in ontrast, is to deide whether itbelongs to the family.Jumping alignments balane the horizontal and thevertial information of a multiple sequene alignment.However, this is done loally. When enlarging the align-ment, the jumping alignment algorithm takes both ahorizontal look at the next residues in the referene se-quene as well as a vertial look on alternative residuesin the urrent position in other sequenes. The method

an not ope with long range orrelations of residuesthat are in spatial viinity in the folded protein.It is instrutive to have a look at the two extremeases where one hooses either zero or in�nite jumposts. Clearly, zero jump osts refer to a purely vertialpoint of view as implemented in pro�le searh meth-ods, and in�nite jump osts refer to a purely horizontalpoint of view, equivalent to a standard database searhwhih returns the database sequene most losely re-lated to the andidate sequene. A ombination is onlygiven for intermediate jump osts. In our evaluations,zero jump osts performed signi�antly bad (data notshown). There are two explanations for the failure ofthe algorithm for this hoie of parameters. First, themethod is a very rude version of a pro�le searh. Theestablished pro�le searh methods are muh more elab-orate using sequene weighting and Bayesian estima-tors for the amino aid distribution at eah position.Furthermore, the pro�le approah is mostly restritedto onserved bloks of a protein family. In ontrastto zero jump osts, in�nite jump osts perform surpris-ingly well. In this ase the jumping alignment algorithmis redued to a very simple method, whih is only basedon pairwise omparisons. A similar approah has beendesribed by Grundy (1998), and also there the pairwiseomparisons performed quite well.The jumping alignment sore is a loal alignmentsore. As in the ase of pairwise loal alignments, wefae the problem that when searhing a database, longdatabase entries have a higher hane of obtaining ahigh sore than short ones, even if they are not relatedat all, see for example Karlin & Altshul (1990); Water-man & Vingron (1994) or Spang & Vingron (1998). Inaddition we expet that phase transition laws exist forthe jump osts as well as for the gap osts, ompare Ar-ratia & Waterman (1994). However, the setting seemsto be muh more ompliated than in the ase of pair-wise sequene alignments. We think that simulationsfor every individual seed alignment will be appropriateto derive the parameters for length orretion, the dis-tribution of sores, and the phase transition lines. Inaddition to the length normalization, this kind of statis-tial analysis would yield pratial p-values whih indi-ate the statistial signi�ane of a jumping alignmentsore. However, this work remains to be done.AknowledgmentsWe are very grateful to Martin Vingron who had someof the initial ideas for this work. The distintion be-tween the horizontal and the vertial aspet of a mul-tiple alignment is due to him. He enouraged us to ex-ploit horizontal information for sequene lassi�ation.We would also like to thank Tobias M�uller for manyhelpful disussions. ReferenesAltshul, S.; Gish, W.; Miller, W.; Myers, E.; and Lip-man, D. 1990. Basi loal alignment searh tool. J.



Mol. Biol. 215:403{410.Arratia, R., and Waterman, M. 1994. A phase tran-sition for the sore in mathing random sequenesallowing deletions. Ann. Appl. Probab. 4:200{225.Baldi, P.; Chauvin, Y.; Hunkapiller, T.; and MClure,M. 1994. Hidden Markov models of biologial pri-mary sequene information. Pro. Natl. Aad. Si.USA 1;91(3):1059{1063.Brenner, S.; Chothia, C.; and Hubbard, T. 1998. As-sessing sequene omparison methods with reliablestruturally identi�ed distant evolutionary relation-ships. Pro. Natl. Aad. Si. USA 95(11):6073{6078.Eddy, S.; Mithison, G.; and Durbin, R. 1995. Max-imum disrimination hidden Markov models of se-quene onsensus. J. Comp. Biol. 2(1):9{23.Gelfand, M.; Mironov, A.; and Pevzner, P. 1996. Genereognition via splied sequene alignments. Pro.Natl. Aad. Si. USA 93:9061{9066.Gotoh, O. 1982. An improved algorithm for mathingbiologial sequenes. J. Mol. Biol. 162:705{708.Gribskov, M.; MLahlan, A.; and Eisenberg, D. 1987.Pro�le analysis: detetion of distantly related pro-teins. Pro. Natl. Aad. Si. USA 84(13):4355{4358.Grundy, W. 1998. Family-based homology detetionvia pairwise sequene omparison. In Pro. of theSeond Annual International Conferene on Compu-tational Moleular Biology, RECOMB 98, 94{100.ACM Press.Hirshberg, D. 1975. A linear spae algorithm for om-puting maximal ommon subsequenes. Commun.ACM 18(6):341{343.Huang, X.; Hardison, R.; and Miller, W. 1990. A spae-eÆient algorithm for loal similarities. CABIOS6(4):373{381.Hubbard, T.; Ailey, B.; Brenner, S.; Murzin, A.; andChothia, C. 1999. SCOP: A Strutural Classi�ationof Proteins database. Nul. Aids. Res. 27(1):254{256.Jaakkola, T.; Diekhans, M.; and Haussler, D. 1999. Us-ing the Fisher kernel method to detet remote proteinhomologies. In Proeedings of the Seventh Interna-tional Conferene on Intelligent Systems for Moleu-lar Biology, ISMB 99, 149{158. AAAI Press.Karlin, S., and Altshul, S. 1990. Methods for assessingthe statistial signi�ane of moleular sequene fea-tures by using general soring shemes. Pro. Natl.Aad. Si. USA 87:2264{2268.Komatsoulis, G., and Waterman, M. 1997. Chimerialignment by dynami programming: Algorithm andbiologial uses. In Pro. of the First Annual Interna-tional Conferene on Computational Moleular Biol-ogy, RECOMB 97, 174{180. ACM Press.

Krogh, A.; Brown, M.; Mian, I.; Sj�lander, K.; andHaussler, D. 1994. Hidden Markov models in om-putational biology. Appliations to protein modeling.J. Mol. Biol. 235(5):1501{1531.Liu, J.; Neuwald, A.; and Lawrene, C. 1995. Bayesianmodels for multiple loal sequene alignments andGibbs sampling strategies. J. Am. Stat. Asso.90:1156{1170.Luthy, R.; Xenarios, I.; and Buher, P. 1994. Improvingthe sensitivity of the sequene pro�le method. Pro-tein Si. 3(1):139{146.M�uller, T., and Vingron, M. to appear. Modeling aminoaid replaement frequenies. J. Comp. Biol.Murzin, A.; Brenner, S.; Hubbard, T.; and Chothia,C. 1995. SCOP: A strutural lassi�ation of pro-teins database for the investigation of sequenes andstrutures. J. Mol. Biol. 247(4):536{540.Park, J.; Teihmann, S.; Hubbard, T.; and Chothia,C. 1997. Intermediate sequenes inrease the dete-tion of homology between sequenes. J. Mol. Biol.273(1):349{354.Park, J.; Karplus, K.; Barrett, C.; Hughey, R.; Haus-sler, D.; Hubbard, T.; and Chothia, C. 1998. Se-quene omparisons using multiple sequenes detetthree times as many remote homologues as pairwisemethods. J. Mol. Biol. 284(4):1201{1210.Pearson, W. 1990. Rapid and sensitive sequene om-parison with FASTP and FASTA. Methods in Enzy-mology 183:63{98.Smith, T., and Waterman, M. 1981. Identi�ationof ommon moleular subsequenes. J. Mol. Biol.147:195{197.Spang, R., and Vingron, M. 1998. Statistis of largesale sequene searhing. Bioinfomatis 14:279{284.Taylor, W. 1986. Identi�ation of protein sequenehomology by onsensus template alignment. J. Mol.Biol. 188:233{258.Thompson, J.; Higgins, D.; and Gibson, T. 1994.CLUSTAL W: Improving the sensitivity of progres-sive multiple sequene alignment through sequeneweighting, position-spei� gap penalties and weightmatrix hoie. Nul. Aids Res. 22(22):4673{4680.Waterman, M., and Vingron, M. 1994. Sequene om-parison signi�ane and Poisson approximation. Stat.Si. 9:367.


