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Abstract

We describe a new algorithm for amino acid se-
quence classification and the detection of remote
homologues. The rationale is to exploit both verti-
cal and horizontal information of a multiple align-
ment in a well balanced manner. This is in con-
trast to established methods like profiles and hid-
den Markov models which focus on vertical infor-
mation as they model the columns of the align-
ment independently.

In our setting, we want to select from a given
database of “candidate sequences” those proteins
that belong to a given superfamily. In order to do
so, each candidate sequence is separately tested
against a multiple alignment of the known mem-
bers of the superfamily by means of a new jumping
alignment algorithm. This algorithm is an exten-
sion of the Smith-Waterman algorithm and com-
putes a local alignment of a single sequence and
a multiple alignment. In contrast to traditional
methods, however, this alignment is not based on
a summary of the individual columns of the multi-
ple alignment. Rather, the candidate sequence at
each position is aligned to one sequence of the mul-
tiple alignment, called the “reference sequence”.
In addition, the reference sequence may change
within the alignment, while each such jump is pe-
nalized.

To evaluate the discriminative quality of the
jumping alignment algorithm, we compared it to
hidden Markov models on a subset of the SCOP
database of protein domains. The discrimina-
tive quality was assessed by counting the num-
ber of false positives that ranked higher than
the first true positive (FP-count). For moder-
ate FP-counts above five, the number of successful
searches with our method was considerably higher
than with hidden Markov models.
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Introduction

The determination of the function of proteins is among
the most fundamental problems in molecular biology.
In principle, this task requires elaborate experimental
studies for each protein in question. The genome era
confronts us with large numbers of protein sequences
of unknown function. Scientists now strive for a large
scale understanding of protein function. In view of the
new sequence data produced by the genome projects, it
is crucial to ask for fast and easy methods of functional
analysis. Roughly speaking, proteins with similar func-
tion descend from common ancestors. They have been
randomly altered by mutation events; however, natu-
ral selection has extinguished those mutant molecules
that do not preserve the protein’s function. At the
level of sequences, common function is often reflected
in terms of conserved regions of the sequences. The
standard approach is to compare unknown sequences to
proteins with known function. Bioinformatitians have
contributed to this project in that they have developed
large assortments of computer based methods for ex-
tracting information from molecular sequences via se-
quence comparison, characterization, and classification.

Related Work

Classification of proteins on the basis of common con-
servation patterns is a standard approach in computa-
tional biology. One collects families of proteins with
known function and then, given an uncharacterized
candidate protein sequence, the question is, whether
this sequence fits into one of the known families. In
this setting, several methods have been developed, in-
cluding templates (Taylor, 1986), profiles (Gribskov,
McLachlan, & Eisenberg, 1987; Luthy, Xenarios, &
Bucher, 1994), hidden Markov models (Krogh et al.,
1994; Baldi et al., 1994; Eddy, Mitchison, & Durbin,
1995), Bayesian models calculating posterior distribu-
tions on possible motifs in a family (Liu, Neuwald, &
Lawrence, 1995), and discriminative approaches like the
combination of support vector machines and the Fisher
kernel method (Jaakkola, Diekhans, & Haussler, 1999).

The first four methods have a common rationale:
First one extracts the information common to all se-
quences of a family, and then one tests the unknown
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Figure 1: Part of a an (artificial) multiple alignment of
a family consisting of 7 sequences, which subdivide into
3 subfamilies. The bars on the left indicate the subfam-
ilies, the dotted boxes highlight conservation patterns.

sequence for existence of these family-specific features.
This requires a “summary” of the protein family which
can be derived from a multiple alignment. The last
method in contrast is a discriminative approach which
focuses on differences between family members and non
family members.

The Problem

Figure 1 shows some columns of a multiple alignment
that exhibits a typical problem of the “summary” ap-
proach. One can clearly observe that the 7 sequences
subdivide into 3 subfamilies, which is indicated by the
shaded bars on the left. A first approach for summa-
rizing the information in the alignment is to proceed
column by column: In the first column, we observe ei-
ther an ‘I, an ‘S’ or an ‘A’, in the second column it is
‘H’,‘G’ or ‘A’, etc. If one wants to decide whether a can-
didate sequence fits into this family, one can align it to
the family and then look site by site whether the residue
of the candidate sequence is identical or similar to one
of the residues in the family alignment at this position.
This vertical view on a multiple alignment is the basis of
most sequence classification methods. Profiles consist
of column specific scores, representing the residue dis-
tribution in these columns. Essentially the same is true
for the emission distributions of hidden Markov mod-
els and the product multinomial distributions of block
motifs in the Bayesian alignment approach. However,
there is more information contained in the alignment:
In column 4 we can frequently observe a ‘C’, but if
there is a ‘C’ at this position, it is part of the conserved
pattern ‘C L T K’. This information is obscured in a
column based summary of the alignment. A horizontal
view on the alignment reveals this. The importance of
this information becomes obvious in Figure 2.

The alignment in Figure 2 is the same as in Fig-
ure 1. In addition, we have aligned a candidate sequence
shown below the dashed line. Taking the vertical point
of view, one would clearly say that the candidate se-
quence fits very well into the family since for almost
all residues of the candidate sequence the same residue
can be found several times among the family sequences
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Figure 2: The alignment of Figure 1 and a candidate
sequence aligned to it (below the dashed line). Residues
that are identical in the family alignment and the can-
didate sequence are highlighted.

at the same site. However, none of the individual se-
quences in the family is very similar to the candidate se-
quence which speaks against a membership in the fam-
ily. The vertical view indicates a good fit of the candi-
date sequence to the family; however, this indication is
based on a “wild hopping” through the alignment, as
is shown by the highlighted residues in Figure 2. This
problem is aggravated if we consider an alignment con-
sisting of a large number of sequences from a divergent
family. In such a case one has many alternative residues
for most sites and hence one has a very high probability
of chance hits, due to the “hopping phenomenon”.
Both profiles and hidden Markov models are based
on scoring a query sequence versus the columns of an
alignment. Since both approaches model columns in-
dependently from each other, they do not keep track
which sequences in the alignment contributed to a high
score for a certain residue in a certain column. Conse-
quently, both approaches are subject to hopping, and
hopping causes noise in sequence classification.

Our Approach

Clearly, we are talking about correlations between
alignment positions. Our approach, however, is not
to model these correlations statistically, but to reduce
the negative effect of hopping by means of a new algo-
rithm. We will describe a dynamic programming algo-
rithm that locally aligns the candidate sequence to one
reference sequence in the multiple alignment, and in
addition allows that the reference sequence may change
within the alignment. This enables us to make use of
the many alternative residues for a certain column in
the alignment. But in order to avoid “wild hopping”,
we penalize each jump. In this way, we reduce the
total number of jumps and hence reduce noise. The
jumping alignment method is algorithmically related
to a method used to detect chimeric sequences (Ko-
matsoulis & Waterman, 1997) and to another method
used to find alternative splicings (Gelfand, Mironov, &
Pevzner, 1996).



Organization of the Paper

In the next section we briefly review the concept of dy-
namic programming for calculating local pairwise align-
ments. The following section contains a detailed de-
scription of the jumping alignment algorithm. In the
Results section, we derive the optimal jump cost pa-
rameter. Based on this parameter, we compare the
performance of our algorithm to the well established
HMMER package of hidden Markov models. The Dis-
cussion addresses zero and infinite jump costs as well
as the statistics of the jumping alignment score.

Local Alignment

It is well known that the concept of dynamic pro-
gramming is well suited for many sequence alignment
problems. For example, the Smith-Waterman algo-
rithm (Smith & Waterman, 1981) is one of the most
widely used procedures for aligning pairs of molecular
sequences.

The algorithm presented in this paper is also based
on the dynamic programming paradigm. In fact it can
be viewed as an extension of the Smith-Waterman al-
gorithm to the case where one wants to add a single
new sequence to a set of already aligned sequences. Be-
fore we describe this algorithm, we briefly review the
concept of dynamic programming in the simpler case of
local pairwise alignments.

Here we are interested in finding and aligning similar
segments in a pair of sequences. This requires a formal
definition of sequence similarity, which is usually done
by introducing a score matrix w that provides a score
for every pair of amino acids. In general, similar or iden-
tical amino acids are assigned positive scores, whereas
dissimilar amino acids obtain negative scores. The ex-
pectation value of the score must be negative in order
to ensure that the alignments are local. In addition, one
needs to score the gap positions in an alignment. For
the moment, we assume this is done by penalizing each
position in a gap by the same constant value, called
gapcost.

Given a local alignment, one obtains an alignment
score by summing up all similarity scores of positions
where two amino acids are aligned to each other, and
then subtracting all gap costs. The problem is to
construct a local alignment with an optimal similar-
ity score among all possible local alignments of the two
sequences.

There is a simple dynamic programming algorithm
for solving this optimization problem rigorously (Smith
& Waterman, 1981). Assume we are given two se-
quences S = $1,...,8, and T = t1,...,t, of length
n and m, respectively. The algorithm runs on an
(n+ 1) x (m + 1) matrix D, called the edit matriz.
For 0 <i<n,0<j<m,cell D(i,j) holds the score of
the best local alignment that ends with the positions s;
and t;. The leftmost column and the top row of D are
initialized by D(i,0) = D(0,7) = 0. Figure 3 illustrates

Figure 3: The computation of entry (i,7) of matrix
D from its three “predecessor” cells D(i — 1,5 — 1),
D(i —1,7), and D(i,j — 1).

how the remainder of D is computed recursively by

0

D(’L - 1,j - ].) + w(s,-,tj)
D(i—1,j) — gapcost
D(i,j — 1) — gapcost.

D(i,j) = max

The optimal local alignment score is the largest entry
in the edit matrix, D(imaz, Jmaz), Say-

This algorithm runs in time O(nm) and uses O(nm)
space to store the matrix D. The alignment itself
is obtained by tracing back through the matrix from
D(imaz, jmaz) following the choices that were made in
the maximization, until a cell with entry 0 is reached.
It is a standard technique, however, to reduce the mem-
ory usage to O(n + m) by a method introduced by
Hirschberg (1975), and extended to the context of lo-
cal alignment by Huang, Hardison, & Miller (1990), at
the expense of essentially only doubling the computa-
tion time. If we are only interested in the score of the
best local alignment, however, it is much easier to re-
duce space. Assuming a row-wise computation order, to
compute entries in row 4, say, we only need values from
rows ¢ and ¢ — 1. Hence, it suffices to store only two
neighboring rows at any time of the algorithm which
reduces space requirements to O(m).

We have described the algorithm in the case of linear
gap costs where the penalty for a gap is proportional
to the length of the gap. It is widely acknowledged,
however, that a long gap should be penalized less than
two shorter gaps of the same length in total. Since
computationally cheap, so-called affine gap costs are in
common use. Here, the initiation of a gap is penalized
by a high value gapinit, and each additional character
of the gap is penalized by another, usually smaller value
gapext. Based on ideas first published by Gotoh (1982),
Huang, Hardison, & Miller (1990) show how to incor-
porate affine gap costs in local alignments without an
overhead in computational complexity.

The Jumping Alignment Algorithm

We now extend the dynamic programming approach to
jumping alignments where the scenario is the follow-
ing. We are given a multiple alignment, called the seed
alignment, consisting of a few sequences which repre-
sent a protein family, and a database of other sequences.
The question is, which of the database sequences, called
candidate sequences, fit into this family. Our method



to test the fit of a candidate sequence to a seed align-
ment is to compute their optimal local jumping align-
ment score, where, in addition to the standard local
alignment score, hopping from one sequence to another
sequence in the alignment is penalized.

Formally, the jumping alignment problem is de-
scribed as follows. Let S = sy,..., s, denote the candi-
date sequence and let A be the seed alignment with K
rows and m columns, A = (A j)r<k;j<m- A jumping
alignment of S and A is a local alignment of S and the
columns of A with an additional annotation that tells
for each column of the jumping alignment, which of
the rows of the seed alignment the candidate sequence
is aligned to. The jumping alignment cost of such an
alignment is the standard alignment cost of the can-
didate sequence and the selected alignment sequence,
as described above, minus a penalty jumpcost for each
jump, i.e., for each position where the row-annotation
vector changes its value. The problem we want to solve
is to find among all jumping alignments of S and A an
alignment that maximizes the jumping alignment score.
An algorithm to solve this problem is described next.

In order to simplify the exposition, we describe the
algorithm stepwise, starting with a simple variant, and
then adding more advanced features which improve its
performance. We start with linear gap costs. The scor-
ing scheme thus consists of the score matrix (w), the
penalty for a gap position (gapcost), and the penalty
for jumping from one reference sequence to another
(jumpcost).

Basic Algorithm

We solve the optimization problem by an extension of
the Smith-Waterman algorithm. Instead of the one
edit matrix D(i,7), we now employ K edit matrices
Dq(i,7),...,Dk(i,J), one for each sequence in the seed
alignment. For 1 < k < K, Di(i,7) holds the maximal
score of all jumping alignments which end with posi-
tions s; and Ay ;, see Figure 4. For calculating Dy(4, j)
one needs to know the value of 3K predecessors cells: 3
predecessor cells in Dy, as in the case of pairwise align-
ment, and 3 additional predecessor cells in each of the
K — 1 other edit matrices Dy, k' # k. The maximal
entry in the set of all edit matrices gives the optimal
jumping alignment score for the candidate sequence and
the seed. Obviously, this algorithm runs in O(nmkK?)
time and uses O(nmK) space.

Speedup of the Basic Algorithm

The time complexity can be improved. Since a jump
from one sequence to another sequence has the same
cost for all alignment sequences, we do not have to
compute the best jump individually for each alignment
sequence. Instead, we pre-compute the optimal values
for the three predecessor cells diagonal (d), vertical (v),
and horizontal (h) over all alignment sequences, which
can be done in O(K) time. To be more precise, assume
the computation of cell Dy/(i,7) for all values of k. Let

Figure 4: The edit matrices used to compute the best
jumping alignment.

kq, kv, kn be the sequences with the best scores in the
three predecessor cells of the current cell:

kq = argmax {Dp(i—1,j—1)},
k'e{l,. K}

k, = argmax {Dp(i—1,5)},
ke{l,.. K}

kn, = argmax {Dy(i,j—1)}.

k'e{l,...K}

Then, when computing Dy (i, j), we need not maximize
over all other sequences, but only consider sequences k,
kq, kv, and kp. This reduces the time complexity to
O(nmK).

Affine Gap Costs

Affine gap costs pose the next problem. The algorithm
described by Huang, Hardison, & Miller (1990) can
be used as a guideline for calculating optimal jumping
alignments with affine gap penalties.

However, one has to be careful how exactly to score
affine gaps in the setting of jumping alignments. One
has to distinguish between gaps that are introduced by
the jumping alignment algorithm and gaps that already
exist in the seed alignment. And in particular one has
to answer the question how to score gaps in the can-
didate sequence that run parallel to gaps in the seed
alignment. Table 1 summarizes the different types of
gaps in the jumping alignment setting, and how they
are scored in our algorithm. The full gap penalty only
applies if the gap is inserted into the seed alignment (1)
or if it is inserted into the candidate sequence and does
not run parallel to gaps in the seed alignment (2). A gap
in the candidate sequence that runs parallel to a gap in
the seed alignment shows that the candidate sequence
is “similar” to at least one of the seed sequences and
is thus not penalized (3). Next, one needs to consider
the rare case where letters in the candidate sequence
run parallel to gap characters in the seed alignment
(4). These gaps are penalized only by the gap exten-
sion penalty to account for the fact that there are other
sequences in the alignment that do contain characters
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Table 1: Affine gaps in jumping alignment. Asterisks denote amino acids, dots denote gaps in the seed alignment,
dashes denote gaps that are introduced by the jumping alignment algorithm.

in this region. Finally, there is the possibility for a jump
from a gap in one alignment sequence into a gap in an-
other alignment sequence, as is shown in Figure 5. In
this case we apply the jump cost, but the gap is treated
like a single gap, consequently the gap initiation penalty
is imposed only once.

In order to include affine gap costs, similar to Huang,
Hardison, & Miller (1990) we use auxiliary matrices V
and H that hold the score of the best alignments ending
with a gap in either sequence: Vj(i,j) contains the max-
imal score when s; is aligned with a gap, and H(s, j)
contains the maximal score when Ay, ; is aligned with a
gap. We precompute the two sequences with the best
vertical and horizontal predecessor in the matrices V
and H, respectively:

ky = argmax {Vk’ (Z - ]-7.7)}7
ke{l,.. K}

ky = argmax {Hp(i,j—1)}.
ke{l,.. K}

Then the following recurrences compute the optimal lo-
cal jumping alignment cost with affine gap costs as de-
fined above:

Dy (i —1,j) — gapinit
R Vie (i — 1, i) — gapext
Vi(i,j) = max Dy, (i — 1,5) — gapinit — jumpcost
V,W( 1,7) — gapext — jumpcost
Dk (,j—1) — gapzmt
o Hy(i,j — 1) — Gi(j)
Hy(i,j) = max th(z j — 1) — gapinit — jumpcost
Hy,, (i, — 1) — G (j) — jumpcost
(0
Dy (i —1,j- 1) +w(si, Ax,j)
Dy, (i — 1,5 — 1) +w(s;, Ax,j)
—jumpcost
Dy(i,j) = maxq Vi(i,j)
Hy(i,j)
Dk(laj - Z)
Dy, (i,5 — 1) p if Ay ; = gapchar
\  —Jjumpcost
where
0 if A, ;j = gapchar

G = {

Finally, it is straight forward to apply the space sav-
ing technique by Huang, Hardison, & Miller (1990) to
our jumping alignment algorithm. This reduces the
space complexity to O((n +m)K), while the time com-
plexity is not increased by the introduction of affine gap

gapext otherwise.

>k 3k ok >k ok 3k 5k >k 5k >k 5k ok 5k ok >k k 3k %k >k %k %k %k X >k %

T N ook Kok Kok Kok

seed alignment

Figure 5: A jump inside a gap. Asterisks denote
amino acids, dots denote existing gaps in the alignment,
dashes denote gaps that are introduced by the jumping
alignment procedure.

costs nor by the reduction of the space complexity. It
is O(nmK).

Implementation

We have implemented the above algorithm including
affine gap costs in a program called JALI (short for
Jumping ALIgnments). Given a seed alignment and
a candidate sequence, the program provides the opti-
mal jumping alignment score as well as one alignment
obtaining this score. A second program called JSEARCH
is available for using the jumping alignment algorithm
in a database search context. The programs are written
in standard C and have been compiled on several UNIX
platforms. In order to obtain the programs and for fur-
ther information, see http://www.dkfz-heidelberg.
de/tbi/services/jali/jali.html.

Results

The jumping alignment method is designed for the pur-
pose of searching molecular databases for remote ho-
mologues of a given protein family. In general, protein
superfamilies subdivide into families which are less di-
vergent than the entire superfamily. By a superfamily
we denote a maximal set of homologous sequences. By
a subfamiliy we denote a subset of a superfamily with
the property that, if one knows one of its members, one
can easily find all other subfamily members by standard
database search methods such as BLAST (Altschul et
al., 1990) or FASTA (Pearson, 1990). The challenge is
to detect new subfamilies of a given superfamily.

Choice of Evaluation Data

For evaluation purposes we need a data set consist-
ing of superfamilies with annotated subfamily struc-
ture. However, membership to a superfamily should
not only be based on sequence similarity. Such a depen-
dence of annotation and methods creates a “chicken and



egg” problem (Brenner, Chothia, & Hubbard, 1998):
Assume, we used a test set where superfamily mem-
bership is assessed on the basis of sequence similarity
that was reported as being significant by some search
method. Clearly, any evaluation procedure based on
this data would test for the capability of our method
to reproduce the method that was used for annotation.
The only way to circumvent this problem is to use a
database of known homologies that is not based on se-
quence comparison only.

The SCOP database (Murzin et al., 1995; Hubbard
et al., 1999) is such a database. It has been used
several times for the comparison of database search
methods (Brenner, Chothia, & Hubbard, 1998; Park
et al., 1997; Jaakkola, Diekhans, & Haussler, 1999).
The SCOP database classifies protein domains accord-
ing to the categories class, fold, superfamily, and sub-
family'. A SCOP superfamily comprises sequences that
might have low sequence similarity, but whose struc-
ture and function suggest a common evolutionary ori-
gin. Folds and classes are more abstract and contain se-
quences that have structural similarities but are not re-
lated. SCOP superfamilies are subdivided into subfam-
ilies which are less divergent with respect to sequence,
structure, and function. Note that the SCOP classifica-
tion into superfamily and subfamily includes structural
and functional knowledge. This is an important feature
to circumvent the “chicken and egg” problem mentioned
above. On the other hand, while being based on differ-
ent concepts, the SCOP data set meets our definition of
the superfamily-subfamily relation. SCOP superfami-
lies are divergent sets of homologous sequences, and a
SCOP subfamily consists of sequences with close evolu-
tionary relationships; in general close enough such that
if one has detected one member, one can easily find
the rest by using this sequence as query in a standard
database search.

The SCOP database of release 37 contains 11,822 pro-
tein domains. This database is called pdb100d. Fur-
thermore, there is a subset of 2,670 sequences that do
not share more than 95% sequence similarity called
pdb95d, one of 2,466 sequences that do not share more
than 90% sequence similarity (pdb90d), and finally
pdb40d, consisting of 1,434 sequences.

Evaluation Setting

For evaluating our method we used a setting first de-
scribed by Jaakkola, Diekhans, & Haussler (1999). In
order to emulate the discovery of unknown subfamilies,
we split off one subfamily from a SCOP superfamily,
thus dividing this SCOP superfamily into two parts,
the subfamily which we call the ezcluded subfamily and
its complement which we call the seed. We used se-
quences from the seed to construct a seed alignment,

'In the original SCOP notation, what we call a subfam-
ily is called a family. To emphasize the difference to the
superfamily category, however, we decided to use the term
subfamily.

and then we searched a database for members of the
excluded subfamily.

This setup matches the problem of discovering new
subfamilies of a known superfamily. Excluding sub-
families is essential to obtain a fair assessment of the
method. Since we are looking for unknown subfamilies,
including all available data in the training set would
not match the real problem. Note that this setup gives
us relatively hard problems of homology detection. A
large number of false positives is a common observa-
tion. Hence we need a sensible measure to evaluate the
performance of the search method. Counts of false pos-
itives (Park et al. (1998); Jaakkola, Diekhans, & Haus-
sler (1999)) are well suited for this purpose. We used a
slight modification of this measure which is motivated
by the possibility of iterated searches.

More precisely, we looked for the excluded sequence
with the highest score and counted the number of non-
superfamily members that ranked above this sequence.
Let ¢ be the maximal number of false positives that one
is willing to accept before one would consider the search
to have failed. If the number of false positives fp is be-
low ¢, then the FP-count is this number, otherwise it
is ¢: FP-count = min(fp,c). We speak of an FP-count
with cutoff ¢. Instead of the FP-count which only de-
pends on the highest score of an excluded sequence,
Jaakkola, Diekhans, & Haussler (1999) used the me-
dian and the maximum of the false positive rates of all
excluded sequences. We think that our modification is
justified since in view of iterative search methods, de-
tecting a single member of the excluded subfamily is
equivalent to detecting the entire subfamily.

We call a SCOP superfamily divided into an excluded
subfamily and a seed a test set. In total we used 80 test
sets, including test sets from the same superfamily but
with different excluded subfamilies. These 80 test sets
were divided into two parts of 40 test sets each. The
first part was used to choose appropriate parameters for
the jumping alignment algorithm. We call it the cali-
bration data. The second part was used to compare the
performance of our method with the HMMER, imple-
mentation of the hidden Markov model approach. We
call these test sets the evaluation data.

From each seed we collected all sequences that can
also be found in the pdb90d database. From these
sequences we automatically generated multiple align-
ments using the CLUSTALW program (Thompson,
Higgins, & Gibson, 1994) with default parameters.
From these aligned sequences we then fetched all se-
quences that are contained in the pdb40d database.
This yielded a multiple alignment consisting of a set
of divergent members of the seed. Note that there is no
sequence of the excluded subfamily in this alignment
and there was no such sequence in the initial larger
alignment.

We used these 40 alignments as seed alignments for
the jumping alignment algorithm and searched them
against the pdb95d database. In all experiments shown,
we used the VT160 score matrix (Miiller & Vingron, to
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Figure 6: Plot of the jump costs versus the sum of FP-
counts of all 40 test sets. For each of the individual 40
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appear) with gap initiation cost 8 and gap extension
cost 4.

Calibration of the Jump Cost

In the described setting we tested several values for
the jump cost parameter. For several values between
jumpcost = 0 and jumpcost = 50, and for jumpcost =
00, we added the FP-counts of all test sets from the
calibration data. Figure 6 shows the jump costs plot-
ted versus the sum of the FP-counts of all 40 test sets.
For each of the individual FP-counts we used a cutoff
of ¢ = 25.

One can clearly observe the convex shape of the curve
which has a minimum for a jump cost of 22. The two
extreme cases, zero jump costs (purely vertical point of
view; data not shown) and infinite jump costs (purely
horizontal point of view) perform worse than intermedi-
ate jump costs. This indicates that neither the vertical
nor the horizontal point of view is optimal, but a well
balanced combination of both. We have also tested var-
ious other combinations of the gap costs and different
score matrices (data not shown). The effect of these
parameters is smaller than that of the jump cost. Our
choice, however, is optimal for the 40 test sets of the
calibration data.

Comparison to HMMs

The dashed horizontal line in Figure 6 indicates the
performance of the hidden Markov model implemen-
tation HMMER on the same data. A general advan-
tage of hidden Markov models is that the computation
time of a database search is independent of the num-
ber of sequences used to train the model. Therefore we
used the entire pdb90d alignments to train the hidden
Markov models, whereas we only used the much smaller
pdb40d alignments as seeds for the jumping alignments.

Total number of test sets
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Figure 7: Comparison of the overall performance of the
jumping alignment algorithm and the HMMER package
of hidden Markov models. The cutoff ¢ is plotted versus
the total number of test sets where not more than c false
positives were found with a higher score than the first
sequence from the excluded subfamily. The dotted line
indicates the total number of test sets in the evaluation
data.

Hence, the hidden Markov models had much more se-
quences at their disposal than the jumping alignments.
However, this seems to be fair since the sequences are
available. It is the time complexity of the jumping
alignment algorithm that makes it impractical to ex-
plore this information. The HMMs were constructed
by the program hmmbuild from the HMMER-package
(version 2.1.1) (http:://hmmer.wustl.edu). We built
both semi-global and local HMMs. Since the local ver-
sions performed considerably worse (data not shown)
and we again consider it to be fair to use the HMMs in
the best possible way, we restricted our comparison to
the semi-global versions. The search was accomplished
by hmmsearch from the same suite of programs.

Performance on Evaluation Data

For an optimal choice of jump costs, the jumping align-
ment algorithm seems to be superior. However, we have
chosen the parameters such that they perform well on
these 40 test sets which leads to a biased view on the
comparison of jumping alignments and hidden Markov
models. Therefore, we used the evaluation data for
comparing these methods. We searched the pdb95d
database for the excluded families of the 40 test sets,
using both HMMER and our algorithm. Figure 7 sum-
marizes the results.

The horizontal axis shows the cutoff ¢. On the verti-
cal axis the total number of test sets is plotted where
we found not more than c¢ false positives before the first
excluded sequence is found. The dotted line indicates
the total number of test sets in the evaluation setting.
First, note that 12 of the 40 test sets show more than



250 false positives for both methods. This clearly in-
dicates the general limitations of sequence based ho-
mology detection. For small values of ¢, that is, if one
is very reluctant to tolerate any false positives, there
is no significant difference in the performance of both
methods. However, if one increases the cutoff to val-
ues higher than 5, the jumping alignment procedure
finds more sequences from excluded subfamilies than
the HMMs. For very high cutoff values this difference
in performance shrinks again. Obviously, for difficult
problems one has to deal with a certain amount of false
positives, and it is in this setup of hard problems, where
the jumping alignments outperform the hidden Markov
models. These results need to be interpreted with care.
We have observed several test sets where the hidden
Markov models provide better results than the jumping
alignments and others where the opposite holds. There
are even a few test sets where pairwise comparison (in-
finite jump cost) seems to be the optimal method. In
the overall evaluation of all 40 test sets, Figure 7 shows
that jumping alignments compare favorably to hidden
Markov models.

Discussion

We have developed a novel dynamic programming algo-
rithm for detecting remote subfamilies of a given pro-
tein superfamily. The general idea is to exploit both
horizontal and vertical information of a multiple align-
ment in a well balanced manner. We call this algorithm
the jumping alignment algorithm. While the work on
jumping alignments is in a very early stage, our perfor-
mance evaluation shows that it can compete with such
mature, elaborated and established methods as hidden
Markov models.

The idea of jumping alignments suggests that remote
homologues frequently are chimera of the other mem-
bers of a protein family. Only few of the data that we
have examined, however, seems to support this conjec-
ture. Therefore, we would like to stress that this view
is not our main emphasis. Our arguments are more
methodical. They are based on the hopping effect and
how it causes noise in database searches. We use the
jumping alignment score as a measure of fit to a protein
family. Of course we could traceback the jumping align-
ment path, and our program actually allows to do so.
That would provide us with a new multiple alignment
with the candidate sequence as an additional sequence
aligned to the seed alignment. However, this is only of
interest if the candidate sequence belongs to the fam-
ily. Our intention, in contrast, is to decide whether it
belongs to the family.

Jumping alignments balance the horizontal and the
vertical information of a multiple sequence alignment.
However, this is done locally. When enlarging the align-
ment, the jumping alignment algorithm takes both a
horizontal look at the next residues in the reference se-
quence as well as a vertical look on alternative residues
in the current position in other sequences. The method

can not cope with long range correlations of residues
that are in spatial vicinity in the folded protein.

It is instructive to have a look at the two extreme
cases where one chooses either zero or infinite jump
costs. Clearly, zero jump costs refer to a purely vertical
point of view as implemented in profile search meth-
ods, and infinite jump costs refer to a purely horizontal
point of view, equivalent to a standard database search
which returns the database sequence most closely re-
lated to the candidate sequence. A combination is only
given for intermediate jump costs. In our evaluations,
zero jump costs performed significantly bad (data not
shown). There are two explanations for the failure of
the algorithm for this choice of parameters. First, the
method is a very crude version of a profile search. The
established profile search methods are much more elab-
orate using sequence weighting and Bayesian estima-
tors for the amino acid distribution at each position.
Furthermore, the profile approach is mostly restricted
to conserved blocks of a protein family. In contrast
to zero jump costs, infinite jump costs perform surpris-
ingly well. In this case the jumping alignment algorithm
is reduced to a very simple method, which is only based
on pairwise comparisons. A similar approach has been
described by Grundy (1998), and also there the pairwise
comparisons performed quite well.

The jumping alignment score is a local alignment
score. As in the case of pairwise local alignments, we
face the problem that when searching a database, long
database entries have a higher chance of obtaining a
high score than short ones, even if they are not related
at all, see for example Karlin & Altschul (1990); Water-
man & Vingron (1994) or Spang & Vingron (1998). In
addition we expect that phase transition laws exist for
the jump costs as well as for the gap costs, compare Ar-
ratia & Waterman (1994). However, the setting seems
to be much more complicated than in the case of pair-
wise sequence alignments. We think that simulations
for every individual seed alignment will be appropriate
to derive the parameters for length correction, the dis-
tribution of scores, and the phase transition lines. In
addition to the length normalization, this kind of statis-
tical analysis would yield practical p-values which indi-
cate the statistical significance of a jumping alignment
score. However, this work remains to be done.
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