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Abstract

We consider the problem of multiple sequence alignment: given k sequences
of length at most n and a certain scoring function, find an alignment that
minimizes the corresponding “sum of pairs” distance score.

We generalize the divide-and-conquer technique described in [7] and [21],
and present new ideas on how to use efficient search strategies for saving com-
puter memory and accelerating the procedure for three or more sequences.
Resulting running times and memory usage are shown for several test cases.



1 Introduction

Multiple sequence alignment is an important problem in computational molecular
biology, and many algorithms have been presented in this area of research (see [18],
[15], [5], or [13] for a survey). Since the problem of computing optimal alignments
with respect to the “sum-of-pairs” criterion is NP-hard [23], many approximative
algorithms have been proposed (e.g. [9], [11], [20], or [2]). Unfortunately, almost all
of these methods either exhibit a prohibitive computational complexity or yield bio-
logically unplausible results. With our algorithm, we try to contribute to improving
this situation.

2 Definitions

Let us consider a finite alphabet A, k sequences si,ss,...,s; over A of length
ny, na, ..., Nk, respectively, and an additional letter, say ‘—’, not contained in A
symbolizing gaps. An alignment of s, sy,...,s; is given by a £ x N matrix M =
(mij)i<i<k,<j<n for some N < >F | n; with entries m;j € AU {—} subject to the
following constraints: it does not contain any column consisting of gaps only and,
for each i = 1,2,...,k, the row (my, ms, ..., m;n) reproduces the sequence s; upon
eliminating all of its gap letters.

The weighted sum of pairs multiple sequence alignment problem can now be
described as follows (cf. [4]): Given sy, sg,..., sk, and given a scoring function D :
(AU {-})? = R, defined on all possible pairs of letters, find an optimal alignment
M, i.e. an alignment that minimizes

w(M) = Z (ap,q : ZD(mpjamqj)> )

1<p<q<k J=1

where the «,, are sequence-dependent (non-negative) weight factors reflecting e.g.
phylogenetic relationship.

In our program, the weight factors «,, , are calculated by the optimal (distance)
scores wey(s;, sj) of the pairwise alignments:

minl§i<j§]g{wop (Sia Sj)}

wop(3p= Sq)

Qpg 1= ;
so that o, , = 1 if and only if the pair of sequences (s,, s;) has lowest alignment score
over all possible pairs of sequences under consideration.

Note that, depending on the context, more general scores are being considered,
e.g. scores which use more sophisticated penalties for segments of consecutive gap
letters or which do not penalize gaps at the beginning and/or the end of the align-
ment. The way our algorithm can be adapted to handle such score functions will be
discussed in Section 5.



It is well known that the above mentioned multiple sequence alignment problem
can be solved optimally by dynamic programming with a running time proportional
to (28 —1)-TI¥_, ny, searching for a shortest alignment path in a directed graph with
[1¥_, n; vertices. Faster variants and a number of speedups of dynamic programming
have therefore been proposed (see for instance [14], and [4]). Unfortunately, most of
these approaches still need quite large computing time and computer memory when
applied to more than, say, six protein sequences of average length 300.

3 The Basic Algorithm

A first outline of our algorithm has been presented at the Third International Confer-
ence on Intelligent Systems for Molecular Biology in Cambridge, England (cf. [7]), a
more detailed discussion of the procedure, restricted to three sequences, can be found
in [21]. Here, we present the algorithm for the first time generalized for k sequences,
give additional improvements which reduce the required memory by several orders
of magnitude making the algorithm considerably more efficient in practice, and we
give detailed results concerning running time and memory requirement.

The algorithm works according to the well-known divide-and-conquer principle:
each of the given k sequences is being cut at an appropriately chosen site somewhere
near to its midpoint, this way reducing the original alignment problem to the two
subproblems of aligning the two resulting groups of prefix and suffix subsequences,
respectively. These will be handled by the same procedure in a recursive manner.
The recursion stops when the remaining subsequences are short enough to be aligned
by a standard procedure, — in our implementation, we use MSA [12],[8].

A simple and effective stopping criterion for the recursion is a threshold L for
the length of the shortest of the (sub)sequences under consideration. Other stopping
criteria have been considered as well, but did not yield any significant improvement
of our procedure.

The main problem is to find a tuple of slicing sites (c¢y,¢o,...,¢,) so that the
simple concatenation of the two optimal alignments of the prefixes s1(< ¢1), $2(<
c2),...,Sk(< ¢x) and the suffixes s1(> ¢1), 52(> ¢2), ..., sg(> ¢) forms an optimal
alignment of the original sequences. (Here, s,(<¢,) denotes the prefix subsequence
of s, with indices running from 1 to ¢, and s,(>¢,) denotes the suffix subsequence
of s, with indices running from ¢, + 1 to n,, 1 <p < k.)

Obviously, for any fixed site ¢;, there exists a (k — 1)-tuple (ca, ..., ), such that
(¢1,¢9,...,ck) forms an optimal k-tuple of slicing sites. Unfortunately, finding these
tdeal slicing points requires searching the whole k-dimensional hypercube, taking the
same time as the standard dynamic programming procedure. So, of course, this is
not the method of choice.

Instead, our algorithm tries to find near-to-optimal, so-called optimal slicing sites,
that are based on pairwise sequence comparisons. More precisely, we use the dynamic
programming procedure which we apply to all pairs of sequences (s,, s,). The result-



ing score matrices for pairwise alignment give rise to secondary matrices

Csp,sq [va Cq] = Wep ( Sp(gcp)a Sq(gcq)) + Wep (Sp(>cp)a Sq(>cq)) — Wop ( Sp, Sq)

imposed by forcing the alignment path to run through a particular vertex (c,,c,)
(1 <p < q<k). Similar matrices have been considered in the context of dot plots in
[3] and [22]. The calculation of Cy , can be performed by computing forward and
reverse matrices in a similar way as it is described in [16] and [17], respectively.

Note that there exists, for every fixed ¢,, at least one slicing site ¢,(¢,) with
Cs, 5016ps €q(Gp)] = 0. This follows from the fact that the vertices on an optimal
alignment path are precisely those with no additional charge and that (the projection
of) every alignment path meets at least once every position of each sequence.

To search now for a good k-tuple of slicing sites, we try to estimate the additional
charge imposed by forcing the multiple alignment path of the sequences through the
particular vertex (ci, ¢s, ..., ¢) in the whole (k-dimensional) box associated with the
corresponding alignment problem. To this end, we use a weighted sum of secondary
charges over all projections (c,, ¢,) as such an estimate: we put

C(Cla €2, -+ -, Ck) = Z Qp,q Cspasq [CI” C(I]‘
1<p<q<k
Our proposition is now, that optimal slicing sites, i. e. (¢1,¢s, ..., ¢x) that minimize
C(c1, ¢z, .., ¢), result in very good, if not optimal multiple alignments.

In conclusion, this leads to the following general procedure:
Algorithm d&c-align ( s1,s2,. .., Sk, L)

If miﬂlspgk{np} S L
then return the optimal alignment of sq, so, ..., s; (using e.g. MSA);
else return the concatenation of
d&c-align(s1(< ¢1),82(< )., 55(< cp), L)
and déic-align(si(>cy1), s2(>ca), ..., sk(>cx), L);
where (c1,¢o,...,ck) = calc-cut(sy, So, . .., Sk)-

How to realize the function calc-cut, which computes a k-tuple of optimal slicing
sites (1, co, . .., i) efficiently, will be described in the following section.

4 Efficiently Calculating the Slicing Sites

In a naive implementation, the search calc-cut for optimal slicing sites (¢, co, . .., ¢x)
needs time O(k?n? + nF1), where n is the length of the longest of the sequences
$1,89,..., 5k the computation of all pairwise secondary matrices takes O(k*n?) time
and, for given ¢, all possible combinations of ¢y, ..., ¢, have to be checked to find
the tuple that minimizes C' in O(nf~1).



We now describe how we are able to reduce this time by several orders of magni-
tude in the average case. Even the memory required, for the naive version O(k*n?),
can be reduced in most cases by a large factor.

The main improvement is based on a simple, but very effective idea: We first
precalculate an estimation C for C(c1,¢2,...,¢) by calculating only the scores of
the pairwise alignments, using the space saving technique originally invented by
Hirschberg [10], where only the memory for one column coléyq[j] =C,5,l0,7] (1<
p<q<k1l<i<n,l<j<n,) ofthe dynamic programming matrix is needed
at a time. This precalculation allows us to prune the search space enormously:
Because the additional charge C(c,¢a,...,¢) is a sum of non-negative numbers
pyq * Csps,lCps Cq), 1t is possible to exclude a tuple of slicing sites (ci,ca, ..., cp),
whenever one of the summands o4 - Cs, 4, [cp, ¢ is larger than the minimum C
found so far. In particular, for fixed ¢;, any ¢, with oy 4 - Cy, s, [¢1, ¢, > C can never
lead to a smaller sum C'.

With this in mind, a tuple of optimal slicing sites can be calculated as follows:

Function calc-cut ( s1,59,..., )

1. Fix ¢, := [%];

2. calculate and save columns col%q[j] = Cy 5,001,5] (2<q¢<E 1<) <ny);
3. locate slicing sites ¢, ..., ¢, such that col%q[éq] =0 (2<q¢<k);

4. calculate the estimate

~

C:= Z Qp,g * Csp,sq [Cp, Cq) = Z Qp,g * Csp,sq [Cps €l

1<p<q<k 2<p<g<k

where to calculate the entries C, , [¢),¢q) (2 < p < ¢ < k) only the O(n)

memory for one column col})!, is needed at a time, since no part of the matrices
C has to be saved.

Sp,Sq

5. Calculate lower and upper borders [, and u, such that oy, - colffq[j] > C
for all j < [, and for all j > u, (2 < ¢ < k). The intermediate segment
coli',llg], - - -, col’ [ug] forms the relevant part of each column colf!,

6. Given these borders, compute and save the relevant parts of the matrices C'
defined by C, . [i, j] with I, <i < w, and Iy < 5 < uy.

psSq)

7. Search for better slicing sites (¢, ca(¢1), ..., cx(¢1)) within the relevant parts
of the columns colélq and of the matrices Cs, .. Thereby, the sum C' can be
computed step by step and the search can be stopped, if an intermediate result
is larger than C. During this search, with decreasing values of C, the relevant
part of the columns col‘fq can possibly be further reduced, diminishing the
search space even more.



As described in [21], neither the input order of the sequences nor a deviation from
the restriction imposed by fixing ¢, on exactly [%]| have a significant influence on
the behavior of the procedure.

Obviously, the worst case time and space complexity of this approach still remains
O(k*n? + n*~1) and O(k?n?), respectively, for the (very improbable) case where the
borders [, and u, can never be increased or decreased, respectively. But for biological
sequences, the effect is enormous. Especially, for calculating the first tuple of slicing
sites in the recursion, which takes far the longest time of all cut-site computations,
the reduction from n to the length r := max,_o _x{u, — [, + 1} of the longest of the
remaining relevant parts of the columns, is usually greater than 100 : 1 for small &,
yielding memory savings for the matrices of at least four orders of magnitude and re-
ducing the expected time and space complexity to O(k*n? + r*71) and O(kn + k?r?),
respectively. More detailed results concerning exact running times and memory usage
are presented in Section 6.

5 Further Improvements

In the actual implementation of défc-align, the program MSA is called for every single
group of subsequences containing at least one subsequence of length at most L. It
would be more elegant to calculate all the slicing sites first (which is possible without
the knowledge of any of the sub-alignments) and then call MSA only once with the
extra information concerning the slicing sites. Although MSA is able to handle fixed
parts of the alignment of length one or longer, it still needs to be extended so as
to accept fixed slicing sites, which, from this point of view, can be seen as fixing an
alignment of zero length. Upon our request, the authors of MSA are working on such
an extension [19].

Another advantage expected from this approach is that, with such a feature, MSA’s
ability of dealing with biologically more reasonable quasi-natural gap costs [1] and
with a score function, which does not penalize gaps at the beginning and/or the end
of the alignment, will be carried over automatically to our procedure.

To improve the quality of the alignments further, we propose a windowing ap-
proach to correct the obtained alignments in the proximity of division sites. We
suggest to choose a window width W depending on the threshold L. Laying such a
window across each slicing site, one may search for an optimal re-alignment of the
corresponding subsequences, again using MSA.

6 Results

From earlier measurements, we obtained a value of L := 40 for the stopping crite-
rion to guarantee near-to-optimal results: the score of the alignments calculated in
the following test cases differs by at most 1 percent from the score of the optimal
alignment (in cases where we were able to check this with MSA).



To obtain the exact time and memory usage, our algorithm has been applied to
several sets of sequences, obtained by a stochastical mutation process on random
sequences of different lengths n and alphabet size 20, denoting the set of amino
acids. The sequences have a pairwise identity between 15 and 25 percent. All shown
results are averages over 10 different sequence sets. As a scoring function D we used
the PAM-250 distance matrix [6] with positive entries between 0 and 24, as it is
implemented in MSA.
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As can be seen from these results, very fast calculation of high-quality alignments with
rather moderate memory usage is possible with déc-align for up to seven sequences.
As examinations of several executions of the function calc-cut have shown, the still
rather long running time for eight and more sequences depends (in addition to the
longer MSA-runs) on the estimate C', which is not good enough in these cases.

k 3 4 b} 6 7 8 9
average - | 0.009 | 0.023 | 0.073 | 0.170 | 0.242 | 0.389 | 0.608

Finally, we have investigated whether the alignment scores improve upon using the
windowing approach mentioned above. The following table shows for four sets of
random sequences with different & and n the relative error of our score (i.e. the
percentage of the optimal score by which the score obtained by our algorithm exceeds
the optimal one) for different values of L and W.

k| n |L|W=0|W=iL|W=IL|W=L
60 | 0.00% | 0.00% | 0.00% | 0.00%
3100 [ 40 | 0.12% | 0.00% | 0.00% | 0.00%
20 | 047% | 0.35% | 0.25% | 0.25%
60 [ 0.21% | 0.18% | 0.18% | 0.08%
31300 |40 | 0.21% | 0.18% | 0.18% | 0.17%
20 | 0.36% | 0.35% | 0.32% | 0.17%
60 [ 0.28% | 0.12% | 0.12% | 0.00%
41100 | 40 | 0.28% | 0.18% | 0.17% | 0.09%
20| 0.34% | 0.18% | 0.18% | 0.17%
60 | 0.41% | 0.41% | 0.41% | 0.41%
51100 |40 | 0.46% | 0.42% | 0.42% | 0.42%
20 | 0.69% | 0.69% | 0.50% | 0.50%
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