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Improving the Divide-and-Conquer Approach toSum-of-Pairs Multiple Sequence AlignmentJens Stoye, Andreas W. M. DressResearch Center for Interdisciplinary Studies on Structure Formation (FSPM)University of Bielefeld, Postfach 10 01 31, D-33501 Bielefeld, Germany{stoye,dress}@mathematik.uni-bielefeld.deS�oren W. PerreyDepartment of Mathematics, Massey University, Palmerston North, New ZealandS.W.Perrey@massey.ac.nzAbstractWe consider the problem of multiple sequence alignment: given k sequencesof length at most n and a certain scoring function, �nd an alignment thatminimizes the corresponding \sum of pairs" distance score.We generalize the divide-and-conquer technique described in [7] and [21],and present new ideas on how to use e�cient search strategies for saving com-puter memory and accelerating the procedure for three or more sequences.Resulting running times and memory usage are shown for several test cases.
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1 IntroductionMultiple sequence alignment is an important problem in computational molecularbiology, and many algorithms have been presented in this area of research (see [18],[15], [5], or [13] for a survey). Since the problem of computing optimal alignmentswith respect to the \sum-of-pairs" criterion is NP-hard [23], many approximativealgorithms have been proposed (e.g. [9], [11], [20], or [2]). Unfortunately, almost allof these methods either exhibit a prohibitive computational complexity or yield bio-logically unplausible results. With our algorithm, we try to contribute to improvingthis situation.2 De�nitionsLet us consider a �nite alphabet A, k sequences s1; s2; : : : ; sk over A of lengthn1; n2; : : : ; nk, respectively, and an additional letter, say `�', not contained in Asymbolizing gaps. An alignment of s1; s2; : : : ; sk is given by a k � N matrix M =(mij)1�i�k;1�j�N for some N � Pki=1 ni with entries mij 2 A [ f�g subject to thefollowing constraints: it does not contain any column consisting of gaps only and,for each i = 1; 2; : : : ; k, the row (mi1; mi2; : : : ; miN ) reproduces the sequence si uponeliminating all of its gap letters.The weighted sum of pairs multiple sequence alignment problem can now bedescribed as follows (cf. [4]): Given s1; s2; : : : ; sk, and given a scoring function D :(A [ f�g)2 ! R, de�ned on all possible pairs of letters, �nd an optimal alignmentM , i.e. an alignment that minimizesw(M) := X1�p<q�k0@�p;q � NXj=1D(mpj; mqj)1A ;where the �p;q are sequence-dependent (non-negative) weight factors re
ecting e.g.phylogenetic relationship.In our program, the weight factors �p;q are calculated by the optimal (distance)scores wop(si; sj) of the pairwise alignments:�p;q := min1�i<j�kfwop(si; sj)gwop(sp; sq) ;so that �p;q = 1 if and only if the pair of sequences (sp; sq) has lowest alignment scoreover all possible pairs of sequences under consideration.Note that, depending on the context, more general scores are being considered,e.g. scores which use more sophisticated penalties for segments of consecutive gapletters or which do not penalize gaps at the beginning and/or the end of the align-ment. The way our algorithm can be adapted to handle such score functions will bediscussed in Section 5. 4



It is well known that the above mentioned multiple sequence alignment problemcan be solved optimally by dynamic programming with a running time proportionalto (2k� 1) �Qki=1 ni, searching for a shortest alignment path in a directed graph withQki=1 ni vertices. Faster variants and a number of speedups of dynamic programminghave therefore been proposed (see for instance [14], and [4]). Unfortunately, most ofthese approaches still need quite large computing time and computer memory whenapplied to more than, say, six protein sequences of average length 300.3 The Basic AlgorithmA �rst outline of our algorithm has been presented at the Third International Confer-ence on Intelligent Systems for Molecular Biology in Cambridge, England (cf. [7]), amore detailed discussion of the procedure, restricted to three sequences, can be foundin [21]. Here, we present the algorithm for the �rst time generalized for k sequences,give additional improvements which reduce the required memory by several ordersof magnitude making the algorithm considerably more e�cient in practice, and wegive detailed results concerning running time and memory requirement.The algorithm works according to the well-known divide-and-conquer principle:each of the given k sequences is being cut at an appropriately chosen site somewherenear to its midpoint, this way reducing the original alignment problem to the twosubproblems of aligning the two resulting groups of pre�x and su�x subsequences,respectively. These will be handled by the same procedure in a recursive manner.The recursion stops when the remaining subsequences are short enough to be alignedby a standard procedure, { in our implementation, we use MSA [12],[8].A simple and e�ective stopping criterion for the recursion is a threshold L forthe length of the shortest of the (sub)sequences under consideration. Other stoppingcriteria have been considered as well, but did not yield any signi�cant improvementof our procedure.The main problem is to �nd a tuple of slicing sites (c1; c2; : : : ; ck) so that thesimple concatenation of the two optimal alignments of the pre�xes s1(� c1); s2(�c2); : : : ; sk(� ck) and the su�xes s1(> c1); s2(> c2); : : : ; sk(> ck) forms an optimalalignment of the original sequences. (Here, sp(� cp) denotes the pre�x subsequenceof sp with indices running from 1 to cp and sp(>cp) denotes the su�x subsequenceof sp with indices running from cp + 1 to np, 1 � p � k.)Obviously, for any �xed site c1, there exists a (k� 1)-tuple (c2; : : : ; ck), such that(c1; c2; : : : ; ck) forms an optimal k-tuple of slicing sites. Unfortunately, �nding theseideal slicing points requires searching the whole k-dimensional hypercube, taking thesame time as the standard dynamic programming procedure. So, of course, this isnot the method of choice.Instead, our algorithm tries to �nd near-to-optimal, so-called optimal slicing sites,that are based on pairwise sequence comparisons. More precisely, we use the dynamicprogramming procedure which we apply to all pairs of sequences (sp; sq). The result-5



ing score matrices for pairwise alignment give rise to secondary matricesCsp;sq [cp; cq] := wop ( sp(�cp); sq(�cq)) + wop ( sp(>cp); sq(>cq))� wop ( sp; sq )imposed by forcing the alignment path to run through a particular vertex (cp; cq)(1 � p < q � k). Similar matrices have been considered in the context of dot plots in[3] and [22]. The calculation of Csp;sq can be performed by computing forward andreverse matrices in a similar way as it is described in [16] and [17], respectively.Note that there exists, for every �xed ĉp, at least one slicing site cq(ĉp) withCsp;sq [ĉp; cq(ĉp)] = 0. This follows from the fact that the vertices on an optimalalignment path are precisely those with no additional charge and that (the projectionof) every alignment path meets at least once every position of each sequence.To search now for a good k-tuple of slicing sites, we try to estimate the additionalcharge imposed by forcing the multiple alignment path of the sequences through theparticular vertex (c1; c2; : : : ; ck) in the whole (k-dimensional) box associated with thecorresponding alignment problem. To this end, we use a weighted sum of secondarycharges over all projections (cp; cq) as such an estimate: we putC(c1; c2; : : : ; ck) := X1�p<q�k�p;q � Csp;sq [cp; cq]:Our proposition is now, that optimal slicing sites, i. e. (c1; c2; : : : ; ck) that minimizeC(c1; c2; : : : ; ck), result in very good, if not optimal multiple alignments.In conclusion, this leads to the following general procedure:Algorithm d&c-align ( s1; s2; : : : ; sk; L )If min1�p�kfnpg � Lthen return the optimal alignment of s1; s2; : : : ; sk (using e.g. MSA);else return the concatenation ofd&c-align(s1(� c1); s2(� c2); : : : ; sk(� ck); L)and d&c-align(s1(>c1); s2(>c2); : : : ; sk(>ck); L);where (c1; c2; : : : ; ck) := calc-cut(s1; s2; : : : ; sk).How to realize the function calc-cut , which computes a k-tuple of optimal slicingsites (c1; c2; : : : ; ck) e�ciently, will be described in the following section.4 E�ciently Calculating the Slicing SitesIn a naive implementation, the search calc-cut for optimal slicing sites (c1; c2; : : : ; ck)needs time O(k2n2 + nk�1), where n is the length of the longest of the sequencess1; s2; : : : ; sk: the computation of all pairwise secondary matrices takes O(k2n2) timeand, for given ĉ1, all possible combinations of c2; : : : ; ck have to be checked to �ndthe tuple that minimizes C in O(nk�1). 6



We now describe how we are able to reduce this time by several orders of magni-tude in the average case. Even the memory required, for the naive version O(k2n2),can be reduced in most cases by a large factor.The main improvement is based on a simple, but very e�ective idea: We �rstprecalculate an estimation bC for C(c1; c2; : : : ; ck) by calculating only the scores ofthe pairwise alignments, using the space saving technique originally invented byHirschberg [10], where only the memory for one column col ip;q[j] := Csp;sq [i; j] (1 �p < q � k; 1 � i � np; 1 � j � nq) of the dynamic programming matrix is neededat a time. This precalculation allows us to prune the search space enormously:Because the additional charge C(c1; c2; : : : ; ck) is a sum of non-negative numbers�p;q � Csp;sq [cp; cq], it is possible to exclude a tuple of slicing sites (c1; c2; : : : ; ck),whenever one of the summands �p;q � Csp;sq [cp; cq] is larger than the minimum bCfound so far. In particular, for �xed ĉ1, any cp with �1;q �Cs1;sp[ĉ1; cp] � bC can neverlead to a smaller sum C.With this in mind, a tuple of optimal slicing sites can be calculated as follows:Function calc-cut ( s1; s2; : : : ; sk )1. Fix ĉ1 := dn12 e;2. calculate and save columns col ĉ11;q[j] := Cs1;sq [ĉ1; j] (2 � q � k; 1 � j � nq);3. locate slicing sites ĉ2; : : : ; ĉk such that col ĉ11;q[ĉq] = 0 (2 � q � k);4. calculate the estimatebC := X1�p<q�k�p;q � Csp;sq [ĉp; ĉq] = X2�p<q�k�p;q � Csp;sq [ĉp; ĉq];where to calculate the entries Csp;sq [ĉp; ĉq] (2 � p < q � k) only the O(n)memory for one column col ĉ1p;q is needed at a time, since no part of the matricesCsp;sq has to be saved.5. Calculate lower and upper borders lq and uq such that �1;q � col ĉ11;q[j] � bCfor all j < lq and for all j > uq (2 � q � k). The intermediate segmentcol ĉ11;q[lq]; : : : ; col ĉ11;q[uq] forms the relevant part of each column col ĉ11;q.6. Given these borders, compute and save the relevant parts of the matrices Csp;sq ,de�ned by Csp;sq [i; j] with lp � i � up and lq � j � uq.7. Search for better slicing sites (ĉ1; c2(ĉ1); : : : ; ck(ĉ1)) within the relevant partsof the columns col ĉ11;q and of the matrices Csp;sq . Thereby, the sum C can becomputed step by step and the search can be stopped, if an intermediate resultis larger than bC. During this search, with decreasing values of bC, the relevantpart of the columns col ĉ11;q can possibly be further reduced, diminishing thesearch space even more. 7



As described in [21], neither the input order of the sequences nor a deviation fromthe restriction imposed by �xing ĉ1 on exactly dn12 e have a signi�cant in
uence onthe behavior of the procedure.Obviously, the worst case time and space complexity of this approach still remainsO(k2n2 + nk�1) and O(k2n2), respectively, for the (very improbable) case where theborders lp and up can never be increased or decreased, respectively. But for biologicalsequences, the e�ect is enormous. Especially, for calculating the �rst tuple of slicingsites in the recursion, which takes far the longest time of all cut-site computations,the reduction from n to the length r := maxp=2;:::;kfup� lp + 1g of the longest of theremaining relevant parts of the columns, is usually greater than 100 : 1 for small k,yielding memory savings for the matrices of at least four orders of magnitude and re-ducing the expected time and space complexity to O(k2n2 + rk�1) and O(kn+ k2r2),respectively. More detailed results concerning exact running times and memory usageare presented in Section 6.5 Further ImprovementsIn the actual implementation of d&c-align, the program MSA is called for every singlegroup of subsequences containing at least one subsequence of length at most L. Itwould be more elegant to calculate all the slicing sites �rst (which is possible withoutthe knowledge of any of the sub-alignments) and then call MSA only once with theextra information concerning the slicing sites. Although MSA is able to handle �xedparts of the alignment of length one or longer, it still needs to be extended so asto accept �xed slicing sites, which, from this point of view, can be seen as �xing analignment of zero length. Upon our request, the authors of MSA are working on suchan extension [19].Another advantage expected from this approach is that, with such a feature, MSA'sability of dealing with biologically more reasonable quasi-natural gap costs [1] andwith a score function, which does not penalize gaps at the beginning and/or the endof the alignment, will be carried over automatically to our procedure.To improve the quality of the alignments further, we propose a windowing ap-proach to correct the obtained alignments in the proximity of division sites. Wesuggest to choose a window width W depending on the threshold L. Laying such awindow across each slicing site, one may search for an optimal re-alignment of thecorresponding subsequences, again using MSA.6 ResultsFrom earlier measurements, we obtained a value of L := 40 for the stopping crite-rion to guarantee near-to-optimal results: the score of the alignments calculated inthe following test cases di�ers by at most 1 percent from the score of the optimalalignment (in cases where we were able to check this with MSA).8



To obtain the exact time and memory usage, our algorithm has been applied toseveral sets of sequences, obtained by a stochastical mutation process on randomsequences of di�erent lengths n and alphabet size 20, denoting the set of aminoacids. The sequences have a pairwise identity between 15 and 25 percent. All shownresults are averages over 10 di�erent sequence sets. As a scoring function D we usedthe PAM-250 distance matrix [6] with positive entries between 0 and 24, as it isimplemented in MSA.
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As can be seen from these results, very fast calculation of high-quality alignments withrather moderate memory usage is possible with d&c-align for up to seven sequences.As examinations of several executions of the function calc-cut have shown, the stillrather long running time for eight and more sequences depends (in addition to thelonger MSA-runs) on the estimate bC, which is not good enough in these cases.k 3 4 5 6 7 8 9average rn 0.009 0.023 0.073 0.170 0.242 0.389 0.608Finally, we have investigated whether the alignment scores improve upon using thewindowing approach mentioned above. The following table shows for four sets ofrandom sequences with di�erent k and n the relative error of our score (i.e. thepercentage of the optimal score by which the score obtained by our algorithm exceedsthe optimal one) for di�erent values of L and W .k n L W = 0 W = 14L W = 12L W = L60 0.00% 0.00% 0.00% 0.00%3 100 40 0.12% 0.00% 0.00% 0.00%20 0.47% 0.35% 0.25% 0.25%60 0.21% 0.18% 0.18% 0.08%3 300 40 0.21% 0.18% 0.18% 0.17%20 0.36% 0.35% 0.32% 0.17%60 0.28% 0.12% 0.12% 0.00%4 100 40 0.28% 0.18% 0.17% 0.09%20 0.34% 0.18% 0.18% 0.17%60 0.41% 0.41% 0.41% 0.41%5 100 40 0.46% 0.42% 0.42% 0.42%20 0.69% 0.69% 0.50% 0.50%9
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