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Abstract

One of the main problems in computational biology is the construction of
biologically plausible alignments for given sequence families. Many procedures
have been developed for this purpose; most are based on clustering the sequences
hierarchically prior to the computation of their alignment and then proceeding
recursively.

In this paper, we compare results obtained with a new algorithm for simul-
taneous multiple sequence alignment, the so-called Divide & Conquer Alignment
procedure (DCA), with results obtained with iterative procedures. DCA allows
one to simultaneously align relatively large families of sequences using computa-
tionally efficient heuristics which — relative to the sum-of-pairs scoring function
which DCA accepts as the standard of truth — give rise to good (though not
necessarily optimal) alignments.

As expected, the simultaneous alignments often prove superior in picking up
biologically important signals contained in a family of highly diverged sequences,
which are sometimes overlooked by successive pairwise alignment.



1 Introduction

Multiple sequence alignment is a well-studied but still not satisfactorily solved problem
in string processing, having its most important application in computational molecular
biology. Indeed, many important conclusions to be drawn from the sequence of residues
in a big biomolecule (amino acids in a given protein or nucleotides in a given RNA or
DNA molecule) depend crucially on comparing that sequence with other such sequences
by means of appropriately constructed alignments. They are used to detect homologues
among sequences in genome databases, to study phylogenetic relationships, or to identify
structurally and/or functionally important parts of the molecule in question.

Consequently, establishing fast and reliable tools for multiple sequence alignment is
one of the most fundamental tasks in present day computational biology, enjoying an
abundance of publications and software contributions (see [34, 8, 59]).

The overall strategy one has to follow for producing reliable alignments is quite
obvious: by inserting gaps here and there into the sequences one wants to align, one tries
to come up with sequences of equal length so that the sequence entries at each site — that
is, in each column when the (aligned) sequences themselves are spelled out horizontally,
one below the other — exhibit a biologically meaningful diversity, possibly of not too large
a degree, which can be interpreted in a coherent way. For example, as mentioned above,
one may head for a phylogenetic interpretation implying that the sequence entries at a
given site have evolved from a common ancestor entry, or for a structural interpretation
implying that the aligned residues are placed at similar locations within the folded
molecule.

Consequently, because it is the similarity of sequence patterns which is supposed
to signal phylogenetic and/or structural kinship between the sequences, the aim of
sequence-alignment procedures is to mazimize overall similarity. Thus, all that is re-
quired is

e specifying in a biologically suitable and simultaneously quantifiable way the term
overall similarity, and

e constructing algorithms for producing alignments which maximize — or, if this
turns out to be too time consuming, at least exhibit a rather high degree of — that
overall similarity.

While the first task needs input from biology as well as from mathematical modeling,
the second task is a purely mathematical one. Unfortunately, many ideas relating to the
first task cannot be tested, and important structural parameters suggested by these ideas
cannot be evaluated easily unless the second task has been dealt with appropriately.

To tackle that second task, the starting point is clearly to find good methods for
aligning two sequences — that is, for pairwise alignment — and algorithms for solving
this problem were already successfully developed a quarter of a century ago [36, 56].
These algorithms follow the well-known dynamic programming method. However, their
natural and straightforward generalizations for aligning three or more sequences simul-
taneously (together with the natural extension of quantifying overall similarity in terms
of the so-called sum-of-pairs score[3]) quickly run into prohibitive memory and time con-
straints as number or length of the sequences in question increase. Therefore, almost all
techniques for aligning larger sets of sequences are based on first calculating a proper
order — or, more precisely, a binary hierarchy — for the sequences to be aligned, and
then constructing a multiple alignment in a “bottom-up” or “hill-climbing” manner by
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performing a series of pairwise alignments (using, if necessary, appropriate adaptations
of the standard algorithm aligning appropriately defined “profiles” of sequences rather
than sequences) according to that precalculated hierarchy (see for example [10],[31] for
reviews).

However, these methods (e.g. DFALIGN [14], GENALIGN [30], TREEALIGN [20],
MULTAL [50], PILEUP [16], CLUSTAL W [51], MALIGN [60]) — though fast — can be
used with some reservation only as they rarely allow one to reconsider an alignment of
a subfamily in the light of information coming from sequences outside that subfamily.

On the other hand, significant progress with implementing dynamic programming
procedures for simultaneous multiple alignment was made by H. CARRILLO and D.J.
LipPMAN [7] in the late eighties: it became possible to align simultaneously and opti-
mally between six and eight protein sequences (of medium length and comparatively
high pairwise similarity) in some minutes. This was achieved by a branch-and-bound
approach, cutting down the (high-dimensional) search space used in standard versions of
dynamic programming by considering projections of precalculated heuristic alignments
onto the (two-dimensional) “boundaries” of that search space.

Yet, even when implementing the proposals by H. CARRILLO and D.J. LIPMAN
using highly sophisticated implementation techniques, the resulting program, called MSA,
often requires more time and/or memory space than available whenever it has to deal
with larger data sets (regarding the number as well as the length of the sequences) [19].

However, there exists an algorithm which is based on MSA and yet is significantly
faster, providing very good, if not optimal alignments for comparatively large data sets
(even those including long sequences), called the Divide & Conquer alignment procedure
(DCA). The performance of this algorithm has been discussed in some detail in [53, 49,
47].

In this paper, DCA is used to compare optimal (or, at least close-to-optimal) sum-
of-pairs-score alignments of some protein and some RNA sequence families with results
produced by various iterative alignment procedures, highlighting advantages offered by
the former.

The contents of this paper are as follows: First, we discuss, from a general point of
view, the differences between simultaneous and iterative multiple sequence alignment
methods. Next, we briefly recall the description of the problem in question in formal,
purely mathematical terms and summarize the workings of the DCA algorithm. And
then, we discuss in detail some biological data sets: First, we give an alignment of nine
serine protease sequences which significantly extends results obtained in [29]. Next, we
discuss a set of eight RNase MRP RNA sequences, and we briefly interpret the results
phylogenetically, using the program SplitsTree [13], an independent program developed
for phylogenetic analysis. And finally, we report and briefly discuss the results of a
recent evaluation of five multiple sequence alignment procedures, including DCA, using
a set of ten rRNA sequences [23].

2 Some Differences between Simultaneous and Iter-
ative Multiple Sequence Alignment Methods

Iterative methods are very fast, and they can align, in principle, any number of se-
quences. Over the years, they have successfully incorporated growing biological knowl-
edge regarding e.g. the use of appropriate substitution matrices, region-dependent gap-



penalties and weighting schemes (see for instance [51]). The resulting alignments are
quite acceptable for families of moderately diverged sequences. Yet, when it comes to
align a family of highly diverged sequences, they easily run into local, but not necessar-
ily global optima, — a risk which is of course inherent in any hill-climbing bottom-up
method.

In addition, while a simultaneous alignment procedure tries to optimise some well-
defined score function for multiple sequence alignment [3], iterative methods often do
not even accept such a function (which might be tested for its biological significance and
improved) as a standard of truth.

A further problem of iterative alignment procedures is that their results depend cru-
cially on the precalculated order in which the sequences are processed!, while simultane-
ous alignment procedures take all sequences to be aligned into account simultaneously
and therefore do not depend on any precalculated grouping of the sequences in question.

Most importantly, iterative methods perform a series of pairwise alignments whereby
pairs of more closely related sequences — or pairs of already aligned subfamilies of se-
quences — are considered first. This can go wrong for the following reasons:

1. There is often more than one optimal alignment for any given pair of sequences
— or pair of already aligned subfamilies — so that an arbitrary decision has to be
made for choosing one of those for further consideration (at least, unless additional
effort is spent to find out which of those might be biologically the most plausible
one — or to keep track of all of them).

2. Optimal alignments are often highly sensitive with respect to parameter changes,
in particular, when more distantly related sequences (or subfamilies) are to be
aligned. Consequently, the set of optimal pairwise alignments one has to choose
from may depend strongly on the parameters used in the calculation.

3. Once all members of some closely related subfamily have been considered, the
alignment of this subfamily is locked so that any more distantly related sequences
can never have an influence on this sub-alignment. Yet, it was noticed that reopen-
ing such a locked alignment for performing pairwise alignments of two subfamilies
(e.g.[50]) or simultaneous three-way alignments [55] often improves the overall
alignment. However, even these procedures are still based on locking some sub-
alignments.

Instead, simultaneous alignment procedures offer the following advantages:

1. Because such procedures align a family of sequences in one step, the “multiple
optima problem” does not present itself at all in the construction process. Of
course, there can also be more than one “final” optimal alignment of the whole
sequence family. However, at this final stage, that might actually present quite
interesting and valuable information, e.g. for figuring out “uncertain alignment
sites”.

2. More often than not, a simultaneous alignment procedure should be more robust
against parameter changes than procedures based on pairwise alignments, partic-
ularly for data sets consisting of a comparatively large number of sequences.

!For example, CLUSTAL V [24] and PILEUP [16] use an UPGMA tree (derived from pairwise align-
ment scores transformed into distances) for guiding the successive alignment stages while CLUSTAL W
uses a Neighbour-Joining tree and allows the user to specify another tree if he doesn’t agree with that
tree, or just wants to check out an alternative tree [51].



3. Already D.J. LIPMAN et al. observed that the quality of a simultaneous alignment
of a sequence family (quality in terms of the number of alignment sites which
agree with an alignment based on the structure of the molecules involved) generally
increases with the number of members in that family [29]. And they observed that
that quality can even be increased by including one or two “outgroup sequences” —
that is, more distantly related sequences — in a simultaneous alignment procedure,
a fact which almost by definition cannot hold for iterative procedures.

A further problem in biological sequence alignment is that given any two sequences, their
biologically most plausible pairwise alignment often is not optimal but just suboptimal,
and sometimes remains suboptimal even after trying carefully and specifically to opti-
mise the employed set of alignment parameters with regard to the sequences in question.
The reason for this is that the mutation process in different areas of a biomolecule can
hardly be modeled by one and the same model, and in particular not by a model which
presupposes the validity of some kind of a general stochastic Fermat Principle for such
a process. For instance, it is well-known that the residues in biomolecular sequences are
often correlated and do not evolve by some purely stochastic mutation process, indepen-
dently of the remaining residues (see for instance [32]). Yet, because these correlations
are very difficult to model correctly and, provided even that that could be achieved,
are almost impossible to handle computationally, almost all alignment procedures (in-
cluding MSA and DCA, so far) employ a single substitution cost matrix across the entire
sequence.

And even more problems arise when it comes to model appropriately the probabilities
for the occurrence of insertions and deletions.

Yet, it is virtually impossible to handle all possibly relevant suboptimal alignments
in a computationally acceptable way because, unfortunately, the number of alignments
to be taken into consideration generally grows enormously upon even the slightest re-
laxation of the optimality criterion [58]. Therefore, iterative methods can go wrong
in

e always choosing the optimal alignment for the most closely related pairs of se-
quences, as well as

e choosing the optimal alignment of already aligned subfamilies, — thereby induc-
ing, of course, some sort of suboptimal alignment between members of different
subfamilies which in turn strongly depend on the alignment parameters and the
precalculated hierarchy.

Instead, a simultaneous alignment procedure forces every pair of sequences into a certain
suboptimal pairwise alignment, depending on all other sequences of the family to be
aligned, because it attempts to optimise an overall score function. As it happens, these
suboptimal pairwise alignments often are the biologically (more) plausible ones, because
they are calculated relative to the other sequences of the family under consideration (see
the example below).

It was also noticed that phylogenetic trees calculated from sequence alignments pro-
duced by iterative methods had a bias towards the tree that these methods used just for
processing the sequences [28, 52]. In contrast, an alignment procedure which takes all
the sequences to be aligned into account simultaneously, produces alignments for sub-
sequent phylogenetic tree reconstruction which are not biased by a previously chosen
“guide tree”.



A simple Example:

As a very simple biological example, we consider a short subsequence of e-globin
noncoding DNA? of human (s, ), chimpanzee (s2) and orangutan (s3) in order to highlight
the difference between iterative and simultaneous sequence alignment methods.

As a first step, any iterative sequence alignment procedure calculates a proper order
for the series of pairwise alignments which in this case is ( (sy, S2), s3) because the human
and chimpanzee sequences are more closely related to one another than either of them
is to the orangutan sequence. One rather reasonably looking alignment of S = {sy, sy}
with s; = GGAAGG and s; = GGGAGG is given by the matrix

__ (GGAAGG
AL"_<GGGAGG>'

There are two other alignments which might also be (biologically) plausible. These
contain some gaps and thereby avoid the substitution A <> G:
GGA—AGG / GG— AAGG
A@::<GG—GAGG>’ A@::<GGG—AGG>'

Any reasonable parameter choice for pairwise alignment would result either in M, as the
optimal alignment or in M, and M, as optimal alignments (as it would be hard to prefer
one of the latter two alignments as being more biologically plausible than the other).
Iterative methods have to make a somehow arbitrary decision unless they have decided
for the M; alignment (which they most probably do since the penalty for introducing
two gaps is in general considerably higher than that for accepting just one transition).
In this case, My and M, would be regarded as suboptimal or near-to-optimal alignments.

Considering the gorilla sequence of this part of the DNA doesn’t help because, here,
it is identical to the chimpanzee sequence. But including also the sequence s3 = GGAGAGG
of the more distantly related orangutan clarifies the situation: iterative procedures would
produce one of the alignments

GGA—AGG GG—AAGG
My :=|GGG—AGG |, My, :=|GG—GAGG |,
GGAGAGG GGAGAGG

unless they reopen the alignment for aligning e.g. some “profile” of the human and
orangutan sequence with the chimpanzee sequence.
A simultaneous alignment procedure would instead produce (for appropriate param-

eter choices) the alignment
GGA —AGG
My = [GG—caGa ],
GGA GAGG

which now appears to be at least as plausible biologically as any one of the alignments
My, or My, —implying that the last common ancestor of man, chimpanzee and gorilla as
well as that of man and chimpanzee still carried the GGAGAGG sequence and that the loss
of one of the residues at sites 3 and 4 precisely occurred independently and more or less
as a chance event in all three lineages after speciation. This hypothesis could further be
confirmed by some additional outgroup sequence of the form s = GG * A x G x AGG (where

“x” stands for arbitrary, short — hopefully even empty — insertions) (see [38]).

2We have taken the sequences from the EMBL database: gde21301, alignment positions 973-978.
The alignment-positions 720 up to 972 and 979-1100 are without any gaps and contain only 19 non-
constant positions which are scattered across the sequences.



3 The Sum-of-Pairs Score for Multiple Sequence
Alignment

In this section, we define multiple alignments formally and we describe the basic prin-
ciples of evaluating quantitatively the quality of a given multiple alignment (for further
reference see [10],[41], and [59]).

Suppose that we are given a family S = (si,...,s,) of k sequences:
51 = S11512---51n,
Sk = Sk1Sk2---Skny

of various lengths n; to n,, where each sequence entry s;; represents a letter from a given
finite alphabet A. An alignment of the sequences S is a matrix M = (mj;)1<i<k1<j<N
where

o m;; € AU {—}, with ‘=’ denoting the gap letter supposed not to be contained in

?

e the rows my := my; ... myy of M considered as sequences of symbols from AU{—},
reproduce the sequences s; upon elimination of the gap letters (1 <1 < k),

e the matrix M has no column, only containing gaps.

We denote the set of all alignments of S by Mg (see also [33] for a more general definition
of alignment).

Next, assume that for each pair of rows m,, and m, in an alignment, a (non-negative)
score function w, ,(m,, m,) has been defined which measures the quality of the alignment
of s, and s, defined by these two rows (upon elimination of common gaps), and denote
by Wepi(Sp, S¢) the minimum of w, ,(m,, m,), taken over all alignments M € Mg which
we suppose to vanish if and only if s, coincides with s, (see [59] for a thorough discussion
of score functions for pairwise alignment and note that, as an alternative to minimising
a dissimilarity score, one may also aim to maximise an appropriately defined similarity
score).

The weighted sum-of-pairs score [3] for an alignment M € Mg relative to a given
family of (generally non-negative) weight parameters o, ,(1 < p < ¢ < k) is now defined
by

w(M) = Z Qg * Wh,q (1M, M)
1<p<q<k
The multiple alignment problem then is to find matrices M € Mg whose weighted sum
of pairs score w(M) is small.

The logic for introducing the weight parameters «,, (from which procedures for
choosing them appropriately are to be deduced) is the following: In general, any set
of related biological sequences contains some sequences which are more closely related
to one another than to the remaining ones, and highlighting their similarity, at least
to some extent, might often be more important than forcing them to independently
conform to the patterns of the other sequences. On the other hand, as almost any
sample of sequences is biased in one way or the other (even, most probably, the sample
provided by Nature itself), a perhaps over-represented subset of highly homologous



original sequences

s] ]
I

so Fé
s3 ]
I

/ divide \
51

I
I
1 I
s
2
| I
I

/ divide \ / divide \

Sl%&&&&&&&&&&&&&&&%

53

Sfl— 557 B ;
s — PR B 2
l l align optimally j l
m%l m%z . m%l m o
mél méz\ ) 21
mél mé2 21

Figure 1: Schematic representation of the divide and conquer method.

sequences in a data set should not be allowed through its sheer size to force all the other
sequences to conform to its patterns. Both goals, highlighting similarity between closely
related sequences and discounting over-representation of certain subclasses of sequences
can (hopefully) be achieved by choosing appropriate weight factors.

4 The Divide &Conquer Alignment

As mentioned above, w(M) can be optimised in principle by straightforward dynamic
programming, provided wey(s,,s,) can be computed in this way [36, 45]. However, this
is possible only in theory at present: in practice, the space and time requirements for
dynamic programming, even in its most sophisticated forms, make it virtually impossible
to deal with, say, five not highly homologous sequences of length approximately 1000.
However, such tasks present themselves often in biological sequence analysis. It is here,
therefore, where we have to invoke DCA.

The general idea of DCA is rather simple (cf. Fig.1): Each sequence is cut in
two by cutting it just behind a suitable slicing site somewhere close to its midpoint.
This way, the problem of aligning one family of (long) sequences is divided into the
two problems of aligning two families of (shorter) sequences, the prefix and the suffix
sequences. This procedure is re-iterated until the sequences are sufficiently short — say,
shorter than a pregiven stop size L — so that they can be aligned optimally by MSA.
Finally, the resulting short alignments are concatenated, yielding a multiple alignment
of the original sequences.

Of course, the main difficulty with this approach is how to identify those slicing-site
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Figure 2: The definition of secondary charges: White boxes present an optimal alignment
M of the sequences s and t, shaded boxes present the concatenation of an optimal
alignment M of the two prefix and an optimal alignment M, of the two suffix sequences
defined by the slicing sites (z,7). Csy is then defined by w(M;) + w(My) — w(M).

combinations which lead to an optimal or — at least — close to optimal concatenated
alignment. Here, a heuristic based on so-called secondary-charge matrices which are
used for quantifying the compatibility of slicing sites in distinct sequences proved to be
successful:

More precisely, given a sequence s = s18s. .. s, of length n and a slicing site ¢ (0 <
¢ < n), we denote by s(< ¢) the prefix sequence s;sy...s. and by s(> ¢) the suffix
sequence Sqi1Sci2 - .- Sy, and we use the dynamic programming procedure to compute,
for all pairs of sequences (s,, s,) and for all slicing sites ¢, of s, and ¢, of s,, the secondary
charge Cs, s [¢p, ¢q] defined by?

Csp,sq [Cps €] = Wopt(8p(< ), 8¢(< ¢y)) + Wopt(Sp(> €p), S¢(> €4)) — Wopt(Sp, 8y)

which quantifies the additional charge imposed by forcing the alignment of s, and s, to
optimally align the two prefix sequences s,(< ¢,) and s,(< ¢,) as well as the two suffix
sequences s,(> ¢,) and s,(> ¢,), rather than aligning s, and s, optimally (cf. Fig. 2).
The calculation of the matrices Cs, s, can be performed by computing forward and
reverse matrices in a similar way as described in [25, 35, 54]. Note that there exists, for
every fixed slicing site ¢, of s, at least one slicing site ¢,(¢,) of s, with Cy s [¢,, c,(¢p)] =
0 which can be computed easily from any optimal pairwise alignment of s, and s,. The
problem multiple alignments have to face, is that given a slicing site ¢, of s,., the optimal
slicing site ¢, (¢,(é)) of s, relative to the slicing site ¢,(¢,) of s, might not coincide with
the optimal slicing site ¢, (¢,) of s, relative to the slicing site ¢, of s,. In other words,
pairwise optimal alignments may be incompatible with one another - much in analogy
to frustrated systems considered in statistical physics.

To search for good k-tuples of slicing sites, we therefore define the multiple additional
charge C(cy, ..., c;) imposed by slicing the sequences at any given k-tuple of slicing sites

3or just the negative of this if one deals with similarity rather than with dissimilarity scores.
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(c1,...,c) as a weighted sum of secondary charges over all projections (c,, ¢,), that is,
we put

Cler,eayooner) = Y g Cyg.lep el
1<p<q<k
where the o, , are the same sequence-dependent weight factors as above.

Our proposition is now that using those k-tuples as the preferred slicing-site combina-
tions that minimise — for a given fixed slicing site ¢, of, say, the longest sequence s, which
we choose somewhere in the middle of that sequence — the value C(cy, ..., ¢p_1, €, Cpi1,
..., ¢) over all slicing sites ¢1,..., ¢p—1,Cpt1,..., ¢, Of 81,...,Sp_1,8p41, . - ., Sk, Lespec-
tively, will result in very good, if not optimal multiple alignments because, in this way,
the mutual frustration is distributed as fairly as possible.

In conclusion, reiterating this process until all sequences in any given subsequence
family have a length not exceeding the stop size L, DCA simply performs the following
general procedure:

Algorithm DCA(sy,Sg,...,8¢; L)

If mineqo,. m{ni} <L
then return an optimal alignment of sq,ss, ..., s, (using e.g. MSA);
else return the concatenation of

DCA(s1 (< c1),82(< c2), -0y Sk
and DCA(Sl(> Cl), 52(> CQ), ..., Sk
where (cp,¢o,...,ck) := calc-cut(sy, Sa, ..., Sk),

where the subroutine calc-cut computes a C-optimal k-tuple of slicing sites (see [49, 39, 6]
for details regarding suitable branch-and-bound approaches towards that optimization
problem).

5 The Present and the Future State of the Imple-
mentation of DCA

The program DCA is a C-implementation of the divide and conquer alignment method,
written in ANSI C, so that it will run on any computer with an ANSI C compiler
available. Current details on the availability of DCA can be found on the DCA World-
Wide Web Homepage [48].

The optimal alignment calculations required by the divide and conquer method are
performed by the program MSA (version 2.1) [19, 29, 42] which also has to be installed
on the same computer, and has to be executable in the same directory as DCA.

In general terms, DCA takes as input a family of sequences and a matrix of pair-
wise letter distances (e.g. PAM [9], Blosum [21]) including affine gap penalties, and it
then produces a multiple alignment of that sequence family. The input format for the
sequences and the score parameters are the same as those for MSA * [42]. Tt is possible
to penalise gaps at the beginning and the end of an alignment either just like internal
gaps, or not to penalise terminal gaps at all, allowing for what people call free shift.

4Unfortunately, the present implementation of MSA puts the gap penalty parameters and the substi-
tution matrix into a single file. So, in the present format, they cannot easily be varied independently
of each other.
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Several other parameters can be chosen for DCA: stop size L, window size W, and
weight intensity A (W and lambda are described below).

As explained in Section 4, the stop size L of the recursion gives an upper bound
for the size of the sequences to be aligned optimally by MSA. Thus, too large an L (e.g.
L > 50) can result in very long running times and very large memory usage due to the
resulting MSA runs. On the other hand, too small an L (e.g. L < 5) can result in empty
subsequences which easily lead to unsuitable alignments.

We recommend choosing L between 16 and 30. More precisely, for larger sequence
families or for families of closely related sequences a small L results in a short running
time as well as in quite acceptable alignments, whereas for a small number of sequences
or for sequences which are highly diverged a larger L is advisable to get high quality
alignments.

In case one wishes to check and perhaps correct the alignment in the proximity of
slicing sites, a windowing approach [49] has also been implemented: Inside a window of
size W, placed across each slicing site, the alignment can be re-aligned optimally.

In the present implementation, the weighting factors o, , for the cost function C
described in Section 4, are computed using the following formula:

o, =1—=\- (wom(spa Sq) — i <icj <k { Wop (8i, Sj)}>
pq maX15i<j§k{wopt(siasj)}

where A is defined to be the weight intensity. That intensity may be set to any value
between A =1 (maximum weighting) and A =0 (no weighting: o, , =1 forall 1 <p <
q<k).

For more than ten or twelve highly diverged sequences, the calculation of the first
slicing-site combinations may take a rather long time. So, in that case, a perhaps
slightly less accurate alignment can be obtained by using the option Off at the heading
“C-optimal slicing sites:” (the default is On). In this case, the sub-routine calc-cut which
minimizes C'(é1, s, . . ., ¢x) exactly, is replaced by an appropriate and fast search for C-
suboptimal k-tuples (¢4, ¢a, . . ., ¢x) using standard (heuristic) combinatorial optimization
techniques [40]. This allows one to obtain still rather reasonable looking alignments
with time and memory space requirements of the order of O(k*n® +%LF), where k is the
number of sequences and 7 is the length of the longest sequence, making the procedure
for small L comparable — with respect to time and space requirements — to iterative
alignment procedures, the advantage still being that the sequences are being aligned
simultaneously.

In the near future, following ideas proposed in [6] and in [51], preprocessing proce-
dures will be implemented in order to speed up the calc-cut subroutine and to apply more
sophisticated weighting schemes, region-dependent gap-penalties and pair-dependent
substitution matrices.

6 Examples

In the current implementation of DCA, the parameters used for the (affine) gap penalty
function and substitution matrix are the same for all pairwise alignments (and also in
the MSA-subroutine). In addition, we employ the wnweighted sum-of-pairs score, i.e.
the weight intensity A is put equal to 0. However, even with these simplifications, the
algorithm produces high quality alignments, in particular if a reasonably large num-
ber of biological sequences is considered (a fact which is well in accordance with the
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Brookhaven
Proteins Code (Chain) | Seq. length
Rat tonin 1TON 235
Porcine kallikrein 2PKA (A) 232
Bovine trypsin (orthorhombic) 2PTN 223
Rat trypsin 2TRM 223
Bovine a-chymotrypsin 4 CHA (A) 245
Rat mast cell proteinase 3RP2 (A) 224
Streptomyces griseus proteinase A 2S5GA 181
Streptomyces griseus proteinase B 3SGB (E) 185
Lysobacter enzymogenes Alpha-lytic protease | 2alp 198

Table 1: The nine serine protease sequences used in Example 6.1.

observation that with the number of sequences to be aligned, the agreement increases
between biologically “plausible alignments” — that is, alignments based on phylogenetic
or structural information concerning the molecules involved — and alignments which are
(sub)optimal relative to an appropriately defined sum-of-pairs score [29]).

Following the principles proposed by M. McCLURE, T. Vasi, and W. FirrcH [31],
we have evaluated our results® rigorously by measuring the degree by which they iden-
tify certain structurally conserved subsequences (often called motifs) which are known
(or supposed) to be important for the structure and/or function of the molecule. In
principle, that degree is measured not just by the size of the largest set of sequences
correctly aligned with each other relative to a pre-given motif, but by the number and
size of the various subclasses of correctly aligned sequences [11].

6.1 Alignment of Serine Protease Sequences

As a first example, we consider the protein family of serine proteases. A number of
mammalian and microbial protein structures of that family have been determined by
X-ray crystallography and, although there is less than 21 percent sequence identity
between the mammalian and microbial serine proteases, it has been observed that they
all adopt similar three-dimensional structures.

D.J. LIPMAN et al. [29] aligned five mammalian sequences using the MSA procedure.
They observed a high agreement of the resulting multiple sequence alignment with the
structural alignment presented in [18].

In the following, we extend their work by presenting an alignment of nine serine
protease sequences with known three-dimensional structure (cf. Table 1), consisting
of six mammalian (rat tonin, porcine kallikrein, bovine trypsin, rat trypsin, bovine a-
chymotrypsin, and rat mast cell proteinase) and three microbial ones (proteinase A and
B from Streptomyces griseus, and a-lytic protease from Lysobacter enzymogenes). As
a standard of truth, we take the structural alignment of the EMBL 3d-ali database®.

°For an evaluation of the results of DCA regarding the four protein families considered in [31], cf.
[47].

6This is a collection of protein structural families, each consisting of (a) non-redundant and multiple
tertiary structural superpositions and (b) resulting primary sequence alignments [37] which can be
found on the World Wide Web at http://www.embl-heidelberg.de/argos/ali/ali.html.
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motif 1 motif 2

1ton ivggykceknsqpwQVAV----IneyL--CG-GVLIdps---WVI
2pka iiggreceknshpwQVAI--YhyssfQ--CG-GVLVnpk---WVL
2ptn ivggytcgantvpyQVSL----NsgyhF-CG-GSLInsq---WVV
2trm ivggytcqensvpyQVSL----NsgyhF-CG-GSLIndg---WVV

4cha  cgvpaiqpvlsglsrivngeeavpgswpwQVSL--QdktgfhF-CG-GSLInen---WVV

3rp2 ----—-----——--- iiggvesiphsrpyMAHLDivtekglrvICG-GFLIsrq---FVL
2sga  —-------------- iagGEA---- tggsR--CSLGFNVsvngvaHAL
3sgb  —---—--m--———-- isgGDA---- sstgR--CSLGFNVrsgstyYFL
2alp anivgGIE------- i nasL---CSVGFSVtrgatkGFV

motif 3 motif 4 motif 5
1ton  TAAHCY---snNYQvllgrnnlfkdep---fa----qrrl1VRQSFRhpdy--iplivtnd
2pka  TAAHCK---ndNYEvwlgrhnlfenen---ta----qffgVTADFPhpgf----nlsadg
2ptn  SAAHCY---ksGIQvrlgedninvveg---ne----qfisASKSIVhpsy--nsntl---

2trm  SAAHCY---ksRIQvrlgehninvleg---ne----qfvnAAKIIKhp------ nfd--r
4cha  TAAHCGvttSDVvvagefdqg--------- sssekiqklkIAKVFKnsky--nslti---
3rp2 TAAHCK———grEITv11gahdvrkres———tq————qklkVEKQIIhesynsvpn —————
2sga  TAGHCT---nisaSWSiGTRTG-------- Ts

3sgb  TAGHCT---dgatTWWansarttvlGTTSGSs

2alp  TAGHCG---tvnaTARiggavvG------- TF

motif 6 motif 7 motif 8
1ton  teqpvhdhSNDLMLLHLSepa----di---tggvkvidlptk--EPKVgSTCLASGWgst
2pka  kdy----- SHDLMLLRLQspa----ki---tdavkvlelptq--EPELgSTCEASGWgsi
2ptn  -------- NNDIMLIKLKsaa----sl---nsrvasislpts--CASAgTQCLISGWgnt
2trm  ktl----- NNNIMLIKLSspv----kl---narvatvalpss--CAPAgTQCLISGWgnt
4cha  -------- NNDITLLKLStaa----sf---sqtvsavclpsasdDFAAgTTCVTTGWglt
3rp2 -------- LHDIMLLKLEkkv----el---tpavnvvplpspsdFIHPgAMCWAAGWgkt
2sga  —------- NNDYGIIRHSnpaaadgrvylyngsyqdit-tag--NAFVgQAVQRSGSttg
3sgb  -------- NNDYGIVRYTnttipk-dg---tvggqdit-saa--NATVgMAVTRRGSttg
2alp —------- GNDRAWVSLTsaqtllprv---angssfvtvrgst-EAAVgAAVCRSGRttg
motif 9 motif 10

lton -------- npsemvvshdlqCVNIHLLSn---ekcietykdnvtdvMLCAgemeggkDTC
2pka  epgpddfefpde------ iqCVQLTLLQn---tfcadahpdkvtesMLCAgylpggkDTC
2ptn  --kssgtsypdv------ 1kCLKAPILSd---sscksaypgqitsnMFCAgyleggkDSC
2trm  --lssgvnepdl------ 1qCLDAPLLPqg---adceasypgkitdnMVCVgfleggkDSC
4cha  --rytnantpdr------ 19QASLPLLSn---tnckkywgtkikdaMICAg--asgvSSC
3rp2 ----- gvrdptsyt----1rEVELRIMDe---kacvd-yryyeykfQVCVgspttlrAAF
2sga LRSGSVTIGl-natvnygssgivygMIQTnvCAQ---------
3sgb THSGSVTAl-natvnygggdvvygMIRTnvCAE---

2alp —---mmmmmmmmm—m—— YQCGTITAk-nvt-anyaegavrgLTQGnaCMG---------

motif 11 motif 12 motif 13

lton  AGDSGGPL--ICdg----VLQGITSGGAt----- pca--kpktpal YAKLIKFTSWIkkv
2pka  MGDSGGPL--ICng----MWQGITSWGHt----- pcg--sankpsIYTKLIFYLDWIddt
2ptn  QGDSGGPV--VCsg----KLQGIVSWGSg------ ca--qknkpgVYTKVCNYVSWIkqt
2trm  QGDSGGPV--VCng----ELQGIVSWGYg------ ca--1pdnpgVYTKVCNYVDWIqdt
4cha  MGDSGGPL--VCkkngawTLVGIVSWGSs----- tc---ststpgVYARVTALVNWVqqt
3rp2  MGDSGGPL--LCag----VAHGIVSYGH------- p-—--dakppalFTRVSTYVPWInav
2sga  PGDSGGSL--FAgs----TALGLTSGGSg----- nc---rtggttFYQPVTEALSAYgat
3sgb  PGDSGGPL--YSgt----RAIGLTSGGSg----- nc---ssggttFFQPVTEALVAYgvs

2alp RGDSGGS-WITsag----QAQGVMSGGNvgsngnncgipasqrssLFERLQPILSQYgls

1ton  mkenp
2pka itenp
2ptn iasn-
2trm iaan-
4cha  laan-

3rp2 in---
2sga  vl---
3sgb  vy---
2alp lvtg-

Table 2: The nine serine protease sequences used in Example 6.1.
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Organism GenBank acc.no. | Seq. length
Mouse | Mus musculus J03151 274
Rat Rattus norvegicus (see caption) 273
Human | Homo sapiens X51867 264
Bovine | Bos taurus 725280 278
Frog Xenopus laevis 711844 276
Yeastl | Saccharomyces cerevisiae 714231 339
Yeast2 | Schizosaccharomyces pombe X52530 399
Plant | Arabidopsis thaliana (see caption) 261

Table 3: The eight currently known RNase MRP RNA sequences used in Example 6.2.
The Arabidopsis sequence and the Rat sequence are not contained in GenBank. They
were obtained from [43] and from [27], respectively.

In Figure 3, we present an alignment produced by DCA, using stop size L = 30, free
shift, and the Blosum30 substitution matrix [21] (converted to distances with integer
values from 0 to 27) with an affine gap penalty function of g(I) =5+ 10 - 1.

There are thirteen motifs for which the predominant secondary structure is known
[26]. Six motifs are aligned correctly over all nine sequences (Figure 3: motif 3, 6, 7, 8,
12, and 13), the motifs 2 and 11 are misaligned, though only at their very beginning or
end, respectively, and three motifs are correctly aligned within each group of mammalian
and microbial sequences (motifs 4, 9, and 10), but the alignment across the subfamilies
is wrong. For the remaining two motifs, the alignment of the (larger) set of mammals
is correct (motif 5) or “reasonable” (motif 1), while — with respect to the microbial
sequences — only one is almost correct (motif 1) and the other is incorrect (motif 5).
Altogether, there are 77 of 111 positions belonging to some motif correctly aligned over
all sequences.

Even though commonly used alignment procedures (e.g. CLUSTALW [51]) per-
form well within the group of mammalian or microbial serine protease, respectively, the
quality of the alignments decline significantly when members of both groups are to be
aligned. None of the alignment procedures we have tested was able to align more than
the motifs 2, 3, 6, 12, and 13 correctly.”

One crucial set of parameters for sequence alignment is the substitution matrix. If
the mutation process of the (sub)sequences used for scoring the alignment is modelled
well by a substitution matrix, then the optimal alignments (with respect to the resulting
scoring system) are relatively independent of the gap penalties (within some reasonable
range, see for example Section 6.3). We suspect that the main difficulty of generating
a good alignment across the subfamilies of mammalian and microbial serine protease
sequences is the (present) lack of the option to use pair-dependent substitution matrices
from a parametrised set of such matrices appropriate for this protein family.
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6.2 Alignment and Phylogeny of RNase MRP RNA Sequences

As a second example, we have tested DCA on a set of highly diverged RNase MRP RNA
sequences. The eight currently known sequences® are from human, bovine, mouse, rat,
frog, two yeasts (Saccharomyces cerevisiae and Schizosaccharomyces pombe) and plant
(Arabidopsis) (see Table 2). In the following, we will refer to Saccharomyces cerevisiae
and Schizosaccharomyces pombe as yeastl and yeast2, respectively.

There are three motifs which we have highlighted in Figure 4 by using capital letters.
Note that — with the exception of the second and third motif in yeast2 — all motifs are
reasonably well aligned. The reason why yeast2 appears to be difficult to align is that
this sequence is significantly longer than all the other sequences (in fact it contains an
additional subsequence of length 60 between the first and the second single-stranded
region) and the motifs 2 and 3 of yeast2 differ significantly from the corresponding
motifs of the other sequences. The gaps occurring in motif 2 in all sequences other
than yeastl correspond to an (unusual) loop in the secondary structure of the yeastl
sequence, unique among the RNase MRP RNA sequences found so far. None of the
commonly used programs we have tested on this data set (CLUSTAL W, TREEALIGN,
MALIGN, PILEUP) was able to align this RNA family with respect to the motifs as
well as DCA — in particular, no other program predicted the loop.

In order to analyse why successive alignment procedures fail to produce a reasonable
alignment for this data set, we investigated the phylogenetic relationships between these
species. In particular, we looked at the potential (phylogenetic) trees guiding an iterative
alignment procedure. To this end, we applied the SPLITSTREE program [13]. This
program does not always return a (proposal for a) phylogenetic tree, — in general, it
returns graphs which indicate conflicting “phylogenetic” information in the data set
which does not all fit into a single tree. In Figure 5, we show the graph generated
by the SPLITSTREE program for the set of Hamming distances derived from pairwise
alignments.

Obviously, any reasonable tree guiding a successive alignment puts the two yeasts
and the Arabidopsis sequence close together. But any successive alignment of these three
sequences is incorrect for the second and third motif due to the fact that pre-aligning any
pair of these sequences goes wrong in this respect. Moreover, a simultaneous alignment
of only these three sequences, e.g. by MSA, does neither identify motif 2 nor motif 3, not
even for any two of these three sequences. But including the vertebrate sequences, a
simultaneous alignment clearly identifies these motifs at least for yeastl and the plant
sequence (see Figure 5).

6.3 Alignment of 12S RNA Sequences

In the third and final example, we present an alignment of ten 12S RNA sequences
of average length 290 for which an alignment based on secondary structure had been
worked out in [22]. Five of these sequences represent phyla of vertebrates (cow, bird,

"Motif 1 appears to be exceptional in that a surprisingly high sequence identity between the amino
acids at positions 16-19 is observed (which for all except the bovine a-chymotrypsin and the Lysobac-
ter enzymogenes a-lytic protease sequence are actually the first non-gap positions) although, for the
microbial sequences, that position 19 is actually the first site of motif 1 and therefore corresponds to
position 30 rather than 19 of the mammalian sequence alignment.

8There are actually two more tobacco sequences. Because they are almost identical to the Arabidop-
sis sequence, we have excluded them here.
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Human g------------ uucgugcugaaggeccuguauccuaggecuacacacugaggacucuguu

Bovine g------------ uucgugcugaaggccuguuuccuaggeuacauacggaggacua-guu
Mouse a----------- gcucgcucugaaggccuguuuccuaggeuacauacgagggacau-guu
Rat a----------- gcucgcucugaaggecuguuuccuaggeuacguacgggggaccuuguu
Frog g---------- uaggcauucugaagaccugaagucuaggcaacguacgggagacguaguu
Yeastl aauccaugaccaaagaaucgucacaaaucgaagcuuacaaaauggaguaaaauuuuuuuu
Yeast2 c----aaaugaccuuugagcucgaacgaucgugguugaagcagucauacaggaauuuuua
Plant a------------—- caauugucacuggacgaag--ugaaugggucauaugggeuug----
motif 1
Human  ccuccc---cuuuccgccuagGG--GAAAGUCCCCGGA---CCUCGg-----—---- gca
Bovine  ccuugu----- uugcgccuagGG--GAAAGUCCCCGGA---CCGUGg-—-—-—-—---- gca
Mouse ccuuau---ccuuucgccuagGG--GAAAGUCCCCGGA---CCACGg---------- gca
Rat  ccuuau---ccuuucgccuagGG--GAAAGUCCCCGGA---CCAUGg---—------- gca
Frog cuucaaucacaugacgccuagGG--GAAAGUCCCCGGA---UCUCGg---------- gua
Yeastl acucag---uaauaugcuuuggguuGAAAGUGUCCACCAAuucguau---------- gecg
Yeast2  uuccuc---uaaacagcuuuagG--GAAAGUCCCCGGACUCuugcgucuugaucuccaug
Plant  --ucca---aguuccggacccaG--GAAAGUCCCCGGG---CCACUu---------- auc

Human gagagugccacgug---cauacgcacguagacau-—---—--—-------=—-—=------
Bovine  gagagugccacgug---cccgugcacguagacuu-—————--—------—-————————-—
Mouse  gagagugccgegug---cacacgcgeguagacuu-—-—-------------—-——-----

Rat  gagagugccgcgug---cacacgcgeguaggeuu———————-—-—---—-—-————-—-—-

Frog gaaagugccgugcgcuacuauggegugcaauaau-——--=--=-—=-----=-=--==—=—=—-—
Yeastl gaaaacguaaugagauuuaaaaauuuuaaauugu--------------—-——-—-—-—-—
Yeast2 gagauugggacagg---cgguaacgugcugacuugaagaaucagcgguuucauuaaugge
Plant cgcagagaugcgge---cucgguaacgagagaau-———-—----------—-—-—-—-——-—--—-

Human  ----uccccgcuucccacuccaa------ aguccgccaagaagcg---—---- uaucccg
Bovine ----cccccgcuucucacgacua------ aacccgccaagaagcgaucc----uacccug
Mouse  ----cccccgcaagucacuguu------- agcccgccaagaagcgaccc-—--cuccggg
Rat  ----cccccgcaagucacuguu------- agcccgccaagaagcagccc-—--cuccggg
Frog ----cccgcccugcuguccauauc----- aacccgcuaagaagcu-------- cccagag
Yeastl ----uuaaaucaacucauuaaggagg---augcccuuggguauucugcuucuugaccugg
Yeast2  gcuaguuuuuccuuuagccuuuguacuuuaaaccucaagagauauaacucc--uguccag
Plant ----cuugcgguggagagauuc—------ aaauugcugagacgcg-------- ugugugg
motif 2
Human  --------- cugagcggceguggegeg----ggggeguc----AUCCGUCAGCUCC-----
Bovine --gggguggggaagcggagecggeguguugegggguguc-—--AUCCGUCAGCUUC-----
Mouse  --------- gcgagcugageggegugecageggggccuc——--AUCCGUCAGCUCA-----
Rat  --------- gcgageugageggegugeggegggguguc—---AUCCGUCAGUUCU-----
Frog --------- ccgagcggeuuggauuagggegggauCyC-—----- UCAUCAGUCAC-----

Yeastl uaccucuauugcaggguacugguguuuucuUCGGUACU-GGAUUCCGUUUGUAUGGAAUC
Yeast2 aaugaguagauaaggaauacagucuauaguuguguuucuugagcgucuaguguacgaacg

Plant ----------- agcuuauguggucucuccgccGAUGAU----AUCAUGGCCGUUC-----
Human  ----- UCUAGUUACgcag---------- gcagugcguguccgege-——---- acCAACCA
Bovine  ----UAAUAGUUACgcag---------- gcagugccuccaugcge------- acCAACCA
Mouse  ----- CAUAGUGACgcag---------- gcagugcgaccuggeucge——--- acCAACCA
Rat  ----- CCUAGUGACgcag---------- gcagugcgaccuuguacge-—---- acCAACCA
Frog ----- CAUAGUAACucag---------- guagcgcggcaacguccac—---- gcUAACUA
Yeastl  UAAACCAUAGUUaugacg---------- auugcucuuucccgugcuggaucgagUAACCC
Yeast2  guaugguugauuacgccauuucugaAUUGUGGUUUUUCGUCGUAGUU----- GAUAGUUA
Plant ----- GAGAGUUAuucac---------- cucuuccucuaugg---------- acUAACUG
motif 3

Human  CACGGGGCUCA----UUcucagcgc-ggeu-————=-——————==—==——=—=————
Bovine  CACGGGGCUCA----UUcucaccac-gucu---—---=-—=-——=—=—=—==—=—=--—
Mouse  CACGGGGCUCA----UUcucagcgcggeuac————==—======—==——=—=————

Rat  CACGGGGCUCA----UUcucgcgcg-geug-——————--—-—=———=—=——-=---=

Frog  AACGGGGCUCA----UUcucagaau-gcac——-——-—-—=-—=—=-=—=—=—==—=—=-=-=
Yeastl  AAUGGAGCUUACUAUUCuuggucca-uggauucacc—-—-—-—-—-=——===—==—-—
Yeast2 uacggucgcauccauuuguugaugu-AUCACAAUGGGGCUUAGUCucgugcucaa
Plant  AACGGGGCUUACGUuucaaugacaa-gcaacuuuu--------—-=-=—=—==—-==—

Figure 3: An alignment of eight RNase MRP RNA sequences, computed with DCA
using a weighted transition/transversion matrix for substitutions of 2/5, and a linear
gap penalty function of g(I) =6+ 2 1.
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Figure 4: The SPLITSTREE graph for an alignment of eight RNase MRP RNA sequences
obtained by DCA using Hamming distance.

Organism GenBank acc.no. | Seq. length
Cow Bos taurus J01394 302
Moa Megalapteryx didinus (Ratite Bird) X67634 295
Scincid Lizard | Leiolopisma nigriplantare polychroma unpublished 290
Toad Xenopus laevis (Xenopus; Pipidae) M10217 300
Cyprinid Fish | Crossostoma lacustre M91245 297
Sea Urchin Paracentrotus lividus J04815 287
Fly Drosophila yakuba X03240 288
Honeybee Apis mellifera L06178 278
Cicada Magicicada tredecim unpublished 271
Earthworm Aporrectodea rosea 02392 285

Table 4: Ten 12S RNA sequences used in Example 6.3.
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number and sizes of correctly aligned subclasses
transition:transversion penalty
2:5 ‘ 2:6
motif || CLUSTALW ‘ MALIGN ‘ PILEUP ‘ TREEALIGN ‘ DCA
1 1 (10) 1 (10) 1 (10) 1 (10) 1 (10) 1 (10)
2 1 (10) 1 (10) 1 (10) 1 (10) 1 (10) 1 (10)
3 3 (6,2,2) 2 (8,2) 3 (8,1,1) 2 (8,2) 2 (8,2) 2(9,1)
4 1 (10) 2 (8,2) 2 (9,1) 2 (9,1) 2 (8,2) 1 (10)
5 1 (10) 1 (10) 1 (10) 1 (10) 1 (10) 1 (10)
6 1 (10) 1 (10) 1 (10) 1 (10) 1 (10) 1 (10)
7 2(9,1) 2(9,1) 2(9,1) 2 (8,2) 2(9,1) 2(9,1)
8 2 (8,2) 4 (7,1,1) | 4(53,1,1) | 2 (8,2) 3(7,2,1) || 2(9,1)
9 1 (10) 1 (10) 2 (9,1) 1 (10) 1 (10) 1 (10)
10 2(7,3) 2(7,3) 2 (6,4) 2(7,3) 2(7,3) 2 (8,2)

Table 5: The number and sizes of correctly aligned subclasses among the ten 12S RNA
sequences relative to the motifs 1 —10 achieved by the various alignment programs using
a fixed penalty of 2 for transitions and 5 for transversions, and those gap penalties which
optimise the sum of the maximal number of correctly aligned sequences taken over all
motifs. The last column contains the corresponding number and sizes achieved by DCA
using a penalty of 6 for transversions (and 2 for transitions).

lizard, frog, and fish), and five represent phyla of invertebrates (sea urchin, earthworm,
fly, honeybee, and cicada). From the structural alignment which we accept as the one
to aim for, ten highly conserved “motifs” could be identified, comprising altogether 69
sites, among which 30 are constant and 34 include transitions but no transversions,
while only 5 include transitions as well as transversions, and none contain gaps. The
245 “non-motif” sites include 72 gap sites. Among the 240 sites including at least two
“non-gaps”, there are 30 constant sites, 128 sites include transitions only, and 82 sites
include both, transitions and transversions.

These ten sequences have been used already in [23] where five alignment programs
(CLUSTAL W, MALIGN, PILEUP, TREEALIGN, and DCA) were tested regarding
their ability to correctly align the motifs within the sequences. As one of these programs
(TREEALIGN) has its transition:transversion penalties fixed at 2:5, the same values
were also used as the transition:transversion penalties in the remaining programs to
get a “fair” comparison. Then, in all five programs, the [gap open/gap extension]
parameters were allowed to vary, and the resulting alignments were scored by summing
up — from motif 1 to motif 10 — the maximal number N(1),..., N(10) of sequences
correctly aligned with respect to motif 1,. .., motif 10, respectively. Finally, those [gap
open/ gap extension| parameters were selected for each program which resulted in the
highest alignment score. Table 4 summarises the results obtained in this way in [23].
As one can see, all programs scored at least 86 and none scored more than 90 points.

Here, we add to this investigation as follows: As pointed out above, the trans-
version:transition rate 5:34 at sites within motifs is far below the ratio 2:5. Hence,
at least for the DCA procedure, we varied not only the gap parameters but also the
transition:transversion penalties. Amazingly enough, enlarging the transversion penalty
by just 1, from 5 to 6, and keeping the [gap open/gap extension| parameters at [3/2]
(which — for DCA — achieved the best score for the transition:transversion penalties 2:5,
investigated before), we immediately hit upon an alignment which scored 95 out of the
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Figure 5: An alignment of ten 12S RNA sequences, calculated by DCA using a weighted
transition/transversion matrix for substitutions of 2/6, and a linear gap penalty function

motif 1 motif 2 motif 3

UGGCGGUgcuuuauauccuuCUAGAGGAgccuguu--cuauaA-UCGauaaaccccgaua
UGGCGGUgccccaaacccacCUAGAGGAgeccuguu--cuauaA-UCGauaacccacguua
UGGCGGUgcuccacaucaacCUAGAGGAgccuguc--cuauaA-UCGauaccccccgauc
UGGCGGUgcuccaaacccacCUAGAGGAgccuguu--cuguaA-UCGauaccccucgecua
UGGCGGUgccuuagacccccCUAGAGGAgccuguu--cuagaA-CCGauaacccccguua
UGGCGGUuuuccaaaccuccCUGGAGGAgcuugcc-auug-aA-UCGauaacccacgaaa
UGGCGGUauuuua-gucuauCCAGAGGAaccuguu--uuguaA-UCGauaauccacgaug
UGGCGGCuuuuunauaucuaglUUAGAGAUguuugucgauuna-alU-UlUGauaguccacgaua
UGGCGGUaauuua--ucuaaUCAGAGGAaucuguu--uuguaA-UUGauaauccacgaua
UGGCGGUgucuua--ucaacCCAGGGGAaccuguc--ucauaaClUCGauaacccacga-a

motif 4 motif 5
aaccucACCaauucuugcuaa--uacagucUAUAUACCGCCAUCuucagcaaacccuaaa
cacccgACCaucucuugccca--ugcagccUACAUACCGCCGUCcccagecccgecu-aug
uaccucACCgcuuuuugaaac---ucagccUAUAUACCGCCGUCgucagccuaccuuaug
aaccucACCacuucuugccaa--acccgccUAUAUACCACCGUCgccagecccaccucgug
aaccucACCacuucuagucau--ccccgccUAUAUACCGCCGUCgucagcuuacccugug
uaccucACCaacuuuuguaac--aacagcuUGUAUACCAUCGUCguaagucuacuucuu-

gaccuuAClUuaaauuuguaau----caguuUAUAUACCGUCGUUaucagaauauuuuau-
agaucuAClUuaaguuuna-aau-------- uUAUGUAUUGUUGUUuuaa--uuagcuuga-
gauucuAUUuua------ aau----aaauuUGUAUACCUCUGUCaaga--auguuuuau-

uuccucACCcucucua--gauucuacagccUGUGUACUGCCGUCguaagcacaccccua-

motif 6
aaggaaaaaaaguaagcguaauuaugauac---auaaaaacguUAGGUCAAGGUGUAacc
aaagaacaauagcgagc--acaacagccac-ccgcuaacaagaCAGGUCAAGGUAUAgca
aaagaaguauaguaagc--aaaauagucac-caacuaaaacguCAGGUCAAGGUGUAgca
agagauucuuaguaggcuuaaugauuuuuc---aucaacacguCAGGUCAAGGUGUAgca
aaggcucaauaguaagc--aaagugggcac-aacccaaaacguCAGGUCGAGGUGUAgcg
————— gagaaaguugac---uuuaagggag-aacccuggacguCAGAUCAAGGUGCAgcc
-aagaauaauaauauuc--aauaauuuuaauaaaaauuuauauCAGAUCAAGGUGUAgcu
-auuuauuuggguuaga---gaaauuuuauauaauaauaau-uCAAAUCAAAAUGUAgua
----cagaauaauuuuc--auuuguuuuau--uaaaaaaaaguCAGGUCAAGGUGCAguu
-aaagaaagaagugugc-agacaugauuaa-acucauauacguCAGGUCAAAGUGCAgcc

motif 7
uaugaaaugggaagaaaugggcUACAuucucua----caccaagagaaucaagcacgaaa
uaugaga-uggaagaaaugggcUACAuuuucuaa---cauagaacaccacga--—---- aa
cauaaag-uggaagagaugggcUACAcucucu----- cccagagaacacga-------ac
uaugaagugggaagaaaugggcUACAuuuucuac---cuuagaauaaacga-------aa
uacgaagugggaagagaugggcUACAuuuucu----- acuagaauaagacga------au
uauaaguuggggauaggugagcUACAauguuug----aacaaaccagugg--------aa
uauauuu-aaguaauaauggguUACAauaaauuua--uuuaaacgganaa--------aa
uauuuaa-gauauaagaugaaUAUCAauaaauunaauuuuagaauua-----------uu
aauuuua-aagaaagaauggauUACAuuau------- uguaaaaaauga-- --au
cauggga-gggagaugauggguUACAcccua------ aacaaagauacgg-------- aa

motif 8 motif 9
guua----- uuaUGAAAccaauaa--cc----aaaggaggAUUUAGcaguaaa----cu-
gaga----- agaUGAAAcucucc---uca---gaaggcggAUUUAGcaguaaa—---au-

agcau----caalUGAAAcacugc---uc----aaagguggAUUUAGuaguaag----au-
gaucu----cuaUGAAAccaga----ucgagaaaaggcggAUUUAGcaguaaa----ga-

agca----- ucaUGAAAacuuaaugcuu----gaaggaggAUUUAGuaguaaa----aa-

ggag----- ggalUGAAAuacccc---ucg---gaaauuggAUUCAGcaguaag-cccca-

————————— uuaUGAAAaaauuu---uu----gaagguggAUUUGGuaguaaa----auu

uauuu----UAAUAuaaaua------ u----- gaaagagaAUUUAAaaguaaa----uu-

uguuuucuauaalUGAAAauca----- u----- gaaacuggAUUUGAaaguaaa-uuuca-

uauag----uacUAAAAgcuaua---u----- aaauuauuACUUGGuuguaacguuucu-
motif 10

---aagaauagag--ugcuuaguUGAAuuaggcca
---aggacaagaa-cgcccauuuUAAGecuggcce-
----aaacaagag--acuuaucuUAAAccagccc-
---gaaacaagagaguuccucuuUAAAacggccc-
---ggaaauagag--uguccuuuUGAAcccggcuc

-cuaagacaaugg------ gacUGAAaagagcuc—
auaaagauuauaa----auaauuUGAUuuuagcuc
---aaaguaauuu---cuuuaauUGAAgauaguau
---uuaaavaugu------ guuuUGAAuuuagguc
-ucaaaacuaaag--------- UGAAuaugaauc-

of g(l) =3+2-1.
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maximally 100 points — that is, it basically halved the number of mistakes (see Fig. 6 and
the last column of Table 4). Moreover, varying the [gap open/gap extension| parameters
[i, 7] within the range {2, 3,4} for i and {1,...,6} for j, respectively, never produced an
alignment which scored less than 88 points. Similar results were obtained for transver-
sion penalties from 7 to 9, while above 10 the quality of the resulting alignments started
to decrease again.

In view of similar observations regarding further data sets, it seems to be char-
acteristic for (close-to) optimal sum-of-pairs score alignments that, for them, “good”
substitution parameters may be more important than “good” gap penalty parameters
and that, for appropriate substitution parameters, the quality of the resulting alignments
are relatively robust against changes of the gap penalties. Consequently, simultaneous
alignment procedures appear to have the additional advantage compared with iterative
procedures that they are almost independent of gap penalty parameters provided good
estimates for the substitution parameters are available and a reasonable large number
of homologous sequences are being aligned.
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