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On Simultaneous versus IterativeMultiple Sequence AlignmentS.W. Perrey, J. Stoye, V. Moulton, A.W.M. DressJuly 7, 1997AbstractOne of the main problems in computational biology is the construction ofbiologically plausible alignments for given sequence families. Many procedureshave been developed for this purpose; most are based on clustering the sequenceshierarchically prior to the computation of their alignment and then proceedingrecursively.In this paper, we compare results obtained with a new algorithm for simul-taneous multiple sequence alignment, the so-called Divide& Conquer Alignmentprocedure (DCA), with results obtained with iterative procedures. DCA allowsone to simultaneously align relatively large families of sequences using computa-tionally e�cient heuristics which { relative to the sum-of-pairs scoring functionwhich DCA accepts as the standard of truth { give rise to good (though notnecessarily optimal) alignments.As expected, the simultaneous alignments often prove superior in picking upbiologically important signals contained in a family of highly diverged sequences,which are sometimes overlooked by successive pairwise alignment.
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1 IntroductionMultiple sequence alignment is a well-studied but still not satisfactorily solved problemin string processing, having its most important application in computational molecularbiology. Indeed, many important conclusions to be drawn from the sequence of residuesin a big biomolecule (amino acids in a given protein or nucleotides in a given RNA orDNA molecule) depend crucially on comparing that sequence with other such sequencesby means of appropriately constructed alignments. They are used to detect homologuesamong sequences in genome databases, to study phylogenetic relationships, or to identifystructurally and/or functionally important parts of the molecule in question.Consequently, establishing fast and reliable tools for multiple sequence alignment isone of the most fundamental tasks in present day computational biology, enjoying anabundance of publications and software contributions (see [34, 8, 59]).The overall strategy one has to follow for producing reliable alignments is quiteobvious: by inserting gaps here and there into the sequences one wants to align, one triesto come up with sequences of equal length so that the sequence entries at each site { thatis, in each column when the (aligned) sequences themselves are spelled out horizontally,one below the other { exhibit a biologically meaningful diversity, possibly of not too largea degree, which can be interpreted in a coherent way. For example, as mentioned above,one may head for a phylogenetic interpretation implying that the sequence entries at agiven site have evolved from a common ancestor entry, or for a structural interpretationimplying that the aligned residues are placed at similar locations within the foldedmolecule.Consequently, because it is the similarity of sequence patterns which is supposedto signal phylogenetic and/or structural kinship between the sequences, the aim ofsequence-alignment procedures is to maximize overall similarity. Thus, all that is re-quired is� specifying in a biologically suitable and simultaneously quanti�able way the termoverall similarity, and� constructing algorithms for producing alignments which maximize { or, if thisturns out to be too time consuming, at least exhibit a rather high degree of { thatoverall similarity.While the �rst task needs input from biology as well as from mathematical modeling,the second task is a purely mathematical one. Unfortunately, many ideas relating to the�rst task cannot be tested, and important structural parameters suggested by these ideascannot be evaluated easily unless the second task has been dealt with appropriately.To tackle that second task, the starting point is clearly to �nd good methods foraligning two sequences { that is, for pairwise alignment {, and algorithms for solvingthis problem were already successfully developed a quarter of a century ago [36, 56].These algorithms follow the well-known dynamic programming method. However, theirnatural and straightforward generalizations for aligning three or more sequences simul-taneously (together with the natural extension of quantifying overall similarity in termsof the so-called sum-of-pairs score [3]) quickly run into prohibitive memory and time con-straints as number or length of the sequences in question increase. Therefore, almost alltechniques for aligning larger sets of sequences are based on �rst calculating a properorder { or, more precisely, a binary hierarchy { for the sequences to be aligned, andthen constructing a multiple alignment in a \bottom-up" or \hill-climbing" manner by4



performing a series of pairwise alignments (using, if necessary, appropriate adaptationsof the standard algorithm aligning appropriately de�ned \pro�les" of sequences ratherthan sequences) according to that precalculated hierarchy (see for example [10],[31] forreviews).However, these methods (e.g. DFALIGN [14], GENALIGN [30], TREEALIGN [20],MULTAL [50], PILEUP [16], CLUSTALW [51], MALIGN [60]) { though fast { can beused with some reservation only as they rarely allow one to reconsider an alignment ofa subfamily in the light of information coming from sequences outside that subfamily.On the other hand, signi�cant progress with implementing dynamic programmingprocedures for simultaneous multiple alignment was made by H. Carrillo and D.J.Lipman [7] in the late eighties: it became possible to align simultaneously and opti-mally between six and eight protein sequences (of medium length and comparativelyhigh pairwise similarity) in some minutes. This was achieved by a branch-and-boundapproach, cutting down the (high-dimensional) search space used in standard versions ofdynamic programming by considering projections of precalculated heuristic alignmentsonto the (two-dimensional) \boundaries" of that search space.Yet, even when implementing the proposals by H. Carrillo and D.J. Lipmanusing highly sophisticated implementation techniques, the resulting program, called MSA,often requires more time and/or memory space than available whenever it has to dealwith larger data sets (regarding the number as well as the length of the sequences) [19].However, there exists an algorithm which is based on MSA and yet is signi�cantlyfaster, providing very good, if not optimal alignments for comparatively large data sets(even those including long sequences), called the Divide &Conquer alignment procedure(DCA). The performance of this algorithm has been discussed in some detail in [53, 49,47].In this paper, DCA is used to compare optimal (or, at least close-to-optimal) sum-of-pairs-score alignments of some protein and some RNA sequence families with resultsproduced by various iterative alignment procedures, highlighting advantages o�ered bythe former.The contents of this paper are as follows: First, we discuss, from a general point ofview, the di�erences between simultaneous and iterative multiple sequence alignmentmethods. Next, we briey recall the description of the problem in question in formal,purely mathematical terms and summarize the workings of the DCA algorithm. Andthen, we discuss in detail some biological data sets: First, we give an alignment of nineserine protease sequences which signi�cantly extends results obtained in [29]. Next, wediscuss a set of eight RNase MRP RNA sequences, and we briey interpret the resultsphylogenetically, using the program SplitsTree [13], an independent program developedfor phylogenetic analysis. And �nally, we report and briey discuss the results of arecent evaluation of �ve multiple sequence alignment procedures, including DCA, usinga set of ten rRNA sequences [23].2 Some Di�erences between Simultaneous and Iter-ative Multiple Sequence Alignment MethodsIterative methods are very fast, and they can align, in principle, any number of se-quences. Over the years, they have successfully incorporated growing biological knowl-edge regarding e.g. the use of appropriate substitution matrices, region-dependent gap-5



penalties and weighting schemes (see for instance [51]). The resulting alignments arequite acceptable for families of moderately diverged sequences. Yet, when it comes toalign a family of highly diverged sequences, they easily run into local, but not necessar-ily global optima, { a risk which is of course inherent in any hill-climbing bottom-upmethod.In addition, while a simultaneous alignment procedure tries to optimise some well-de�ned score function for multiple sequence alignment [3], iterative methods often donot even accept such a function (which might be tested for its biological signi�cance andimproved) as a standard of truth.A further problem of iterative alignment procedures is that their results depend cru-cially on the precalculated order in which the sequences are processed1, while simultane-ous alignment procedures take all sequences to be aligned into account simultaneouslyand therefore do not depend on any precalculated grouping of the sequences in question.Most importantly, iterative methods perform a series of pairwise alignments wherebypairs of more closely related sequences { or pairs of already aligned subfamilies of se-quences { are considered �rst. This can go wrong for the following reasons:1. There is often more than one optimal alignment for any given pair of sequences{ or pair of already aligned subfamilies { so that an arbitrary decision has to bemade for choosing one of those for further consideration (at least, unless additionale�ort is spent to �nd out which of those might be biologically the most plausibleone { or to keep track of all of them).2. Optimal alignments are often highly sensitive with respect to parameter changes,in particular, when more distantly related sequences (or subfamilies) are to bealigned. Consequently, the set of optimal pairwise alignments one has to choosefrom may depend strongly on the parameters used in the calculation.3. Once all members of some closely related subfamily have been considered, thealignment of this subfamily is locked so that any more distantly related sequencescan never have an inuence on this sub-alignment. Yet, it was noticed that reopen-ing such a locked alignment for performing pairwise alignments of two subfamilies(e.g. [50]) or simultaneous three-way alignments [55] often improves the overallalignment. However, even these procedures are still based on locking some sub-alignments.Instead, simultaneous alignment procedures o�er the following advantages:1. Because such procedures align a family of sequences in one step, the \multipleoptima problem" does not present itself at all in the construction process. Ofcourse, there can also be more than one \�nal" optimal alignment of the wholesequence family. However, at this �nal stage, that might actually present quiteinteresting and valuable information, e.g. for �guring out \uncertain alignmentsites".2. More often than not, a simultaneous alignment procedure should be more robustagainst parameter changes than procedures based on pairwise alignments, partic-ularly for data sets consisting of a comparatively large number of sequences.1For example, CLUSTALV [24] and PILEUP [16] use an UPGMA tree (derived from pairwise align-ment scores transformed into distances) for guiding the successive alignment stages while CLUSTALWuses a Neighbour-Joining tree and allows the user to specify another tree if he doesn't agree with thattree, or just wants to check out an alternative tree [51].6



3. Already D.J. Lipman et al. observed that the quality of a simultaneous alignmentof a sequence family (quality in terms of the number of alignment sites whichagree with an alignment based on the structure of the molecules involved) generallyincreases with the number of members in that family [29]. And they observed thatthat quality can even be increased by including one or two \outgroup sequences" {that is, more distantly related sequences { in a simultaneous alignment procedure,a fact which almost by de�nition cannot hold for iterative procedures.A further problem in biological sequence alignment is that given any two sequences, theirbiologically most plausible pairwise alignment often is not optimal but just suboptimal,and sometimes remains suboptimal even after trying carefully and speci�cally to opti-mise the employed set of alignment parameters with regard to the sequences in question.The reason for this is that the mutation process in di�erent areas of a biomolecule canhardly be modeled by one and the same model, and in particular not by a model whichpresupposes the validity of some kind of a general stochastic Fermat Principle for sucha process. For instance, it is well-known that the residues in biomolecular sequences areoften correlated and do not evolve by some purely stochastic mutation process, indepen-dently of the remaining residues (see for instance [32]). Yet, because these correlationsare very di�cult to model correctly and, provided even that that could be achieved,are almost impossible to handle computationally, almost all alignment procedures (in-cluding MSA and DCA, so far) employ a single substitution cost matrix across the entiresequence.And even more problems arise when it comes to model appropriately the probabilitiesfor the occurrence of insertions and deletions.Yet, it is virtually impossible to handle all possibly relevant suboptimal alignmentsin a computationally acceptable way because, unfortunately, the number of alignmentsto be taken into consideration generally grows enormously upon even the slightest re-laxation of the optimality criterion [58]. Therefore, iterative methods can go wrongin � always choosing the optimal alignment for the most closely related pairs of se-quences, as well as� choosing the optimal alignment of already aligned subfamilies, { thereby induc-ing, of course, some sort of suboptimal alignment between members of di�erentsubfamilies which in turn strongly depend on the alignment parameters and theprecalculated hierarchy.Instead, a simultaneous alignment procedure forces every pair of sequences into a certainsuboptimal pairwise alignment, depending on all other sequences of the family to bealigned, because it attempts to optimise an overall score function. As it happens, thesesuboptimal pairwise alignments often are the biologically (more) plausible ones, becausethey are calculated relative to the other sequences of the family under consideration (seethe example below).It was also noticed that phylogenetic trees calculated from sequence alignments pro-duced by iterative methods had a bias towards the tree that these methods used just forprocessing the sequences [28, 52]. In contrast, an alignment procedure which takes allthe sequences to be aligned into account simultaneously, produces alignments for sub-sequent phylogenetic tree reconstruction which are not biased by a previously chosen\guide tree". 7



A simple Example:As a very simple biological example, we consider a short subsequence of �-globinnoncoding DNA2 of human (s1), chimpanzee (s2) and orangutan (s3) in order to highlightthe di�erence between iterative and simultaneous sequence alignment methods.As a �rst step, any iterative sequence alignment procedure calculates a proper orderfor the series of pairwise alignments which in this case is ( (s1; s2); s3) because the humanand chimpanzee sequences are more closely related to one another than either of themis to the orangutan sequence. One rather reasonably looking alignment of S = fs1; s2gwith s1 = GGAAGG and s2 = GGGAGG is given by the matrixM1 := �G G A A G GG G G A G G� :There are two other alignments which might also be (biologically) plausible. Thesecontain some gaps and thereby avoid the substitution A$ G:M2 := �G G A � A G GG G� G A G G� ; M 02 := �G G� A A G GG G G � A G G� :Any reasonable parameter choice for pairwise alignment would result either inM1 as theoptimal alignment or inM2 andM 02 as optimal alignments (as it would be hard to preferone of the latter two alignments as being more biologically plausible than the other).Iterative methods have to make a somehow arbitrary decision unless they have decidedfor the M1 alignment (which they most probably do since the penalty for introducingtwo gaps is in general considerably higher than that for accepting just one transition).In this case, M2 andM 02 would be regarded as suboptimal or near-to-optimal alignments.Considering the gorilla sequence of this part of the DNA doesn't help because, here,it is identical to the chimpanzee sequence. But including also the sequence s3 = GGAGAGGof the more distantly related orangutan clari�es the situation: iterative procedures wouldproduce one of the alignmentsM11 := 0@G G A� A G GG G G� A G GG G A G A G G1A ;M12 := 0@G G� A A G GG G� G A G GG G A G A G G1A ;unless they reopen the alignment for aligning e.g. some \pro�le" of the human andorangutan sequence with the chimpanzee sequence.A simultaneous alignment procedure would instead produce (for appropriate param-eter choices) the alignment M21 := 0@G G A � A G GG G� G A G GG G A G A G G1A ;which now appears to be at least as plausible biologically as any one of the alignmentsM11 orM12 { implying that the last common ancestor of man, chimpanzee and gorilla aswell as that of man and chimpanzee still carried the GGAGAGG sequence and that the lossof one of the residues at sites 3 and 4 precisely occurred independently and more or lessas a chance event in all three lineages after speciation. This hypothesis could further becon�rmed by some additional outgroup sequence of the form s = GG � A � G � AGG (where\�" stands for arbitrary, short { hopefully even empty { insertions) (see [38]).2We have taken the sequences from the EMBL database: gde21301, alignment positions 973-978.The alignment-positions 720 up to 972 and 979-1100 are without any gaps and contain only 19 non-constant positions which are scattered across the sequences.8



3 The Sum-of-Pairs Score for Multiple SequenceAlignmentIn this section, we de�ne multiple alignments formally and we describe the basic prin-ciples of evaluating quantitatively the quality of a given multiple alignment (for furtherreference see [10],[41], and [59]).Suppose that we are given a family S = (s1; : : : ; sk) of k sequences:s1 = s11 s12 : : : s1n1...sk = sk1 sk2 : : : sknkof various lengths n1 to nk, where each sequence entry sij represents a letter from a given�nite alphabet A. An alignment of the sequences S is a matrix M = (mij)1�i�k;1�j�Nwhere� mij 2 A [ f�g, with `�' denoting the gap letter supposed not to be contained inA,� the rowsml := ml1 : : :mlN ofM considered as sequences of symbols from A[f�g,reproduce the sequences sl upon elimination of the gap letters (1 � l � k),� the matrix M has no column, only containing gaps.We denote the set of all alignments of S byMS (see also [33] for a more general de�nitionof alignment).Next, assume that for each pair of rowsmp andmq in an alignment, a (non-negative)score functionwp;q(mp;mq) has been de�ned which measures the quality of the alignmentof sp and sq de�ned by these two rows (upon elimination of common gaps), and denoteby wopt(sp; sq) the minimum of wp;q(mp;mq), taken over all alignments M 2 MS whichwe suppose to vanish if and only if sp coincides with sq (see [59] for a thorough discussionof score functions for pairwise alignment and note that, as an alternative to minimisinga dissimilarity score, one may also aim to maximise an appropriately de�ned similarityscore).The weighted sum-of-pairs score [3] for an alignment M 2 MS relative to a givenfamily of (generally non-negative) weight parameters �p;q (1 � p < q � k) is now de�nedby w(M) := X1�p<q�k�p;q � wp;q(mp;mq):The multiple alignment problem then is to �nd matrices M 2 MS whose weighted sumof pairs score w(M) is small.The logic for introducing the weight parameters �p;q (from which procedures forchoosing them appropriately are to be deduced) is the following: In general, any setof related biological sequences contains some sequences which are more closely relatedto one another than to the remaining ones, and highlighting their similarity, at leastto some extent, might often be more important than forcing them to independentlyconform to the patterns of the other sequences. On the other hand, as almost anysample of sequences is biased in one way or the other (even, most probably, the sampleprovided by Nature itself), a perhaps over-represented subset of highly homologous9
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Figure 1: Schematic representation of the divide and conquer method.sequences in a data set should not be allowed through its sheer size to force all the othersequences to conform to its patterns. Both goals, highlighting similarity between closelyrelated sequences and discounting over-representation of certain subclasses of sequencescan (hopefully) be achieved by choosing appropriate weight factors.4 The Divide&Conquer AlignmentAs mentioned above, w(M) can be optimised in principle by straightforward dynamicprogramming, provided wopt(sp; sq) can be computed in this way [36, 45]. However, thisis possible only in theory at present: in practice, the space and time requirements fordynamic programming, even in its most sophisticated forms, make it virtually impossibleto deal with, say, �ve not highly homologous sequences of length approximately 1000.However, such tasks present themselves often in biological sequence analysis. It is here,therefore, where we have to invoke DCA.The general idea of DCA is rather simple (cf. Fig. 1): Each sequence is cut intwo by cutting it just behind a suitable slicing site somewhere close to its midpoint.This way, the problem of aligning one family of (long) sequences is divided into thetwo problems of aligning two families of (shorter) sequences, the pre�x and the su�xsequences. This procedure is re-iterated until the sequences are su�ciently short { say,shorter than a pregiven stop size L { so that they can be aligned optimally by MSA.Finally, the resulting short alignments are concatenated, yielding a multiple alignmentof the original sequences.Of course, the main di�culty with this approach is how to identify those slicing-site10
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Figure 2: The de�nition of secondary charges: White boxes present an optimal alignmentM of the sequences s and t, shaded boxes present the concatenation of an optimalalignmentM1 of the two pre�x and an optimal alignmentM2 of the two su�x sequencesde�ned by the slicing sites (i; j). Cs;t is then de�ned by w(M1) + w(M2)� w(M).combinations which lead to an optimal or { at least { close to optimal concatenatedalignment. Here, a heuristic based on so-called secondary-charge matrices which areused for quantifying the compatibility of slicing sites in distinct sequences proved to besuccessful:More precisely, given a sequence s = s1s2 : : : sn of length n and a slicing site c (0 �c � n), we denote by s(� c) the pre�x sequence s1s2 : : : sc and by s(> c) the su�xsequence sc+1sc+2 : : : sn, and we use the dynamic programming procedure to compute,for all pairs of sequences (sp; sq) and for all slicing sites cp of sp and cq of sq, the secondarycharge Csp;sq [cp; cq] de�ned by3Csp;sq [cp; cq] := wopt(sp(� cp); sq(� cq)) + wopt(sp(> cp); sq(> cq))� wopt(sp; sq)which quanti�es the additional charge imposed by forcing the alignment of sp and sq tooptimally align the two pre�x sequences sp(� cp) and sq(� cq) as well as the two su�xsequences sp(> cp) and sq(> cq), rather than aligning sp and sq optimally (cf. Fig. 2).The calculation of the matrices Csp;sq can be performed by computing forward andreverse matrices in a similar way as described in [25, 35, 54]. Note that there exists, forevery �xed slicing site ĉp of sp, at least one slicing site cq(ĉp) of sq with Csp;sq [ĉp; cq(ĉp)] =0 which can be computed easily from any optimal pairwise alignment of sp and sq. Theproblem multiple alignments have to face, is that given a slicing site ĉr of sr, the optimalslicing site cq (cp(ĉr)) of sq relative to the slicing site cp(ĉr) of sp might not coincide withthe optimal slicing site cq (ĉr) of sq relative to the slicing site ĉr of sr. In other words,pairwise optimal alignments may be incompatible with one another - much in analogyto frustrated systems considered in statistical physics.To search for good k-tuples of slicing sites, we therefore de�ne the multiple additionalcharge C(c1; : : : ; ck) imposed by slicing the sequences at any given k-tuple of slicing sites3or just the negative of this if one deals with similarity rather than with dissimilarity scores.11



(c1; : : : ; ck) as a weighted sum of secondary charges over all projections (cp; cq), that is,we put C(c1; c2; : : : ; ck) := X1�p<q�k�p;q � Csp;sq [cp; cq];where the �p;q are the same sequence-dependent weight factors as above.Our proposition is now that using those k-tuples as the preferred slicing-site combina-tions that minimise { for a given �xed slicing site ĉp of, say, the longest sequence sp whichwe choose somewhere in the middle of that sequence { the value C(c1; : : : ; cp�1; ĉp; cp+1;: : : ; ck) over all slicing sites c1; : : : ; cp�1; cp+1; : : : ; ck of s1; : : : ; sp�1; sp+1; : : : ; sk, respec-tively, will result in very good, if not optimal multiple alignments because, in this way,the mutual frustration is distributed as fairly as possible.In conclusion, reiterating this process until all sequences in any given subsequencefamily have a length not exceeding the stop size L, DCA simply performs the followinggeneral procedure:Algorithm DCA ( s1; s2; : : : ; sk;L )If mini2f1;2;:::;kgfnig � Lthen return an optimal alignment of s1; s2; : : : ; sk (using e.g. MSA);else return the concatenation ofDCA(s1(� c1); s2(� c2); : : : ; sk(� ck);L)and DCA(s1(> c1); s2(> c2); : : : ; sk(> ck);L);where (c1; c2; : : : ; ck) := calc-cut(s1; s2; : : : ; sk),where the subroutine calc-cut computes a C-optimal k-tuple of slicing sites (see [49, 39, 6]for details regarding suitable branch-and-bound approaches towards that optimizationproblem).5 The Present and the Future State of the Imple-mentation of DCAThe program DCA is a C-implementation of the divide and conquer alignment method,written in ANSI C, so that it will run on any computer with an ANSI C compileravailable. Current details on the availability of DCA can be found on the DCA World-Wide Web Homepage [48].The optimal alignment calculations required by the divide and conquer method areperformed by the program MSA (version 2.1) [19, 29, 42] which also has to be installedon the same computer, and has to be executable in the same directory as DCA.In general terms, DCA takes as input a family of sequences and a matrix of pair-wise letter distances (e.g. PAM [9], Blosum [21]) including a�ne gap penalties, and itthen produces a multiple alignment of that sequence family. The input format for thesequences and the score parameters are the same as those for MSA 4 [42]. It is possibleto penalise gaps at the beginning and the end of an alignment either just like internalgaps, or not to penalise terminal gaps at all, allowing for what people call free shift.4Unfortunately, the present implementation of MSA puts the gap penalty parameters and the substi-tution matrix into a single �le. So, in the present format, they cannot easily be varied independentlyof each other. 12



Several other parameters can be chosen for DCA: stop size L, window size W , andweight intensity � (W and lambda are described below).As explained in Section 4, the stop size L of the recursion gives an upper boundfor the size of the sequences to be aligned optimally by MSA. Thus, too large an L (e.g.L > 50) can result in very long running times and very large memory usage due to theresulting MSA runs. On the other hand, too small an L (e.g. L < 5) can result in emptysubsequences which easily lead to unsuitable alignments.We recommend choosing L between 16 and 30. More precisely, for larger sequencefamilies or for families of closely related sequences a small L results in a short runningtime as well as in quite acceptable alignments, whereas for a small number of sequencesor for sequences which are highly diverged a larger L is advisable to get high qualityalignments.In case one wishes to check and perhaps correct the alignment in the proximity ofslicing sites, a windowing approach [49] has also been implemented: Inside a window ofsize W , placed across each slicing site, the alignment can be re-aligned optimally.In the present implementation, the weighting factors �p;q for the cost function Cdescribed in Section 4, are computed using the following formula:�p;q := 1� � �  wopt(sp; sq)�min1�i<j�kfwopt(si; sj)gmax1�i<j�kfwopt(si; sj)g !where � is de�ned to be the weight intensity. That intensity may be set to any valuebetween � = 1 (maximum weighting) and � = 0 (no weighting: �p;q = 1 for all 1 � p <q � k).For more than ten or twelve highly diverged sequences, the calculation of the �rstslicing-site combinations may take a rather long time. So, in that case, a perhapsslightly less accurate alignment can be obtained by using the option O� at the heading\C-optimal slicing sites:" (the default is On). In this case, the sub-routine calc-cut whichminimizes C(ĉ1; c2; : : : ; ck) exactly, is replaced by an appropriate and fast search for C-suboptimal k-tuples (ĉ1; c2; : : : ; ck) using standard (heuristic) combinatorial optimizationtechniques [40]. This allows one to obtain still rather reasonable looking alignmentswith time and memory space requirements of the order of O(k2n2+ nLLk), where k is thenumber of sequences and n is the length of the longest sequence, making the procedurefor small L comparable { with respect to time and space requirements { to iterativealignment procedures, the advantage still being that the sequences are being alignedsimultaneously.In the near future, following ideas proposed in [6] and in [51], preprocessing proce-dures will be implemented in order to speed up the calc-cut subroutine and to apply moresophisticated weighting schemes, region-dependent gap-penalties and pair-dependentsubstitution matrices.6 ExamplesIn the current implementation of DCA, the parameters used for the (a�ne) gap penaltyfunction and substitution matrix are the same for all pairwise alignments (and also inthe MSA-subroutine). In addition, we employ the unweighted sum-of-pairs score, i.e.the weight intensity � is put equal to 0. However, even with these simpli�cations, thealgorithm produces high quality alignments, in particular if a reasonably large num-ber of biological sequences is considered (a fact which is well in accordance with the13



BrookhavenProteins Code (Chain) Seq. lengthRat tonin 1TON 235Porcine kallikrein 2PKA (A) 232Bovine trypsin (orthorhombic) 2PTN 223Rat trypsin 2TRM 223Bovine �-chymotrypsin 4 CHA (A) 245Rat mast cell proteinase 3RP2 (A) 224Streptomyces griseus proteinase A 2SGA 181Streptomyces griseus proteinase B 3SGB (E) 185Lysobacter enzymogenes Alpha-lytic protease 2alp 198Table 1: The nine serine protease sequences used in Example 6.1.observation that with the number of sequences to be aligned, the agreement increasesbetween biologically \plausible alignments" { that is, alignments based on phylogeneticor structural information concerning the molecules involved { and alignments which are(sub)optimal relative to an appropriately de�ned sum-of-pairs score [29]).Following the principles proposed by M. McClure, T. Vasi, and W. Fitch [31],we have evaluated our results5 rigorously by measuring the degree by which they iden-tify certain structurally conserved subsequences (often called motifs) which are known(or supposed) to be important for the structure and/or function of the molecule. Inprinciple, that degree is measured not just by the size of the largest set of sequencescorrectly aligned with each other relative to a pre-given motif, but by the number andsize of the various subclasses of correctly aligned sequences [11].6.1 Alignment of Serine Protease SequencesAs a �rst example, we consider the protein family of serine proteases. A number ofmammalian and microbial protein structures of that family have been determined byX-ray crystallography and, although there is less than 21 percent sequence identitybetween the mammalian and microbial serine proteases, it has been observed that theyall adopt similar three-dimensional structures.D.J. Lipman et al. [29] aligned �ve mammalian sequences using the MSA procedure.They observed a high agreement of the resulting multiple sequence alignment with thestructural alignment presented in [18].In the following, we extend their work by presenting an alignment of nine serineprotease sequences with known three-dimensional structure (cf. Table 1), consistingof six mammalian (rat tonin, porcine kallikrein, bovine trypsin, rat trypsin, bovine �-chymotrypsin, and rat mast cell proteinase) and three microbial ones (proteinase A andB from Streptomyces griseus, and �-lytic protease from Lysobacter enzymogenes). Asa standard of truth, we take the structural alignment of the EMBL 3d-ali database6.5For an evaluation of the results of DCA regarding the four protein families considered in [31], cf.[47].6This is a collection of protein structural families, each consisting of (a) non-redundant and multipletertiary structural superpositions and (b) resulting primary sequence alignments [37] which can befound on the World Wide Web at http://www.embl-heidelberg.de/argos/ali/ali.html.14



motif 1 motif 21ton ---------------ivggykceknsqpwQVAV----IneyL--CG-GVLIdps---WVI2pka ---------------iiggreceknshpwQVAI--YhyssfQ--CG-GVLVnpk---WVL2ptn ---------------ivggytcgantvpyQVSL----NsgyhF-CG-GSLInsq---WVV2trm ---------------ivggytcqensvpyQVSL----NsgyhF-CG-GSLIndq---WVV4cha cgvpaiqpvlsglsrivngeeavpgswpwQVSL--QdktgfhF-CG-GSLInen---WVV3rp2 ---------------iiggvesiphsrpyMAHLDivtekglrvICG-GFLIsrq---FVL2sga ---------------iagGEA---------IT-----tggsR--CSLGFNVsvngvaHAL3sgb ---------------isgGDA---------IY-----sstgR--CSLGFNVrsgstyYFL2alp -------------anivgGIE-------YSin-----nasL---CSVGFSVtrgatkGFVmotif 3 motif 4 motif 51ton TAAHCY---snNYQvllgrnnlfkdep---fa----qrrlVRQSFRhpdy--iplivtnd2pka TAAHCK---ndNYEvwlgrhnlfenen---ta----qffgVTADFPhpgf----nlsadg2ptn SAAHCY---ksGIQvrlgedninvveg---ne----qfisASKSIVhpsy--nsntl---2trm SAAHCY---ksRIQvrlgehninvleg---ne----qfvnAAKIIKhp------nfd--r4cha TAAHCGvttSDVvvagefdqg---------sssekiqklkIAKVFKnsky--nslti---3rp2 TAAHCK---grEITvilgahdvrkres---tq----qkikVEKQIIhesynsvpn-----2sga TAGHCT---nisaSWSiGTRTG--------Ts------------fp--------------3sgb TAGHCT---dgatTWWansarttvlGTTSGSs------------fp--------------2alp TAGHCG---tvnaTARiggavvG-------TF--------AARvfp--------------motif 6 motif 7 motif 81ton teqpvhdhSNDLMLLHLSepa----di---tggvkvidlptk--EPKVgSTCLASGWgst2pka kdy-----SHDLMLLRLQspa----ki---tdavkvlelptq--EPELgSTCEASGWgsi2ptn --------NNDIMLIKLKsaa----sl---nsrvasislpts--CASAgTQCLISGWgnt2trm ktl-----NNNIMLIKLSspv----kl---narvatvalpss--CAPAgTQCLISGWgnt4cha --------NNDITLLKLStaa----sf---sqtvsavclpsasdDFAAgTTCVTTGWglt3rp2 --------LHDIMLLKLEkkv----el---tpavnvvplpspsdFIHPgAMCWAAGWgkt2sga --------NNDYGIIRHSnpaaadgrvylyngsyqdit-tag--NAFVgQAVQRSGSttg3sgb --------NNDYGIVRYTnttipk-dg---tvggqdit-saa--NATVgMAVTRRGSttg2alp --------GNDRAWVSLTsaqtllprv---angssfvtvrgst-EAAVgAAVCRSGRttgmotif 9 motif 101ton --------npsemvvshdlqCVNIHLLSn---ekcietykdnvtdvMLCAgemeggkDTC2pka epgpddfefpde------iqCVQLTLLQn---tfcadahpdkvtesMLCAgylpggkDTC2ptn --kssgtsypdv------lkCLKAPILSd---sscksaypgqitsnMFCAgyleggkDSC2trm --lssgvnepdl------lqCLDAPLLPq---adceasypgkitdnMVCVgfleggkDSC4cha --rytnantpdr------lqQASLPLLSn---tnckkywgtkikdaMICAg--asgvSSC3rp2 -----gvrdptsyt----lrEVELRIMDe---kacvd-yryyeykfQVCVgspttlrAAF2sga ------------------LRSGSVTGl-natvnygssgivygMIQTnvCAQ---------3sgb ------------------THSGSVTAl-natvnygggdvvygMIRTnvCAE---------2alp ------------------YQCGTITAk-nvt-anyaegavrgLTQGnaCMG---------motif 11 motif 12 motif 131ton AGDSGGPL--ICdg----VLQGITSGGAt-----pca--kpktpaIYAKLIKFTSWIkkv2pka MGDSGGPL--ICng----MWQGITSWGHt-----pcg--sankpsIYTKLIFYLDWIddt2ptn QGDSGGPV--VCsg----KLQGIVSWGSg------ca--qknkpgVYTKVCNYVSWIkqt2trm QGDSGGPV--VCng----ELQGIVSWGYg------ca--lpdnpgVYTKVCNYVDWIqdt4cha MGDSGGPL--VCkkngawTLVGIVSWGSs-----tc---ststpgVYARVTALVNWVqqt3rp2 MGDSGGPL--LCag----VAHGIVSYGH-------p---dakppaIFTRVSTYVPWInav2sga PGDSGGSL--FAgs----TALGLTSGGSg-----nc---rtggttFYQPVTEALSAYgat3sgb PGDSGGPL--YSgt----RAIGLTSGGSg-----nc---ssggttFFQPVTEALVAYgvs2alp RGDSGGS-WITsag----QAQGVMSGGNvqsngnncgipasqrssLFERLQPILSQYgls1ton mkenp2pka itenp2ptn iasn-2trm iaan-4cha laan-3rp2 in---2sga vl---3sgb vy---2alp lvtg-Table 2: The nine serine protease sequences used in Example 6.1.
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Organism GenBank acc.no. Seq. lengthMouse Mus musculus J03151 274Rat Rattus norvegicus (see caption) 273Human Homo sapiens X51867 264Bovine Bos taurus Z25280 278Frog Xenopus laevis Z11844 276Yeast1 Saccharomyces cerevisiae Z14231 339Yeast2 Schizosaccharomyces pombe X52530 399Plant Arabidopsis thaliana (see caption) 261Table 3: The eight currently known RNase MRP RNA sequences used in Example 6.2.The Arabidopsis sequence and the Rat sequence are not contained in GenBank. Theywere obtained from [43] and from [27], respectively.In Figure 3, we present an alignment produced by DCA, using stop size L = 30, freeshift, and the Blosum30 substitution matrix [21] (converted to distances with integervalues from 0 to 27) with an a�ne gap penalty function of g(l) = 5 + 10 � l.There are thirteen motifs for which the predominant secondary structure is known[26]. Six motifs are aligned correctly over all nine sequences (Figure 3: motif 3, 6, 7, 8,12, and 13), the motifs 2 and 11 are misaligned, though only at their very beginning orend, respectively, and three motifs are correctly aligned within each group of mammalianand microbial sequences (motifs 4, 9, and 10), but the alignment across the subfamiliesis wrong. For the remaining two motifs, the alignment of the (larger) set of mammalsis correct (motif 5) or \reasonable" (motif 1), while { with respect to the microbialsequences { only one is almost correct (motif 1) and the other is incorrect (motif 5).Altogether, there are 77 of 111 positions belonging to some motif correctly aligned overall sequences.Even though commonly used alignment procedures (e.g. CLUSTALW [51]) per-form well within the group of mammalian or microbial serine protease, respectively, thequality of the alignments decline signi�cantly when members of both groups are to bealigned. None of the alignment procedures we have tested was able to align more thanthe motifs 2, 3, 6, 12, and 13 correctly.7One crucial set of parameters for sequence alignment is the substitution matrix. Ifthe mutation process of the (sub)sequences used for scoring the alignment is modelledwell by a substitution matrix, then the optimal alignments (with respect to the resultingscoring system) are relatively independent of the gap penalties (within some reasonablerange, see for example Section 6.3). We suspect that the main di�culty of generatinga good alignment across the subfamilies of mammalian and microbial serine proteasesequences is the (present) lack of the option to use pair-dependent substitution matricesfrom a parametrised set of such matrices appropriate for this protein family.
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6.2 Alignment and Phylogeny of RNase MRP RNA SequencesAs a second example, we have tested DCA on a set of highly diverged RNase MRP RNAsequences. The eight currently known sequences8 are from human, bovine, mouse, rat,frog, two yeasts (Saccharomyces cerevisiae and Schizosaccharomyces pombe) and plant(Arabidopsis) (see Table 2). In the following, we will refer to Saccharomyces cerevisiaeand Schizosaccharomyces pombe as yeast1 and yeast2, respectively.There are three motifs which we have highlighted in Figure 4 by using capital letters.Note that { with the exception of the second and third motif in yeast2 { all motifs arereasonably well aligned. The reason why yeast2 appears to be di�cult to align is thatthis sequence is signi�cantly longer than all the other sequences (in fact it contains anadditional subsequence of length 60 between the �rst and the second single-strandedregion) and the motifs 2 and 3 of yeast2 di�er signi�cantly from the correspondingmotifs of the other sequences. The gaps occurring in motif 2 in all sequences otherthan yeast1 correspond to an (unusual) loop in the secondary structure of the yeast1sequence, unique among the RNase MRP RNA sequences found so far. None of thecommonly used programs we have tested on this data set (CLUSTALW, TREEALIGN,MALIGN, PILEUP) was able to align this RNA family with respect to the motifs aswell as DCA { in particular, no other program predicted the loop.In order to analyse why successive alignment procedures fail to produce a reasonablealignment for this data set, we investigated the phylogenetic relationships between thesespecies. In particular, we looked at the potential (phylogenetic) trees guiding an iterativealignment procedure. To this end, we applied the SplitsTree program [13]. Thisprogram does not always return a (proposal for a) phylogenetic tree, { in general, itreturns graphs which indicate conicting \phylogenetic" information in the data setwhich does not all �t into a single tree. In Figure 5, we show the graph generatedby the SplitsTree program for the set of Hamming distances derived from pairwisealignments.Obviously, any reasonable tree guiding a successive alignment puts the two yeastsand the Arabidopsis sequence close together. But any successive alignment of these threesequences is incorrect for the second and third motif due to the fact that pre-aligning anypair of these sequences goes wrong in this respect. Moreover, a simultaneous alignmentof only these three sequences, e.g. by MSA, does neither identify motif 2 nor motif 3, noteven for any two of these three sequences. But including the vertebrate sequences, asimultaneous alignment clearly identi�es these motifs at least for yeast1 and the plantsequence (see Figure 5).6.3 Alignment of 12S RNA SequencesIn the third and �nal example, we present an alignment of ten 12S RNA sequencesof average length 290 for which an alignment based on secondary structure had beenworked out in [22]. Five of these sequences represent phyla of vertebrates (cow, bird,7Motif 1 appears to be exceptional in that a surprisingly high sequence identity between the aminoacids at positions 16{19 is observed (which for all except the bovine �-chymotrypsin and the Lysobac-ter enzymogenes �-lytic protease sequence are actually the �rst non-gap positions) although, for themicrobial sequences, that position 19 is actually the �rst site of motif 1 and therefore corresponds toposition 30 rather than 19 of the mammalian sequence alignment.8There are actually two more tobacco sequences. Because they are almost identical to the Arabidop-sis sequence, we have excluded them here. 17



Human g------------uucgugcugaaggccuguauccuaggcuacacacugaggacucuguuBovine g------------uucgugcugaaggccuguuuccuaggcuacauacggaggacua-guuMouse a-----------gcucgcucugaaggccuguuuccuaggcuacauacgagggacau-guuRat a-----------gcucgcucugaaggccuguuuccuaggcuacguacgggggaccuuguuFrog g----------uaggcauucugaagaccugaagucuaggcaacguacgggagacguaguuYeast1 aauccaugaccaaagaaucgucacaaaucgaagcuuacaaaauggaguaaaauuuuuuuuYeast2 c----aaaugaccuuugagcucgaacgaucgugguugaagcagucauacaggaauuuuuaPlant a-------------caauugucacuggacgaag--ugaaugggucauaugggcuug----motif 1Human ccuccc---cuuuccgccuagGG--GAAAGUCCCCGGA---CCUCGg----------gcaBovine ccuugu-----uugcgccuagGG--GAAAGUCCCCGGA---CCGUGg----------gcaMouse ccuuau---ccuuucgccuagGG--GAAAGUCCCCGGA---CCACGg----------gcaRat ccuuau---ccuuucgccuagGG--GAAAGUCCCCGGA---CCAUGg----------gcaFrog cuucaaucacaugacgccuagGG--GAAAGUCCCCGGA---UCUCGg----------guaYeast1 acucag---uaauaugcuuuggguuGAAAGUGUCCACCAAuucguau----------gcgYeast2 uuccuc---uaaacagcuuuagG--GAAAGUCCCCGGACUCuugcgucuugaucuccaugPlant --ucca---aguuccggacccaG--GAAAGUCCCCGGG---CCACUu----------aucHuman gagagugccacgug---cauacgcacguagacau--------------------------Bovine gagagugccacgug---cccgugcacguagacuu--------------------------Mouse gagagugccgcgug---cacacgcgcguagacuu--------------------------Rat gagagugccgcgug---cacacgcgcguaggcuu--------------------------Frog gaaagugccgugcgcuacuauggcgugcaauaau--------------------------Yeast1 gaaaacguaaugagauuuaaaaauuuuaaauugu--------------------------Yeast2 gagauugggacagg---cgguaacgugcugacuugaagaaucagcgguuucauuaauggcPlant cgcagagaugcggc---cucgguaacgagagaau--------------------------Human ----uccccgcuucccacuccaa------aguccgccaagaagcg--------uaucccgBovine ----cccccgcuucucacgacua------aacccgccaagaagcgaucc----uacccugMouse ----cccccgcaagucacuguu-------agcccgccaagaagcgaccc----cuccgggRat ----cccccgcaagucacuguu-------agcccgccaagaagcagccc----cuccgggFrog ----cccgcccugcuguccauauc-----aacccgcuaagaagcu--------cccagagYeast1 ----uuaaaucaacucauuaaggagg---augcccuuggguauucugcuucuugaccuggYeast2 gcuaguuuuuccuuuagccuuuguacuuuaaaccucaagagauauaacucc--uguccagPlant ----cuugcgguggagagauuc-------aaauugcugagacgcg--------uguguggmotif 2Human ---------cugagcggcguggcgcg----ggggcguc----AUCCGUCAGCUCC-----Bovine --gggguggggaagcggagcggcguguugcgggguguc----AUCCGUCAGCUUC-----Mouse ---------gcgagcugagcggcgugcagcggggccuc----AUCCGUCAGCUCA-----Rat ---------gcgagcugagcggcgugcggcgggguguc----AUCCGUCAGUUCU-----Frog ---------ccgagcggcuuggauuagggcgggauCUC------UCAUCAGUCAC-----Yeast1 uaccucuauugcaggguacugguguuuucuUCGGUACU-GGAUUCCGUUUGUAUGGAAUCYeast2 aaugaguagauaaggaauacagucuauaguuguguuucuugagcgucuaguguacgaacgPlant -----------agcuuauguggucucuccgccGAUGAU----AUCAUGGCCGUUC-----Human -----UCUAGUUACgcag----------gcagugcguguccgcgc-------acCAACCABovine ----UAAUAGUUACgcag----------gcagugccuccaugcgc-------acCAACCAMouse -----CAUAGUGACgcag----------gcagugcgaccuggcucgc-----acCAACCARat -----CCUAGUGACgcag----------gcagugcgaccuuguacgc-----acCAACCAFrog -----CAUAGUAACucag----------guagcgcggcaacguccac-----gcUAACUAYeast1 UAAACCAUAGUUaugacg----------auugcucuuucccgugcuggaucgagUAACCCYeast2 guaugguugauuacgccauuucugaAUUGUGGUUUUUCGUCGUAGUU-----GAUAGUUAPlant -----GAGAGUUAuucac----------cucuuccucuaugg----------acUAACUGmotif 3Human CACGGGGCUCA----UUcucagcgc-ggcu-------------------------Bovine CACGGGGCUCA----UUcucaccac-gucu-------------------------Mouse CACGGGGCUCA----UUcucagcgcggcuac------------------------Rat CACGGGGCUCA----UUcucgcgcg-gcug-------------------------Frog AACGGGGCUCA----UUcucagaau-gcac-------------------------Yeast1 AAUGGAGCUUACUAUUCuuggucca-uggauucacc-------------------Yeast2 uacggucgcauccauuuguugaugu-AUCACAAUGGGGCUUAGUCucgugcucaaPlant AACGGGGCUUACGUuucaaugacaa-gcaacuuuu--------------------Figure 3: An alignment of eight RNase MRP RNA sequences, computed with DCAusing a weighted transition/transversion matrix for substitutions of 2/5, and a lineargap penalty function of g(l) = 6 + 2 � l.
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Fit=92.2 ntax=8 nchar=421 gaps=163 const=15 nonparsi=129 -dsplits -hamming

Rat

Yeast1

Plant

Frog

Bovine
Human

Yeast2

Mouse

Figure 4: The SplitsTree graph for an alignment of eight RNase MRP RNA sequencesobtained by DCA using Hamming distance.
Organism GenBank acc.no. Seq. lengthCow Bos taurus J01394 302Moa Megalapteryx didinus (Ratite Bird) X67634 295Scincid Lizard Leiolopisma nigriplantare polychroma unpublished 290Toad Xenopus laevis (Xenopus; Pipidae) M10217 300Cyprinid Fish Crossostoma lacustre M91245 297Sea Urchin Paracentrotus lividus J04815 287Fly Drosophila yakuba X03240 288Honeybee Apis mellifera L06178 278Cicada Magicicada tredecim unpublished 271Earthworm Aporrectodea rosea L02392 285Table 4: Ten 12S RNA sequences used in Example 6.3.
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number and sizes of correctly aligned subclassestransition:transversion penalty2:5 2:6motif CLUSTALW MALIGN PILEUP TREEALIGN DCA1 1 (10) 1 (10) 1 (10) 1 (10) 1 (10) 1 (10)2 1 (10) 1 (10) 1 (10) 1 (10) 1 (10) 1 (10)3 3 (6,2,2) 2 (8,2) 3 (8,1,1) 2 (8,2) 2 (8,2) 2 (9,1)4 1 (10) 2 (8,2) 2 (9,1) 2 (9,1) 2 (8,2) 1 (10)5 1 (10) 1 (10) 1 (10) 1 (10) 1 (10) 1 (10)6 1 (10) 1 (10) 1 (10) 1 (10) 1 (10) 1 (10)7 2 (9,1) 2 (9,1) 2 (9,1) 2 (8,2) 2 (9,1) 2 (9,1)8 2 (8,2) 4 (7,1,1) 4 (5,3,1,1) 2 (8,2) 3 (7,2,1) 2 (9,1)9 1 (10) 1 (10) 2 (9,1) 1 (10) 1 (10) 1 (10)10 2 (7,3) 2 (7,3) 2 (6,4) 2 (7,3) 2 (7,3) 2 (8,2)Table 5: The number and sizes of correctly aligned subclasses among the ten 12S RNAsequences relative to the motifs 1�10 achieved by the various alignment programs usinga �xed penalty of 2 for transitions and 5 for transversions, and those gap penalties whichoptimise the sum of the maximal number of correctly aligned sequences taken over allmotifs. The last column contains the corresponding number and sizes achieved by DCAusing a penalty of 6 for transversions (and 2 for transitions).lizard, frog, and �sh), and �ve represent phyla of invertebrates (sea urchin, earthworm,y, honeybee, and cicada). From the structural alignment which we accept as the oneto aim for, ten highly conserved \motifs" could be identi�ed, comprising altogether 69sites, among which 30 are constant and 34 include transitions but no transversions,while only 5 include transitions as well as transversions, and none contain gaps. The245 \non-motif" sites include 72 gap sites. Among the 240 sites including at least two\non-gaps", there are 30 constant sites, 128 sites include transitions only, and 82 sitesinclude both, transitions and transversions.These ten sequences have been used already in [23] where �ve alignment programs(CLUSTALW, MALIGN, PILEUP, TREEALIGN, and DCA) were tested regardingtheir ability to correctly align the motifs within the sequences. As one of these programs(TREEALIGN) has its transition:transversion penalties �xed at 2:5, the same valueswere also used as the transition:transversion penalties in the remaining programs toget a \fair" comparison. Then, in all �ve programs, the [gap open/gap extension]parameters were allowed to vary, and the resulting alignments were scored by summingup { from motif 1 to motif 10 { the maximal number N(1); : : : ; N(10) of sequencescorrectly aligned with respect to motif 1; : : : ; motif 10, respectively. Finally, those [gapopen/ gap extension] parameters were selected for each program which resulted in thehighest alignment score. Table 4 summarises the results obtained in this way in [23].As one can see, all programs scored at least 86 and none scored more than 90 points.Here, we add to this investigation as follows: As pointed out above, the trans-version:transition rate 5:34 at sites within motifs is far below the ratio 2:5. Hence,at least for the DCA procedure, we varied not only the gap parameters but also thetransition:transversion penalties. Amazingly enough, enlarging the transversion penaltyby just 1, from 5 to 6, and keeping the [gap open/gap extension] parameters at [3/2](which { for DCA { achieved the best score for the transition:transversion penalties 2:5,investigated before), we immediately hit upon an alignment which scored 95 out of the20



motif 1 motif 2 motif 3Cow UGGCGGUgcuuuauauccuuCUAGAGGAgccuguu--cuauaA-UCGauaaaccccgauaMoa UGGCGGUgccccaaacccacCUAGAGGAgccuguu--cuauaA-UCGauaacccacguuaSkink UGGCGGUgcuccacaucaacCUAGAGGAgccuguc--cuauaA-UCGauaccccccgaucUoad UGGCGGUgcuccaaacccacCUAGAGGAgccuguu--cuguaA-UCGauaccccucgcuaFish UGGCGGUgccuuagacccccCUAGAGGAgccuguu--cuagaA-CCGauaacccccguuaUrchin UGGCGGUuuuccaaaccuccCUGGAGGAgcuugcc-auug-aA-UCGauaacccacgaaaFly UGGCGGUauuuua-gucuauCCAGAGGAaccuguu--uuguaA-UCGauaauccacgaugHoneybee UGGCGGCuuuuuauaucuagUUAGAGAUguuugucgauua-aU-UUGauaguccacgauaCicada UGGCGGUaauuua--ucuaaUCAGAGGAaucuguu--uuguaA-UUGauaauccacgauaWorm UGGCGGUgucuua--ucaacCCAGGGGAaccuguc--ucauaaCUCGauaacccacga-amotif 4 motif 5Cow aaccucACCaauucuugcuaa--uacagucUAUAUACCGCCAUCuucagcaaacccuaaaMoa cacccgACCaucucuugccca--ugcagccUACAUACCGCCGUCcccagcccgccu-augSkink uaccucACCgcuuuuugaaac---ucagccUAUAUACCGCCGUCgucagccuaccuuaugUoad aaccucACCacuucuugccaa--acccgccUAUAUACCACCGUCgccagcccaccucgugFish aaccucACCacuucuagucau--ccccgccUAUAUACCGCCGUCgucagcuuacccugugUrchin uaccucACCaacuuuuguaac--aacagcuUGUAUACCAUCGUCguaagucuacuucuu-Fly gaccuuACUuaaauuuguaau----caguuUAUAUACCGUCGUUaucagaauauuuuau-Honeybee agaucuACUuaaguuua-aau--------uUAUGUAUUGUUGUUuuaa--uuagcuuga-Cicada gauucuAUUuua------aau----aaauuUGUAUACCUCUGUCaaga--auguuuuau-Worm uuccucACCcucucua--gauucuacagccUGUGUACUGCCGUCguaagcacaccccua-motif 6Cow aaggaaaaaaaguaagcguaauuaugauac---auaaaaacguUAGGUCAAGGUGUAaccMoa aaagaacaauagcgagc--acaacagccac-ccgcuaacaagaCAGGUCAAGGUAUAgcaSkink aaagaaguauaguaagc--aaaauagucac-caacuaaaacguCAGGUCAAGGUGUAgcaUoad agagauucuuaguaggcuuaaugauuuuuc---aucaacacguCAGGUCAAGGUGUAgcaFish aaggcucaauaguaagc--aaagugggcac-aacccaaaacguCAGGUCGAGGUGUAgcgUrchin -----gagaaaguugac---uuuaagggag-aacccuggacguCAGAUCAAGGUGCAgccFly -aagaauaauaauauuc--aauaauuuuaauaaaaauuuauauCAGAUCAAGGUGUAgcuHoneybee -auuuauuuggguuaga---gaaauuuuauauaauaauaau-uCAAAUCAAAAUGUAguaCicada ----cagaauaauuuuc--auuuguuuuau--uaaaaaaaaguCAGGUCAAGGUGCAguuWorm -aaagaaagaagugugc-agacaugauuaa-acucauauacguCAGGUCAAAGUGCAgccmotif 7Cow uaugaaaugggaagaaaugggcUACAuucucua----caccaagagaaucaagcacgaaaMoa uaugaga-uggaagaaaugggcUACAuuuucuaa---cauagaacaccacga------aaSkink cauaaag-uggaagagaugggcUACAcucucu-----cccagagaacacga-------acUoad uaugaagugggaagaaaugggcUACAuuuucuac---cuuagaauaaacga-------aaFish uacgaagugggaagagaugggcUACAuuuucu-----acuagaauaagacga------auUrchin uauaaguuggggauaggugagcUACAauguuug----aacaaaccagugg--------aaFly uauauuu-aaguaauaauggguUACAauaaauuua--uuuaaacggauaa--------aaHoneybee uauuuaa-gauauaagaugaaUAUCAauaaauuuaauuuuagaauua-----------uuCicada aauuuua-aagaaagaauggauUACAuuau-------uguaaaaaauga---------auWorm cauggga-gggagaugauggguUACAcccua------aacaaagauacgg--------aamotif 8 motif 9Cow guua-----uuaUGAAAccaauaa--cc----aaaggaggAUUUAGcaguaaa----cu-Moa gaga-----agaUGAAAcucucc---uca---gaaggcggAUUUAGcaguaaa----au-Skink agcau----caaUGAAAcacugc---uc----aaagguggAUUUAGuaguaag----au-Uoad gaucu----cuaUGAAAccaga----ucgagaaaaggcggAUUUAGcaguaaa----ga-Fish agca-----ucaUGAAAacuuaaugcuu----gaaggaggAUUUAGuaguaaa----aa-Urchin ggag-----ggaUGAAAuacccc---ucg---gaaauuggAUUCAGcaguaag-cccca-Fly ---------uuaUGAAAaaauuu---uu----gaagguggAUUUGGuaguaaa----auuHoneybee uauuu----UAAUAuaaaua------u-----gaaagagaAUUUAAaaguaaa----uu-Cicada uguuuucuauaaUGAAAauca-----u-----gaaacuggAUUUGAaaguaaa-uuuca-Worm uauag----uacUAAAAgcuaua---u-----aaauuauuACUUGGuuguaacguuucu-motif 10Cow ---aagaauagag--ugcuuaguUGAAuuaggccaMoa ---aggacaagaa-cgcccauuuUAAGcuggccc-Skink ----aaacaagag--acuuaucuUAAAccagccc-Uoad ---gaaacaagagaguuccucuuUAAAacggccc-Fish ---ggaaauagag--uguccuuuUGAAcccggcucUrchin -cuaagacaaugg------gacUGAAaagagcuc-Fly auaaagauuauaa----auaauuUGAUuuuagcucHoneybee ---aaaguaauuu---cuuuaauUGAAgauaguauCicada ---uuaaauaugu------guuuUGAAuuuaggucWorm -ucaaaacuaaag---------UGAAuaugaauc-Figure 5: An alignment of ten 12S RNA sequences, calculated by DCA using a weightedtransition/transversion matrix for substitutions of 2=6, and a linear gap penalty functionof g(l) = 3 + 2 � l.
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