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AbstractWe study the number of all possible alignments of N sequences, N � 2,for two distinct alignment concepts proposed in the literature { standardalignments and e�ective alignments (consistent equivalence relations). Re-cursion formulae are developed to calculate these numbers. For standardalignments and for e�ective alignment of just two sequences an explicitformula is also presented. The number of all e�ective alignments of agiven site space is shown to be related to Stirling numbers of second kind.

1 IntroductionSequence alignment is one of the most important tools for data analysis inmolelcular biology. There are di�erent notions of what an alignment is: Bystandard theory, an alignment of N sequences s1; : : : ; sN of length L1; : : : ; LNis de�ned to be an N � L matrix A with max(L1; : : : ; LN ) � L � P1�i�N Liwhose rows are obtained from the original sequences by insertion of so-called`blanks' or `gap characters' { with the additional requirement that no columnof the matrix A consists exclusively of blanks (cf. [1]; p. 186).Recently, Morgenstern et al. [2] have proposed a di�erent way of de�ningalignments (see also [3] and [1], p. 188, for the case of two sequences and [4] fora thorough discussion of this concept for any number of sequences). In theirde�nition, an alignment of the sequences s1; : : : ; sN is a consistent equivalencerelation de�ned on the so-called site space S := f[ijj] �� 1 � i � N; 1 � j � Lig.This de�nition avoids a certain redundancy inherent in the standard de�nitionand allows to apply the mathematical theory of sets and relations to inves-tigate the state space associated with an alignment problem. To distinguishthese alignments from standard alignments, we will refer to them as e�ectivealignments.No matter which de�nition is preferred, in either case the alignment problemis the problem of �nding an optimal alignment { according to some well-de�nedcriterion { and the search space for this optimization problem is the set of allpossible alignments of a given set of sequences.
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Therefore, it seems to be worthwile to study the structure of this space inmore detail. In this paper, we show how to calculate the number of all possiblealignments of N sequences. We generalize the results of Laquer [5] and Water-man [1] who solved this problem for the special case of N = 2 sequences. Wederive recursive functions to calculate both, the number of standard alignmentsand the number of e�ective alignments. We also present explicit formulae forthe number (i) of standard alignments and (ii) of e�ective alignments of justtwo sequences.Although these numerical values themselves are of minor interest to biolo-gists, our study might still be of some use as it sheds light on the structure ofthe state space associated with the alignment problem.
2 The number of standard alignmentsAssume that we are given N sequences s1; s2; : : : ; sN of length L1; L2; : : : ; LN .Then, clearly, there exist, for any given L � max(L1; : : : ; LN ), exactlyf+(L) = f+(L1; : : : ; LN ;L) := NYi=1�LLi�standard alignments of total length L provided we allow columns consisting ofblanks, only.More precisely, given a subset X of f1; : : : ; Lg of cardinalityx � L�max(L1; : : : ; LN );there exist f+(X;L) = f+(L1; : : : ; LN ;X;L) := NYi=1�L� xLi �such alignments with at least all those columns consisting of blanks only whichare indexed by elements j 2 X.Consequently, by M�obius inversion [6], the sumX0�x�L�max(L1;:::;LN )(�1)x�Lx� NYi=1�L� xLi �coincides with the number F (L1; : : : ; LN ;L) of all standard alignments of totallength L without any column consisting of blanks only.Remark: The standard proof for this fact runs as follows: forX � f1; : : : ; Lgas above, let f(X;L) denote the number of alignments of total length L withexactly those columns consisting of blanks only which are indexed by elementsj 2 X; then, if x := #X, we havef+(X;L) = NYi=1�L� xLi � = XX�Y�f1;:::;Lg f(Y; L)2



and henceXx�0(�1)x�Lx� NYi=1�L� xLi � = XX�f1;:::;Lg(�1)#Xf+(X;L) == XX�f1;:::;Lg(�1)#X XX�Y�f1;:::;Lg f(Y; L) == XY�f1;:::;Lg f(Y; L) XX�Y (�1)#X = f(;; L) = F (L1; : : : ; LN ;L):Clearly, this implies that the number F (L1; : : : ; LN ) of all standard align-ments without any column consisting of blanks only coincides with the doublesum XL�0Xx�0(�1)x�Lx� NYi=1�L� xLi �where the sum could be taken over all L and x, yet non-zero terms will ariseonly for max(L1; : : : ; LN ) + x � L � L1 + : : :+ LN .As any such alignment has a �rst column involving a well-de�ned non-empty subset V of f1; : : : ; Ng of rows without blanks, it is clear that forL;L1; : : : ; LN > 0, we also have the Pascal-triangle type recursion formulaeF (L1; : : : ; LN ;L) = X;$V�f1;:::;NgF (L1 � �V (1); : : : ; LN � �V (N);L� 1)and F (L1; : : : ; LN ) = X;$V�f1;:::;NgF (L1 � �V (1); : : : ; LN � �V (N))with �V : f1; : : : ; Ng ! f0; 1g : i 7! (1 if i 2 V;0 elsethe characteristic function of V � f1; : : : ; Ng, as usual. Together withF (1; 1) = F (1) := 1;F (1;L) := 0 for L > 1;and F (L1; : : : ; LN ;L) := F (L1; : : : ; Li�1; Li+1; : : : ; LN ;L)as well as F (L1; : : : ; LN ) := F (L1; : : : ; Li�1; Li+1; : : : ; LN )whenever Li := 0 for some i 2 f1; : : : ; Ng, this recursion formula can of coursealso be used to compute the values of F (L1; : : : ; LN ;L) and F (L1; : : : ; LN ) inan e�cient way.Remark: Note that a similar argument establishes the recursion formulaf+(L1; : : : ; LN ;L) = XV�f1;:::;Ng f+(L1 � �V (1); : : : ; LN � �V (N);L� 1):
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3 The number of e�ective alignmentsLet us now denote by G(L1; : : : ; LN ) the number of e�ective alignments of thegiven sequences, that is, of equivalence relations A de�ned on the set S :=f[ijj] �� 1 � i � N; 1 � j � Lig with the property that there exists a partialorder � de�ned on the set S=A of A-equivalence classes A(x); A(y); : : : (x; y 2 S)satisfying the consistency conditionA([ijj]) � A([ijk]) () j � k(�)for all i 2 f1; : : : ; Ng and j; k 2 f1; : : : ; Lig. Note that, if any such partial orderexists, there exists a unique smallest one which can be de�ned as the transitiveclosure of the relation de�ned by (�) and which will be denoted by \�A".In case N = 1, we clearly have G(L1) = 1; and { just as above { we haveG(L1; : : : ; LN ) = G(L1; : : : ; Li�1; Li+1; : : : ; LN )in case Li = 0 for some i 2 f1; : : : ; Ng. It is also easy to see (cf. [1], p. 188)that, in case N = 2, we haveG(L1; L2) = �L1 + L2L1 � = �L1 + L2L2 �
because { in view of the identityXl�0 �L1 + L2l �xl = (1 + x)L1+L2 = (1 + x)L1(1 + x)L2 =

=0@Xl1�0�L1l1 �xl1
1A0@Xl2�0�L2l2 �xl2

1A =
=Xl�0  Xl1+l2=l�L1l1 ��L2l2 �

!xl
{ this number is well known to coincide withXl1+l2=L1�L1l1 ��L2l2 � = Xl1+l2=L1� L1L1 � l1��L2l2 � =Xk�0�L1k ��L2k �and because any e�ective alignment A of two sequences is uniquely determinedby the two subsets K1 � f1; : : : ; L1g and K2 � f1; : : : ; L2g which are de�nedbyK1 := fj1 2 f1; : : : ; L1g �� there exists j2 2 f1; : : : ; L2g with [1jj1] A�[2jj2]gandK2 := fj2 2 f1; : : : ; L2g �� there exists j1 2 f1; : : : ; L1g with [2jj2] A�[1jj1]g4



which can be chosen freely in f1; : : : ; L1g and f1; : : : ; L2g subject only to thecondition that they have to have the same cardinality.In the general case N � 1, we can at least derive a Pascal-triangle typerecursion formula for G(L1; : : : ; LN ). To this end, consider a partial partitionV = fV1; : : : ; Vkg of f1; : : : ; Ng, that is a non-empty set of non-empty andpairwise disjoint subsets V1; : : : ; Vk of f1; : : : ; Ng and de�ne G(L1; : : : ; LN ;V)to denote the number of e�ective alignments A for which V coincides with theset V(A) := fV � f1; : : : ; Ng �� f[ij1] �� i 2 V g 2 S=Ag:Clearly, V(A) is non-empty because every A-equivalence class contained in Swhich is minimal with respect to the partial order �A de�ned by A is necessarilyof the form f[ij1] �� i 2 V g for some non-empty subset V � f1; : : : ; Ng.So, we have G(L1; : : : ; LN ) =XV G(L1; : : : ; LN ;V);where the sum is taken over all (non-empty) partial partitions V of f1; : : : ; Ng.Moreover, if we denote for every such V by G+(L1; : : : ; LN ;V) the numberof all e�ective alignments A with V � V(A), we surely haveXV�WG(L1; : : : ; LN ;W) = G+(L1; : : : ; LN ;V) = G(L1��V(1); : : : ; LN��V(N))
where �V denotes the characteristic function of V := SV 2V V , because that lastnumber just counts the number of e�ective alignments of the N su�x sequencesresulting from our original sequences by eliminating the �rst entry in each ofthe sequences si with i 2 V which is exactly the number of those alignments Aof the original sequences with V � V(A).Consequently, M�obius inversion yields the following recursion formulaG(L1; : : : ; LN ;V) = XV�W0 G(L1; : : : ; LN ;W 0) XV�W�W0(�1)#(W�V) == XV�W(�1)#(W�V) XW�W0 G(L1; : : : ; LN ;W 0) == XV�W(�1)#(W�V)G+(L1; : : : ; LN ;W) == XV�W(�1)#(W�V)G(L1 � �W(1); : : : ; LN � �W(N))
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which obviously implies the recursion formulaG(L1; : : : ; LN ) =X;6=V
0@XV�W(�1)#(W�V)G(L1 � �W(1); : : : ; LN � �W(N))1A =

= X;6=W
0@ X;6=V�W(�1)#(W�V)1AG(L1 � �W(1); : : : ; LN � �W(N)) == X;6=W(�1)1+#WG(L1 � �W(1); : : : ; LN � �W(N))in view of X;6=V�W(�1)#(W�V) + (�1)#W = XV�W(�1)#(W�V) = 0:Moreover, we can rewrite these formulae by introducing the numbersa(k) :=X� (�1)#(f1;:::;kg=�)where, for any given k 2 N 0 , we sum over all equivalence \�" relations de�nedon f1; : : : ; kg. Clearly, we have a(0) = 1; a(1) = �1; a(2) = 0; a(3) = 1; a(4) =1; a(5) = �2; a(6) = �9; a(7) = �9; a(8) = 50 and so on, as can be read o� fromthe obvious recursion formulaa(k + 1) = � kXp=0�kp�a(k � p):Remark: The series a(k) also describes the expansion of exp(1� ex) and isclosely related to the Stirling numbers of second kind �jk [7, 8]: With �jk beingthe number of equivalence classes with exactly j classes on a set of k distinctelements, we have a(k) = kXj=1(�1)j�jk:Using these numbers while sorting the above formulae for multiply occuringequal terms, we getG(L1; : : : ; LN ;V) = XV�W(�1)#(W�V)G(L1 � �W(1); : : : ; LN � �W(N)) =

= XV�W
0@ XV�W;W=W(�1)#(W�V)G(L1 � �W (1); : : : ; LN � �W (N))1A =

= XV�W�f1;:::;Ng X� (�1)#((W�V)=�)!G(L1 � �W (1); : : : ; LN � �W (N)) == XV�W�f1;:::;Ng a(#(W � V))G(L1 � �W (1); : : : ; LN � �W (N))
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as well asG(L1; : : : ; LN ) = X;6=W�f1;:::;Ng�a(#W )G(L1 � �W (1); : : : ; LN � �W (N)):
In case N := 2, this impliesG(L1; L2; ff1gg) = G(L1 � 1; L2)�G(L1 � 1; L2 � 1);G(L1; L2; ff2gg) = G(L1; L2 � 1)�G(L1 � 1; L2 � 1);G(L1; L2; ff1g; f2gg) = G(L1; L2; ff1; 2gg) = G(L1 � 1; L2 � 1)as well as G(L1; L2) = G(L1 � 1; L2) +G(L1; L2 � 1)corroborating the result G(L1; L2) = �L1 + L2L1 �

in view of�L1 + L2L1 � = �L1 + L2 � 1L1 � 1 �+�L1 + L2 � 1L1 � = �L1 + L2 � 1L1 � 1 �+�L1 + L2 � 1L2 � 1 �:In case N := 3, we getG(L1; L2; L3; ff1gg) = G(L1 � 1; L2; L3)�G(L1 � 1; L2 � 1; L3)�G(L1 � 1; L2; L3 � 1)G(L1; L2; L3; ff1; 2gg) = G(L1; L2; L3; ff1g; f2gg)= G(L1 � 1; L2 � 1; L3)�G(L1 � 1; L2 � 1; L3 � 1);G(L1; L2; L3; ff1; 2; 3gg) = G(L1; L2; L3; ff1; 2g; f3gg)= G(L1; L2; L3; ff1g; f2g; f3gg) = G(L1 � 1; L2 � 1; L3 � 1)as well asG(L1; L2; L3) = G(L1 � 1; L2; L3) +G(L1; L2 � 1; L3) ++G(L1; L2; L3 � 1)�G(L1 � 1; L2 � 1; L3 � 1):
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