
Counting All DCJ Sorting Scenarios

Maŕılia D. V. Braga and Jens Stoye

Technische Fakultät, Universität Bielefeld, Germany.
mbraga@cebitec.uni-bielefeld.de, stoye@techfak.uni-bielefeld.de

Abstract. In genome rearrangements, the double cut and join (DCJ)
operation, introduced by Yancopoulos et al., allows to represent most
rearrangement events that could happen in multichromosomal genomes,
such as inversions, translocations, fusions and fissions. No restriction
on the genome structure considering linear and circular chromosomes is
imposed. An advantage of this general model is that it leads to consid-
erable algorithmic simplifications. Recently several works concerning the
DCJ operation have been published, and in particular an algorithm was
proposed to find an optimal DCJ sequence for sorting one genome into
another one. Here we study the solution space of this problem and give
an easy to compute formula that corresponds to the exact number of
optimal DCJ sorting sequences to a particular subset of instances of the
problem. In addition, this formula is also a lower bound to the number
of sorting sequences to any instance of the problem.

1 Introduction

Genome rearrangements provide the opportunity for tracking evolutionary events
at a structural, whole-genome level. A typical approach is the determination of
the minimum number of rearrangement operations that are necessary to trans-
form one genome into another one [7]. The corresponding computational problem
is called the genomic distance problem [5]. A bit more detailed is the task when
in addition to the numeric distance also one or more scenarios of rearrangement
operations are to be determined, the so-called genomic sorting problem.

Most algorithms that solve the genomic sorting problem will report just one
out of a possibly very high number of rearrangement scenarios, and studies of
such a particular scenario are not well suited for drawing general conclusions on
properties of the relationship between the two genomes under study. Moreover,
there are normally too many sorting scenarios in order to enumerate them all [8].
Consequently, people have started characterizing the space of all possible genome
rearrangement scenarios without explicit enumeration [2, 4]. This space exhibits
a nice sub-structure that allows efficient enumeration of substantially different
rearrangement scenarios, for example. This may be a good basis for further
studies based on statistical approaches or sampling strategies.

Based on the type of genomes and the organism under study, various genome
rearrangement operations have been considered. Most results are known for
unichromosomal linear genomes, where the only operation is an inversion of



a piece of the chromosome. In this model, the space of all sorting scenarios
has been well characterized, allowing to group sorting scenarios into classes of
equivalence [2]. The number of classes of equivalence, that can be directly enu-
merated [4], is much smaller than the total number of scenarios.

In this paper, we study the space of all sorting scenarios under a more gen-
eral rearrangement operation, called double-cut and join (DCJ). This operation
was introduced by Yancopoulos et al. [9] and further studied in [3]. It acts on
multichromosomal linear and/or circular genomes and subsumes all tradition-
ally studied rearrangement operations like inversions, translocations, fusions and
fissions. We characterise the sorting sequences and show how to commute oper-
ations in order to obtain a sorting sequence from another. In addtion we give a
closed formula for the number of DCJ sorting scenarios that is exact for a certain
class of instances of the problem, and a lower bound for the general case.

We are aware that recently, and independently of our work, similar results to
the ones presented here were obtained by Ouangraoua and Bergeron [6]. However,
we believe that our approach is more direct and also more complete, since it is
not restricted to co-tailed genomes as the approach presented in [6].

2 Genomes, adjacency graph and sorting by DCJ

A multichromosomal genome Π , over a set of markers G, is a collection of linear
and/or circular chromosomes in which each marker in G occurs exactly once in
Π . Each marker g in G is a DNA fragment and has an orientation, therefore,
to each g ∈ G, we define its extremities gt (tail) and gh (head) and we can
represent an adjacency between two markers a and b in Π by an unordered pair
containing the extremities of a and b that are actually adjacent. For example,
if the head of marker a is adjacent to the head of marker b in one chromosome
of Π , then we have the adjacency {ah, bh}, that we represent as ahbh or bhah

for simplicity. When the extremity of a marker is adjacent to the telomere of
a linear chromosome in Π , we have a singleton instead of a pair. For example,
if the extremity bt is adjacent to a telomere of a linear chromosome, then we
have the singleton {bt}, that we represent simply as bt. A genome Π can be
represented by the set V (Π) containing its adjacencies and singletons [3].

A double-cut and join or DCJ operation over a genome Π is the operation
that cuts two elements (adjacencies or singletons) of V (Π) and joins the sepa-
rated extremities in a different way, creating two new elements [3]. For example,
a DCJ acting on two adjacencies pq and rs would create either the new adjacen-
cies pr and qs, or ps and qr (this could correspond to an inversion, a reciprocal
translocation between two linear chromosomes, a fusion of two circular chromo-
somes, or an excision of a circular chromosome). In the same way, a DCJ acting
on one adjacency pq and a singleton r would create either pr and q, or p and qr
(in this case, the operation could correspond to an inversion, or a translocation,
or a fusion of a circular and a linear chromosomes). At last, a DCJ acting on
two singletons p and q would create the new adjacency pq (that could represent
a circularization of one or a fusion of two linear chromosomes). Conversely, a

2



DCJ can act on only one adjacency pq and create the two singletons p and q
(representing a linearization of a circular, or a fission of a linear chromosome).

Definition 1 ([3]). Given two genomes Π1 and Π2 over the same set of mark-
ers G (with the same content) and without duplications, the adjacency graph
AG(Π1, Π2) is the graph in which:

1. The set of vertices is V = V (Π1) ∪ V (Π2).
2. For each g ∈ G, we have an edge connecting the vertices in V (Π1) and V (Π2)

that contain gh and an edge connecting the vertices in V (Π1) and V (Π2) that
contain gt.

We know that AG(Π1, Π2) is bipartite with maximum degree equal to two
(each extremity of a marker appears in at most one adjacency or singleton in Π1

and in at most one adjacency or singleton in Π2). Consequently, AG(Π1, Π2)
is a collection of cycles of even length and paths, alternating vertices in V (Π1)
and V (Π2). A path is said to be balanced when it contains the same number
of vertices in V (Π1) and in V (Π2), that is, when it contains an even number
of vertices (and an odd number of edges). Otherwise the path contains an odd
number of vertices (and an even number of edges) and is said to be unbalanced.

Observe that both V (Π1) and V (Π2) have an even number of singleton ver-
tices, thus the number of balanced paths in AG(Π1, Π2) is even [3]. An example
of an adjacency graph is given in Figure 1.

r r r r r r
dt

dhct chet ehbt bhat ah

r r r r r r r

dt dhat ahet eh bt bhct ch

�
�
�

�
�
�

!!!!!!!!

�
�
�

!!!!!!!!

�
�
�

S
S

S

PPPPPPPPP

S
S

S

PPPPPPPPP

Fig. 1. The adjacency graph for the linear genomes Π1 and Π2, defined by the cor-
reponding sets of adjacencies V (Π1) = {dt, dhct, chet, ehbt, bhat, ah} and V (Π2) =
{dt, dhat, ahet, eh, bt, bhct, ch}, contains one cycle, one unbalanced, and two balanced
paths.

Given two genomes Π1 and Π2 over the same set of markers G and without
duplications, the problem of sorting Π1 into Π2 by DCJ operations has been
studied by Bergeron et al. [3]. The authors proposed a formula for the DCJ
distance, based on the adjacency graph AG(Π1, Π2):

d(Π1, Π2) = n − c −
b

2
(1)

where n is the number of markers in G, c and b are respectively the number of
cycles and balanced paths in AG(Π1, Π2).

Bergeron et al. [3] also observed that an optimal DCJ operation either in-
creases the number of cycles by one or the number of balanced paths by two and
proposed a simple algorithm to find one optimal sequence of DCJ operations to
sort Π1 into Π2.

3



3 The solution space of sorting by DCJ

Although an optimal DCJ sequence sorting a genome Π1 into a genome Π2

can be easily obtained [3], there are several different optimal sorting sequences,
and in this study we approach the problem of characterizing and counting these
optimal solutions. We want to analyse the space of solutions sorting Π1 into Π2,
thus we consider only operations acting on genome Π1, or, in other words, acting
on vertices of V (Π1).

3.1 The commutation of two DCJ operations

Here we represent a DCJ operation ρ by the two pairs of adjacencies concerned,
ρ = (adj0, adj1), that is, the original pair of adjacencies adj0 = {pq, rs} and the
new pair of adjacencies, say adj1 = {pr, qs}. (In order to generalize this notation
to singletons, any extremity among p, q, r, s could be equal to ◦ – a telomere.)
We say that the adjacencies adj0 and adj1 and the extremities p, q, r and s are
affected by ρ. Two DCJ operations are said to be independent when the set of
marker extremities (excluding telomeres) affected by one is independent of the
set affected by the other.

Proposition 1. In any optimal DCJ sorting sequence . . . ρθ . . ., two consecutive
operations ρ and θ are independent or share one adjacency, that is, one adjacency
created by ρ is used (broken) by θ.

Proof. The second operation cannot use both adjacencies created by the first,
otherwise they would not be part of an optimal sequence. Thus, the second oper-
ation either uses one adjacency created by the first operation or only adjacencies
that were not affected by the first. ⊓⊔

Proposition 2. In any optimal DCJ sorting sequence . . . ρθ . . ., the operations
ρ and θ could be commuted to construct another optimal sorting sequence. If
ρ and θ are independent, the commutation is direct, that is, we may simply
replace . . . ρθ . . . by . . . θρ . . .. Otherwise, the commutation can be done in two
ways, with adjustments as follows: Suppose ρ = ({pv, qr}, {pq, rv}) and θ =
({rv, su}, {rs, uv}). Then we could replace ρ and θ by ρ′ = ({pv, su}, {ps, uv})
and θ′ = ({ps, qr}, {pq, rs}) or alternatively by ρ′′ = ({qr, su}, {qu, rs}) and
θ′′ = ({pv, qu}, {pq, uv}).

Proof. Observe that either ρθ, or ρ′θ′, or ρ′′θ′′ transform the adjacencies pv,
qr and su into the adjacencies pq, rs and uv, thus the adjacencies that exist
before and after ρθ, ρ′θ′ and ρ′′θ′′ are the same. Consequentely the remaining
operations are still valid. ⊓⊔

The commutation with adjustments is shown in Figure 2.

Theorem 1. Any optimal DCJ sequence can be obtained from any other optimal
DCJ sequence by successive commutations.

4



r r r
p|v q|r s u

r r r

p q r s u v
�

�
�

�
�

�

Q
Q

Q
QQ

→

r r r

p q r|v s|u

r r r

p q r s u v
�

�
�

S
S

S
→

r r r

p q r s u v

r r r

p q r s u v

ρ = ({pv, qr}, {pq, rv}) and θ = ({rv, su}, {rs, uv})

r r r
p|v q r s|u

r r r

p q r s u v
�

�
�

�
�

�

Q
Q

Q
QQ

→

r r r
p|s q|r u v

r r r

p q r s u v
�

�
�

S
S

S
→

r r r

p q r s u v

r r r

p q r s u v

ρ′ = ({pv, su}, {ps, uv}) and θ′ = ({ps, qr}, {pq, rs})

r r r

p v q|r s|u

r r r

p q r s u v
�

�
�

�
�

�

Q
Q

Q
QQ

→

r r r
p|v r s q|u

r r r

p q r s u v
�

�
�

��

Q
Q

Q
QQ

→

r r r

p q r s u v

r r r

p q r s u v

ρ′′ = ({qr, su}, {qu, rs}) and θ′′ = ({pv, qu}, {pq, uv})

Fig. 2. Example of commutation with adjustments. Observe that the three pairs of
consecutive DCJ operations ρθ, ρ′θ′ and ρ′′θ′′ transform the adjacencies pv, qr and su

into pq, rs and uv.

Proof. Any optimal DCJ sequence transforms the same initial set of adjacen-
cies into the same final set of adjacencies. Suppose the final adjacencies are
adj1, adj2, . . . , adjk and consider two optimal DCJ sorting sequences s and t. We
can transform s into t with the following procedure: for each adji (1 ≤ i ≤ k),
search the operation in s that produces adji and move it to the position it oc-
cupies in t by commutations. ⊓⊔

One critical aspect of the commutations is that they can change the actual
nature of the operations over the genomes, as we can see in Figure 3.

3.2 Counting DCJ sequences sorting components separately

Proposition 3. Any DCJ operation acting on vertices of V (Π1) belonging to
the same component of AG(Π1, Π2) is optimal.

Proof. Consider Formula 1 for computing the DCJ distance. We know that an
optimal DCJ operation either creates one cycle or two balanced paths [3]. Enu-
merating the effects of any operation acting on vertices of V (Π1) internal to a
component, we have:

– If the vertices are in a cycle, it is split into two cycles, that is, the number
of cycles increases by one.

– If the vertices are in a balanced path, it is split into one cycle and one
balanced path, that is, the number of cycles increases by one.

5



(A) - � � - -a c d b e

- � � - -a c b d e

- - - - -a b c d e

(B) - � � - -a c d b e

- - -
~

k

a b e
c

d

- - - - -a b c d e

Fig. 3. In this graphic representation of the genomes, each arrow represents a
marker (from G = {a, b, c, d, e}) with its corresponding orientation. The commu-
tation of two independent DCJ operations sorting {at, ahch, ctdh, dtbt, bhet, eh} into
{at, ahbt, bhct, chdt, dhet, eh} changes the nature of the actual rearrangements. In (A)
we have ({ctdh, bhet}, {bhct, dhet}) followed by ({ahch, btdt}, {ahbt, chdt}), a sequence
of two inversions, while in (B) we have ({ahch, btdt}, {ahbt, chdt}) followed by
({ctdh, bhet}, {bhct, dhet}), a circular excision followed by a circular integration.

– If the vertices are in an unbalanced path, either it is split into one cycle and
one unbalanced path, increasing the number of cycles by one; or it is closed
into a cycle (when the path has more vertices in V (Π1)), also increasing the
number of cycles; or it is split into two balanced paths (when the path has
more vertices in V (Π2)), increasing the number of balanced paths by two.

Thus, any operation acting on vertices of V (Π1) belonging to the same compo-
nent of AG(Π1, Π2) is optimal. ⊓⊔

Proposition 4. Given two genomes Π1 and Π2, any component of AG(Π1, Π2)
can be sorted independently.

Proof. This is a direct consequence of Proposition 3. ⊓⊔

Let d(C) be the DCJ distance of a component C in AG(Π1, Π2) and seq(C)
be the number of DCJ sequences sorting C. Moreover, let ECi+1 be an even
cycle with i + 1 edges in AG(Π1, Π2) and let BPi be a balanced and UPi−1 be
an unbalanced path with respectively i and i − 1 edges (observe that i is odd).

Proposition 5. For any integer i ∈ {3, 5, 7, . . .}, we have d(UPi−1) = d(BPi) =
d(ECi+1) = i−1

2 and seq(UPi−1) = seq(BPi) = seq(ECi+1).

Proof. A balanced path with i edges could be transformed into a cycle with
i + 1 edges by connecting the two ends of the path (this respects the alternation
between vertices of V (Π1) and V (Π2)). Analogously, an unbalanced path with
i − 1 edges could be transformed into a cycle with i + 1 edgess by the insertion
of a double “telomere” vertex on the genome that is under-represented in the
path. The two ends of the unbalanced path should then be connected to the
new vertex (this also respects the alternation between vertices of V (Π1) and
V (Π2)) and the new vertex can also be used in optimal DCJ operations within
the unbalanced path. An example for the case EC4, BP3 and UP2 is given in

6



r r r r r r
dt

dhct chet ehbt bhat ah

r r r r r r r

dt
dhat ahet eh bt

bhct ch

�
�
�

�
�
�

!!!!!!!!

�
�
�

!!!!!!!!

�
�
�

S
S

S

PPPPPPPPP

S
S

S

PPPPPPPPP
→

r r r r r r r
◦ dt

dhct chet ehbt bhat ah◦ ◦ ◦

r r r r r r r

◦ dt
dhat ahet eh◦ ◦ bt

bhct ch◦

�
�
�

!!!!!!!!

�
�
�

!!!!!!!!

�
�
�

!!!!!!!!

�
�

�
��

S
S

S

PPPPPPPPP

S
S

S

S
S

S

PPPPPPPPP

Fig. 4. Adding telomeres to the paths of the adjacency graph. We can see here that
the structures of an EC4, a BP3 and an UP2 are identical, therefore these components
have the same DCJ distance and the same number of sorting sequences.

Figure 4. It is easy to see that we need i−1
2 operations to sort an unbalanced path

with i − 1 edges or a balanced path with i edges or cycle with i + 1 edges. ⊓⊔

We denote by Ci⊗Cj the multiplication of two independent sets of sequences
sorting two components Ci and Cj , defined as the set of all sequences that are the
result of all possible combinations of each sequence sorting Ci with each sequence
sorting Cj . Observe that the operation ⊗ is symmetric, that is, Ci⊗Cj = Cj⊗Ci,
and associative, that is, (Ci⊗Cj)⊗Ck = Ci⊗ (Cj ⊗Ck). We denote by ||Ci|| the
number of sequences sorting Ci, and by di the length of each sequence sorting Ci

(the DCJ distance of Ci). Then the number of sequences in Ci ⊗Cj corresponds
to ||Ci|| × ||Cj || × M(di, dj), where M(di, dj) is the number of possible ways to
merge a sequence of length di with a sequence of length dj , such that the merged
sequences are subsequences of all resulting sequences.

For example, if s1 = ρ1ρ2 and s2 = θ1θ2, then all possible ways of merging
s1 and s2 are the 6 sequences ρ1ρ2θ1θ2, ρ1θ1ρ2θ2, ρ1θ1θ2ρ2, θ1ρ1ρ2θ2, θ1ρ1θ2ρ2,
and θ1θ2ρ1ρ2, thus M(2, 2) = 6. The number M(d1, d2, . . . , dk) corresponds to
the multinomial coefficient and can be computed by the following formula:

M(d1, d2, . . . , dk) =

(

d1 + d2 + . . . + dk

d1, d2, . . . , dk

)

=
(d1 + d2 + . . . + dk)!

d1!d2! . . . dk!
.

Proposition 6. The number of operations sorting a component C whose dis-
tance is d is given by ||C|| = (d + 1)d−1.

Proof. A cycle with n vertices and n edges has v = n/2 vertices in V (Π1), DCJ
distance d = v − 1, and can be broken with one DCJ operation, resulting in two
cycles as follows (each pair of cycles can be obtained in v different ways):

– one of size 2 (v′ = 1; d′ = 0) and one of size n − 2 (v′ = v − 1; d′ = d − 1);
– one of size 4 (v′ = 2; d′ = 1) and one of size n − 4 (v′ = v − 2; d′ = d − 2);
– one of size 6 (v′ = 3; d′ = 2) and one of size n − 6 (v′ = v − 3; d′ = d − 3);
– and so on ...

Thus, the computation of the number of sorting sequences is given by the fol-
lowing recurrence formula on v:

T (1) = 1

T (v) =
v

2

v−1
∑

i=1

T (v − i) ⊗ T (i).

7



We know that T (v − i) ⊗ T (i) = T (v − i) × T (i) ×
(

v−2
i−1

)

. Thus, we have

T (v) = v
2

∑v−1
i=1

(

v−2
i−1

)

× T (v − i) × T (i); or, alternatively

T (v) = v
2

∑v−2
k=0

(

v−2
k

)

× T (v − k − 1) × T (k + 1), which is also equivalent to

T (v) =
v−2
∑

k=0

(

v − 2

k

)

× (v − k − 1) × T (v − k − 1) × T (k + 1).

This last recurrence formula is identical to the recurrence formula presented
in [10] for counting labeled trees and results in vv−2. Since we have d = v − 1,
we get T (v) = (d + 1)d−1. ⊓⊔

We call small components the paths and cycles of AG(Π1, Π2) with two
vertices (BP1 and EC2) whose distance is zero; the other components are big
components (observe that any unbalanced path is a big component). The DCJ
distance and number of sequences sorting big components is shown in Table 1.

unbalanced balanced even sequence number of
paths paths cycles length sequences

UP2 BP3 EC4 1 1
UP4 BP5 EC6 2 3
UP6 BP7 EC8 3 16
UP8 BP9 EC10 4 125
UP10 BP11 EC12 5 1296
UP12 BP13 EC14 6 16807

...
...

...
...

...

UP2d BP2d+1 EC2d+2 d (d + 1)d−1

Table 1. The number of DCJ sequences sorting each type of component independently.

Proposition 7. The number of solutions sorting AG(Π1, Π2) obtained by sort-
ing each component independently is

C1 ⊗ C2 ⊗ . . . ⊗ Ck =
(d1 + d2 + . . . + dk)!

d1!d2! . . . dk!
×

k
∏

i=1

(di + 1)di−1

where C1, C2, . . . , Ck are the big components of AG(Π1, Π2) and d1, d2, . . . , dk

are their respective DCJ distances.

Proof. We know that the number of solutions obtained by merging the sequences
sorting the components independently is given by the multinomial coefficient
multiplied by the number of sequences sorting each component, the latter being
given by the formula in Proposition 6. ⊓⊔

8



3.3 Towards the general case

The formula given by Proposition 7 does not correspond to the total number
of solutions for a general instance of the problem, due to the recombination of
unbalanced paths. A pair of alternate unbalanced paths is composed by one un-
balanced path with more vertices in V (Π1) and one unbalanced path with more
vertices in V (Π2) and can be recombined at any time and in several different
ways into two balanced paths. See an example in Figure 5. This can increase
considerably the number of optimal solutions, specially when the number of the
two types of unbalanced paths in the graph is big.

unbalanced paths

r r r r

q p|s r|u v

r r r r

p q r s u v
�

�
�

S
S

S

�
�

�

S
S

S

S
S

S
→

balanced paths

r r r r

q p r s u v

r r r r

p q r s u v
�

�
�

S
S

S

S
S

S

unbalanced paths

r r r r
|q p|s r u v

r r r r

p q r s u v
�

�
�

S
S

S

�
�

�

S
S

S

S
S

S
→

balanced paths

r r r r

p q s r u v

r r r r

p q r s u v
�

�
�

S
S

S

S
S

S

Fig. 5. Here we represent two of many ways of recombining a pair of alternate unbal-
anced paths into a pair of balanced paths.

Proposition 8. A DCJ operation acting on vertices of V (Π1) belonging to two
different components of AG(Π1, Π2) is optimal, if and only if they are alternate
unbalanced paths.

Proof. Recall that an optimal DCJ operation either increases the number of
cycles by one or the number of balanced paths by two [3]. We need to examine
all possible DCJ operations acting on two different components of AG(Π1, Π2).
If one component is a cycle, and the other component is of type X (X can be
either a cycle, or a balanced, or an unbalanced path), then the result is one single
component that is also of type X . Thus, the number of cycles in the graph is
reduced. If the two components are balanced paths, then the result is either one
unbalanced path, or two unbalanced, or two balanced paths. In the first and the
second case the number of balanced paths is reduced by two and in the third case
it remains unchanged. If one is a balanced and the other is an unbalanced path,
then the result is either one balanced path, or one balanced and one unbalanced
path. In both cases the number of balanced paths remains unchanged. And the
same happens if the two components are unbalanced paths, that do not form an
alternate pair. In this case, the result is either one, or two unbalanced paths. Note

9



that all operations enumerated so far can not be optimal. The last possibility
is when the components are a pair of alternate unbalanced paths. In this case,
any operation acting on two vertices of V (Π1), each one belonging to each one
of the unalanced paths, results in a pair of balanced paths (see Figure 5) and is
an optimal DCJ operation. ⊓⊔

Proposition 9. If AG(Π1, Π2) does not contain any pair of alternate unbal-
anced paths, the components of AG(Π1, Π2) can only be sorted independently.

Corollary 1. The formula given in Proposition 7 is a lower bound to the number
of DCJ sorting scenarios for any instance of the problem.

To give an idea of the increase caused by unbalanced paths, we consider
the smallest example, that is, AG(Π1, Π2) has only one pair of alternate un-
balanced paths with three vertices each. Since the DCJ distance of each one of
these unbalanced paths is one, no DCJ operation can be performed on them
before the recombination, and they can be recombined into balanced paths in
only four different ways, resulting in a small balanced path with two vertices
and a big balanced path with four vertices (see Figure 6). Thus, either these two
unbalanced paths are sorted independently or they are recombined into balanced
paths in one of these four ways. Let AG(Π1, Π2) have k big balanced compo-
nents (cycles and balanced paths), numbered from C1 to Ck. We know that
the number of solutions sorting the components of AG(Π1, Π2) independently

is (d1+d2+...+dk+2)!
d1!d2!...dk! ×

∏k

i=1(di + 1)di−1. Analogously, the number of solutions

sorting the components of AG(Π1, Π2) that contain one of the four ways of re-

combining the pair of unbalanced paths is (d1+d2+...+dk+2)!
d1!d2!...dk!2! ×

∏k

i=1(di + 1)di−1.
In consequence, the total number of solutions is:

3 × (d1 + d2 + . . . + dk + 2)!

d1!d2! . . . dk!
×

k
∏

i=1

(di + 1)di−1.

This means that a single shortest pair of alternate unbalanced paths tripli-
cates the number of solutions with respect to the solutions obtained sorting the
components individually.

With this small example, one can figure out the complexity of integrating
the recombination of alternate unbalanced paths to the counting formula. The
different pairs of alternate unbalanced paths can be recombined separately or
simultaneously in many different ways, and not only as the first step sorting the
paths to be recombined, but at any time (when these paths have DCJ distance
greater than one). However, we conjecture that the formula given in Proposition 7
gives a tight lower bound to the order of magnitude of the number of solutions.

4 Comparing human, chimpanzee and rhesus monkey

From [1] we obtained a database with the synteny blocks of the genomes of hu-
man (Homo sapiens), chimpanzee (Pan troglodytes) and rhesus monkey (Macaca

10



unbalanced paths

r r r

|q p|s r

r r r

p q r s
�

�
�

S
S

S

�
�

�

S
S

S
→

balanced paths

r r r

p q s r

r r r

p q r s
�

�
�

S
S

S

unbalanced paths

r r r

|q p|s r

r r r

p q r s
�

�
�

S
S

S

�
�

�

S
S

S
→

balanced paths

r r r

p q s r

r r r

p q r s
S

S
S

�
�

�

S
S

S

unbalanced paths

r r r

q p|s r|

r r r

p q r s
�

�
�

S
S

S

�
�

�

S
S

S
→

balanced paths

r r r

q p r s

r r r

p q r s
�

�
�

S
S

S

unbalanced paths

r r r

q p|s r|

r r r

p q r s
�

�
�

S
S

S

�
�

�

S
S

S
→

balanced paths

r r r

q p r s

r r r

p q r s
�

�
�

S
S

S

�
�

�

Fig. 6. A pair of shortest alternate unbalanced paths can be recombined into a pair of
balanced paths in only four different ways.

mulatta) and used the formula given in Proposition 7 to compute the number
of DCJ scenarios for the pairwise comparison of these genomes. The results are
shown in Table 2. We observed that the number of paths, and more particu-
larly the number of unbalanced paths in the corresponding adjacency graphs, is
usually small. We know that big paths occur when some extremities of linear
chromosomes are different in the two analysed genomes, thus our results suggest
that this is unlikely to happen when the genomes are closely related. Comparing
the human and chimpanzee genomes, for instance, we have only one unbalanced
path, so it is not possible to recombine unbalanced into balanced paths. Conse-
quently we are able to give the exact number of solutions for this instance of the
problem.

5 Final remarks

In this work we studied the solution space of the sorting by DCJ problem. We
were able to characterize the solutions, showing how to transform an optimal
sequence into another, and proposed a formula that gives a lower bound to
the number of all optimal DCJ sequences sorting one genome into another. This
formula can be easily and quickly computed and corresponds to the exact number
of sorting sequences for a particular subset of instances of the problem. Although
we could identify the structures of the compared genomes that cause the increase
of the number of solutions with respect to the given lower bound, finding a
general formula to the total number of DCJ sorting scenarios remains an open
question.

References

1. Alekseyev, M. A. and Pevzner, P. A.: Breakpoint graphs and ancestral genome
reconstructions. Genome Res. 19, 943–957, 2009.

11



# big # big bal. # unbal. DCJ # DCJ
genomes cycles paths paths distance scenarios

human vs.
chimpanzee

18 1 1 + 0 22 ≃ 2.53 × 1021

human vs.
monkey

59 7 2 + 4 106 ≃ 1.23 × 10177

chimpanzee
vs. monkey

68 8 1 + 4 114 ≃ 1.53 × 10193

Table 2. Counting DCJ sorting sequences between human, chimpanzee and rhesus
monkey genomes (data obtained from [1]). For each pairwise comparison, the number
of sorting sequences is very large and is thus presented approximately (although it can
be computed exactly). Observe that the number of paths is usually much smaller than
the number of cycles in all pairwise comparisons. Looking at the human vs. chimpanzee
comparison in particular, we notice that it results in only one unbalanced path, thus
none of its sorting sequences can be obtained by recombining unbalanced into balanced
paths. This means that the lower bound given by the formula of Proposition 7 is tight
in this case.

2. Bergeron A., Chauve C., Hartmann T. and St-Onge K.: On the properties of se-
quences of reversals that sort a signed permutation. In: Proceedings of JOBIM
2002, 99–108, 2002.

3. Bergeron, A., Mixtacki, J. and Stoye, J.: A unifying view of genome rearrange-
ments. In: Proceedings of WABI 2006, LNCS 4175, 163–173, 2006.

4. Braga M. D. V., Sagot M.-F., Scornavacca C. and Tannier E.: Exploring the solu-
tion space of sorting by reversals with experiments and an application to evolution.
IEEE/ACM Trans. Comput. Biol. Bioinf. 5(3), 348–356, 2008. (Preliminary ver-
sion in Proceedings of ISBRA 2007, LNBI 4463, 293–304, 2007).

5. Hannenhalli, S. and Pevzner, P.: Transforming men into mice (polynomial algo-
rithm for genomic distance problem). In: Proceedings of FOCS 1995, 581–592,
1995.

6. Ouangraoua, A. and Bergeron A.: Parking functions, labeled trees and DCJ sorting
scenarios. In Proceedings of RECOMB-CG 2009, LNBI 5817, 2009.

7. Sankoff, D.: Edit Distance for Genome Comparison Based on Non-Local Opera-
tions. In Proceedings of CPM 1992, LNCS 644, 121–135, 1992.

8. Siepel A.: An algorithm to enumerate sorting reversals for signed permutations. J.
Comput. Biol. 10, 575–597, 2003.

9. Yancopoulos, S., Attie, O. Friedberg, R.: Efficient sorting of genomic permutations
by translocation, inversion and block interchange. Bioinformatics 21, 3340–3346,
2005.

10. Zeilberger, D.: Yet another proof of Cayley’s formula for the number of
labelled trees. Available in http://www.math.rutgers.edu/∼zeilberg/mamarim/
mamarimPDF/cayley.pdf.

12


