
Algorithms for Computing the Family-Free
Genomic Similarity under DCJ

Diego P. Rubert1, Gabriel L. Medeiros1, Edna A. Hoshino1,
Maŕılia D. V. Braga2, Jens Stoye2, and Fábio V. Martinez1,?

1 Faculdade de Computação, Universidade Federal de Mato Grosso do Sul, Campo
Grande, MS, Brazil, (diego,gabriel medeiros,eah,fhvm)@facom.ufms.br,
2 Faculty of Technology and Center for Biotechnology (CeBiTec), Bielefeld

University, Bielefeld, Germany, (mbraga,stoye)@cebitec.uni-bielefeld.de

Abstract. The genomic similarity is a large-scale measure for compar-
ing two given genomes. In this work we study the (NP-hard) problem
of computing the genomic similarity under the DCJ model in a set-
ting that does not assume that the genes of the compared genomes are
grouped into gene families. This problem is called family-free DCJ sim-
ilarity. Here we propose an exact ILP algorithm to solve it, we show its
APX-hardness, and we present three combinatorial heuristics, with com-
putational experiments comparing their results to the ILP. Experiments
on simulated datasets show that the proposed heuristics are very fast and
even competitive with respect to the ILP algorithm for some instances.

Keywords: Genome rearrangement, Double-cut-and-join, Family-free
genomic similarity

1 Introduction

A central question in comparative genomics is the elucidation of similarities and
differences between genomes. Local and global measures can be employed. A pop-
ular set of global measures is based on the number of genome rearrangements
necessary to transform one genome into another one [23]. Genome rearrange-
ments are large scale mutations, changing the number of chromosomes and/or
the positions and orientations of DNA segments. Examples of such rearrange-
ments are inversions, translocations, fusions, and fissions.

As a first step before such a comparison can be performed, some preprocess-
ing is required. The most common method, adopted for about 20 years [23, 24],
is to base the analysis on the order of conserved DNA syntenic segments across
different genomes and group homologous segments into families. This setting is
said to be family-based. Without duplicate segments, i.e., with the additional
restriction that at most one representative of each family occurs in any genome,
several polynomial time algorithms have been proposed to compute genomic
distances and similarities [5, 6, 9, 16, 27]. However, when duplicates are allowed,

? Corresponding author.

problems become more intricate and many presented approaches are NP-hard [1–
3,11,12,24,26].

Although family information can be obtained by accessing public databases
or by direct computing, data can be incorrect, and inaccurate families could be
providing support to erroneous assumptions of homology between segments [15].
Thus, it is not always possible to classify each segment unambiguously into a
single family, and an alternative to the family-based setting was proposed re-
cently [10]. It consists of studying genome rearrangements without prior family
assignment, by directly accessing the pairwise similarities between DNA seg-
ments of the compared genomes. This approach is said to be family-free (FF).

The double cut and join (DCJ) operation, that consists of cutting a genome
in two distinct positions and joining the four resultant open ends in a different
way, represents most of large-scale rearrangements that modify genomes [27]. In
this work we are interested in the problem of computing the overall similarity of
two given genomes in a family-free setting under the DCJ model. This problem
is called FFDCJ similarity. The complexity of computing the FFDCJ similarity
was proven to be NP-hard [20], while the counterpart problem of computing
the FFDCJ distance was already proven to be APX-hard [20]. In the remain-
der of this paper, after preliminaries and a formal definition of the NP-hard
FFDCJ similarity problem, we first present an exact ILP algorithm to solve it.
We then show the APX-hardness of the FFDCJ similarity problem and present
three combinatorial heuristics, with computational experiments comparing their
results to the ILP for datasets simulated by a framework for genome evolution.

2 Preliminaries

Each segment (often called gene) g of a genome is an oriented DNA fragment
and its two distinct extremities are called tail and head, denoted by gt and gh,
respectively. A genome is composed of a set of chromosomes, each of which can
be circular or linear and is a sequence of genes. Each one of the two extremities
of a linear chromosome is called a telomere, represented by the symbol ◦. An
adjacency in a chromosome is then either the extremity of a gene that is adjacent
to a telomere, or a pair of consecutive gene extremities. As an example, observe
that the adjacencies 5h, 5t2t, 2h4t, 4h3t, 3h6t, 6h1h and 1t can define a linear
chromosome. Another representation of the same linear chromosome, flanked by
parentheses for the sake of clarity, would be (◦ −5 2 4 3 6 −1 ◦), in which the
genes preceded by the minus sign (−) have reverse orientation.

A double cut and join or DCJ operation applied to a genome A is the op-
eration that cuts two adjacencies of A and joins the separated extremities in
a different way, creating two new adjacencies. For example, a DCJ acting on
two adjacencies pq and rs would create either the adjacencies pr and qs, or the
adjacencies ps and qr (this could correspond to an inversion, a reciprocal translo-
cation between two linear chromosomes, a fusion of two circular chromosomes,
or an excision of a circular chromosome). In the same way, a DCJ acting on two
adjacencies pq and r would create either pr and q, or p and qr (in this case,

the operation could correspond to an inversion, a translocation, or a fusion of a
circular and a linear chromosome). For the cases described so far we can notice
that for each pair of cuts there are two possibilities of joining. There are two
special cases of a DCJ operation, in which there is only one possibility of joining.
The first is a DCJ acting on two adjacencies p and q, that would create only one
new adjacency pq (that could represent a circularization of one or a fusion of
two linear chromosomes). Conversely, a DCJ can act on only one adjacency pq
and create the two adjacencies p and q (representing a linearization of a circular
or a fission of a linear chromosome).

In the remainder of this section we extend the notation introduced in [20]. In
general we consider the comparison of two distinct genomes, that will be denoted
by A and B. Respectively, we denote by A the set of genes in genome A, and by
B the set of genes in genome B.

2.1 Adjacency Graph and Family-Based DCJ Similarity

In most versions of the family-based setting the two genomes A and B have the
same content, that is, A = B. When in addition there are no duplicates, that is,
when there is exactly one representative of each family in each genome, we can
easily build the adjacency graph of genomes A and B, denoted by AG(A,B) [6].
It is a bipartite multigraph such that each partition corresponds to the set of
adjacencies of one of the two input genomes, and an edge connects the same
extremities of genes in both genomes. In other words, there is a one-to-one corre-
spondence between the set of edges in AG(A,B) and the set of gene extremities.
Since the graph is bipartite and vertices have degree one or two, the adjacency
graph is a collection of paths and even cycles. An example of an adjacency graph
is presented in Fig. 1.

5h 5t2t 2h4t 4h3t 3h6t 6h1h 1t

1t 1h2t 2h4t 4h3h 3t6t 6h5t 5h

Fig. 1. The adjacency graph for the genomes A = {(◦ −5 2 4 3 6 −1 ◦)} and B =
{(◦ 1 2 4 −3 6 5 ◦)}.

It is well known that a DCJ operation that modifies AG(A,B) by increasing
either the number of even cycles by one or the number of odd paths by two
decreases the DCJ distance between genomes A and B [6]. This type of DCJ

operation is said to be optimal. Conversely, if we are interested in a DCJ simi-
larity measure between A and B, rather than a distance measure, then it should
be increased by such an optimal DCJ operation. This suggests that a formula
for a DCJ similarity between two genomes should correlate to the number of
connected components (in the following just components) of the corresponding
adjacency graph.

Moreover, when the genomes A and B are identical, their corresponding
adjacency graph is a collection of 2-cycles and 1-paths [6]. This should correspond
to the maximum value of our DCJ similarity measure. We know that an optimal
operation can always be applied to adjacencies that belong to one of the two
genomes and to one single component of AG(A,B), until the graph becomes
a collection of 2-cycles and 1-paths. In other words, each component of the
graph can be sorted, that is, converted into a collection of 2-cycles and 1-paths
independently of the other components. Furthermore, it is known that each of
the following components – an even cycle with 2d + 2 edges, or an odd path
with 2d+ 1 edges, or an even path with 2d edges – can be sorted with exactly d
optimal DCJ operations. This suggests that the three listed components should
have equivalent weights in the DCJ similarity formula. However, we should also
take into consideration that, for the same d, components with more edges should
actually have a higher weight.

Let P, I, and C represent the sets of components in AG(A,B) that are even
paths, odd paths and cycles, respectively. We have the following formula for the
family-based DCJ similarity:

sdcj(A,B) =
∑
C∈P

(
|C|
|C|+2

)
+
∑
C∈I

(
|C|
|C|+1

)
+
∑
C∈C

(
|C|
|C|

)
(1)

=
∑
C∈P

(
|C|
|C|+2

)
+
∑
C∈I

(
|C|
|C|+1

)
+ c,

where c is the number of cycles in AG(A,B). In Fig. 1 the DCJ similarity is
sdcj(A,B) = 2

(
1
2

)
+ 3 = 4. Observe that sdcj(A,B) is a positive value, upper

bounded by n, where n = |A| = |B|.
The formula to compute sdcj(A,B) in Equation (1) is actually the family-

based version of the family-free DCJ similarity defined in [20], as we will see in
the following subsections.

2.2 Gene Similarity Graph

In the family-free setting, each gene in each genome is represented by a unique
(signed) symbol, thus A∩B = ∅ and the cardinalities |A| and |B|may be distinct.
Let a be a gene in A and b be a gene in B, then their normalized gene similarity
is given by some value σ(a, b) such that 0 ≤ σ(a, b) ≤ 1.

We can represent the gene similarities between the genes of genome A and the
genes of genome B with respect to σ in the so called gene similarity graph [10],

denoted by GSσ(A,B). This is a weighted bipartite graph whose partitions A and
B are the sets of (signed) genes in genomes A and B, respectively. Furthermore,
for each pair of genes (a, b) such that a ∈ A and b ∈ B, if σ(a, b) > 0 then there
is an edge e connecting a and b in GSσ(A,B) whose weight is σ(e) := σ(a, b).
An example of a gene similarity graph is given in Fig. 2.

1 2 3 4 5 6

7 8 −9 −10 11 −12 −13 14

0
.4 0.7

0.8

0
.9

0
.6

0.7

0
.7

0.8

0
.6

0.5

0.9

0
.4

0.7

Fig. 2. Representation of a gene similarity graph for two unichromosomal linear
genomes A = {(◦ 1 2 3 4 5 6 ◦)} and B = {(◦ 7 8 −9 −10 11 −12 −13 14 ◦)}.

2.3 Weighted Adjacency Graph

The weighted adjacency graph AGσ(A,B) of two genomes A and B has a vertex
for each adjacency in A and a vertex for each adjacency in B. For a gene a in A
and a gene b in B with gene similarity σ(a, b) > 0 there is one edge eh connecting
the vertices containing the two heads ah and bh and one edge et connecting the
vertices containing the two tails at and bt. The weight of each of these edges
is σ(eh) = σ(et) = σ(a, b). Differently from the simple adjacency graph, the
weighted adjacency graph cannot be easily decomposed into cycles and paths,
since its vertices can have degree greater than 2. As an example, the weighted
adjacency graph corresponding to the gene similarity graph of Fig. 2 is given in
Fig. 3.

2.4 Reduced Genomes

Let A and B be two genomes and let GSσ(A,B) be their gene similarity graph.
Now let M = {e1, e2, . . . , en} be a matching in GSσ(A,B) and denote by w(M) =∑
ei∈M σ(ei) the weight of M , that is the sum of its edge weights. Since the end-

points of each edge ei = (a, b) in M are not saturated by any other edge of M , we
can unambiguously define the function `M (a) = `M (b) = i to relabel each vertex
in A and B [20]. The reduced genome AM is obtained by deleting from A all genes
not saturated by M , and renaming each saturated gene a to `M (a), preserving
its orientation (sign). Similarly, the reduced genome BM is obtained by deleting
from B all genes that are not saturated by M , and renaming each saturated gene
b to `M (b), preserving its orientation. Observe that the set of genes in AM and
in BM is G(M) = {`M (g) : g is saturated by the matching M} = {1, 2, . . . , n}.

1t 1h2t 2h3t 3h4t 4h5t 5h6t 6h

7t 7h8t 8h9h 9t10h 10t11t 11h12h 12t13h 13t14t 14h

0
.4

0
.4

0.7

0
.7

0.8

0
.80
.9

0
.9 0

.6

0
.6

0
.7

0
.70

.7

0
.7

0.8

0
.80

.60
.6

0.5

0.5

0.9 0.9

0
.4

0
.4

0
.7

0
.7

Fig. 3. The weighted adjacency graph AGσ(A,B) for two unichromosomal linear
genomes A = {(◦ 1 2 3 4 5 6 ◦)} and B = {(◦ 7 8 −9 −10 11 −12 −13 14 ◦)}.

2.5 Weighted Adjacency Graph of Reduced Genomes

Let AM and BM be the reduced genomes for a given matching M of GSσ(A,B).
The weighted adjacency graph AGσ(AM , BM) can be obtained from AGσ(A,B)
by deleting all edges that are not elements of M and relabeling the adjacencies
according to `M . Vertices that have no connections are then also deleted from
the graph. Another way to obtain the same graph is building the adjacency
graph of AM and BM and adding weights to the edges as follows. For each gene
i in G(M), both edges itit and ihih inherit the weight of edge ei in M , that
is, σ(itit) = σ(ihih) = σ(ei). Consequently, the graph AGσ(AM , BM) is also a
collection of paths and even cycles and differs from AG(AM , BM) only by the
edge weights.

Observe that, for each edge e ∈ M , we have two edges of weight σ(e) in
AGσ(AM , BM), thus w(AGσ(AM , BM)) = 2w(M). Examples of weighted adja-
cency graphs of reduced genomes are shown in Fig. 4.

2.6 The Family-Free DCJ Similarity

For a given matching M in GSσ(A,B), a first formula for the weighted DCJ
(wDCJ) similarity sσ of the reduced genomes AM and BM was proposed in [10]
only considering the cycles of AGσ(AM , BM). Following, this definition was mod-
ified and extended in [20], in order to consider the normalized total weight of
all components of the weighted adjacency graph. Let P, I, and C represent the
sets of components in AGσ(AM , BM) that are even paths, odd paths and cy-
cles, respectively, and w(C) =

∑
e∈C σ(e) is the sum of the weights of all the

edges in a component C. Then the wDCJ similarity sσ is given by the following
formula [20]:

sσ(AM , BM) =
∑
C∈P

(
w(C)

|C|+2

)
+
∑
C∈I

(
w(C)

|C|+1

)
+
∑
C∈C

(
w(C)

|C|

)
(2)

Observe that, when the weights of all edges in M are equal to 1, this formula is
equivalent to the one in Equation (1).

M1

M2

1 2 3 4 5 6

7 8 −9 −10 11 −12 −13 14

0.8 0
.9

0.7

0.8

0
.6

0.9

0.7

0
.6

0
.7

0.5

0
.4

0
.4

0.7

GSσ(A,B)

1t 1h2t 2h3t 3h4t 4h5t 5h6t 6h

6t 6h2h 2t1h 1t3t 3h5h 5t4h 4t

0.8

0
.8

0
.9

0
.9

0
.7

0
.7

0.8

0
.80

.6

0
.6

0.
6

0.
6

AGσ(AM1 ,BM1)

1t 1h2t 2h3t 3h4t 4h5t 5h

1h 1t2h 2t3t 3h5h 5t4t 4h

0
.7

0
.7

0
.6

0
.6

0
.7

0
.7

0
.5

0
.5

0
.4

0
.4

AGσ(AM2 ,BM2)

Fig. 4. Considering, as in Fig. 2, the genomes A = {(◦ 1 2 3 4 5 6 ◦)} and B =
{(◦ 7 8 −9 −10 11 −12 −13 14 ◦)}, let M1 (dashed edges) and M2 (dotted edges)
be two distinct maximal matchings in GSσ(A,B), shown in the upper part. The two
resulting weighted adjacency graphs AGσ(AM1 , BM1), that has two cycles and two even
paths, and AGσ(AM2 , BM2), that has two odd paths, are shown in the lower part.

The goal now is to compute the family-free DCJ similarity, i.e., to find a
matching in GSσ(A,B) that maximizes sσ. However, although sσ(AM , BM) is
a positive value upper bounded by |M |, the behaviour of the wDCJ similarity
does not correlate with the size of the matching, since smaller matchings, that
possibly discard gene assignments, can lead to higher wDCJ similarities [20]. For
this reason, the wDCJ similarity function is restricted to maximal matchings
only, ensuring that no pair of genes with positive gene similarity score is simply
discarded, even though it might decrease the overall wDCJ similarity. We then
have the following optimization problem:

Problem ffdcj-similarity(A,B): Given genomes A and B and their
gene similarities σ, calculate their family-free DCJ similarity

sffdcj(A,B) = max
M∈M

{sσ(AM , BM)}, (3)

where M is the set of all maximal matchings in GSσ(A,B).

Problem ffdcj-similarity is NP-hard [20]. One can directly correlate this prob-
lem to the adjacency similarity problem, where the goal is to maximize the num-
ber of preserved adjacencies between two given genomes [1]. However, since there
the objective is to maximize the number of cycles of length 2, even an approx-
imation for the adjacency similarity problem is not a good algorithm for the
ffdcj-similarity problem, where cycles of higher lengths are possible in the
solution [22].

2.7 Capping Telomeres

A very useful preprocessing to AGσ(A,B) is the capping of telomeres, a general
technique for simplifying algorithms that handle genomes with linear chromo-
somes, commonly used in the context of family-based settings [16,25,27]. Given
two genomes A and B with i and j linear chromosomes, respectively, for each
vertex representing only one extremity we add a null extremity τ to it (e.g., 1t

of Fig. 4 becomes τ1t). Furthermore, in order to add the same number of null
extremities to both genomes, |2j−2i| null adjacencies ττ (composed of two null
extremities) are added to genome A, if i < j, or to genome B, if j < i. Finally,
for each null extremity of a vertex in A we add to AGσ(A,B) a null edge with
weight 0 to each null extremity of vertices in B. Consequently, after capping
of telomeres the graph AGσ(A,B) has no vertex of degree one. Notice that, if
before the capping p was a path of weight w connecting telomeres in AGσ(A,B),
then after the capping p will be part of a cycle closed by null extremities with
normalized weight w

|p|+1 if p is an odd path, or of normalized weight w
|p|+2 if p is

an even path. In any of the two cases, the normalized weight is consistent with
the wDCJ similarity formula in Equation (2).

3 An Exact Algorithm

In order to exactly compute the family-free DCJ similarity between two given
genomes, we propose an integer linear program (ILP) formulation that is similar
to the one for the family-free DCJ distance given in [20]. It adopts the same
notation and also uses an approach to solve the maximum cycle decomposition
problem as in [26].

Let A and B be two genomes, let G = GSσ(A,B) be their gene similarity
graph, and let XA and XB be the extremity sets (including null extremities) with
respect to A and B for the capped adjacency graph AGσ(A,B), respectively. The
weight w(e) of an edge e in G is also denoted by we. For the ILP formulation,
an extension H = (VH , EH) of the capped weighted adjacency graph AGσ(A,B)
is defined such that VH = XA ∪ XB and EH = Em ∪ Ea ∪ Es has three types
of edges: (i) matching edges that connect two extremities in different extremity
sets, one in XA and the other in XB , if they are null extremities or there exists
an edge connecting these genes in G; the set of matching edges is denoted by
Em; (ii) adjacency edges that connect two extremities in the same extremity set
if they form an adjacency; the set of adjacency edges is denoted by Ea; and (iii)

self edges that connect two extremities of the same gene in an extremity set; the
set of self edges is denoted by Es. Matching edges have weights defined by the
normalized gene similarity σ, all adjacency and self edges have weight 0. Notice
that any edge in G corresponds to two matching edges in H.

The description of the ILP follows. For each edge in H, we create a binary
variable xe to indicate whether e will be in the final solution. We require first
that each adjacency edge be chosen:

xe = 1, ∀ e ∈ Ea.

Now we rename each vertex in H such that VH = {v1, v2, . . . , vk} with k =
|VH |. We require that each of these vertices be adjacent to exactly one matching
or self edge:∑
e=vrvt∈Em∪Es

xe = 1,∀ vr ∈ XA, and
∑

e=vrvt∈Em∪Es

xe = 1,∀ vt ∈ XB .

Then, we require that the final solution be valid, meaning that if one extrem-
ity of a gene in A is assigned to an extremity of a gene in B, then the other
extremities of these two genes have to be assigned as well:

xahbh = xatbt , ∀ ab ∈ EG.

We also require that the matching be maximal. This can easily be ensured
if we guarantee that at least one of the vertices connected by an edge in the
gene similarity graph be chosen, which is equivalent to not allowing both of the
corresponding self edges in the weighted adjacency graph be chosen:

xahat + xbhbt ≤ 1, ∀ ab ∈ EG.

To count the number of cycles, we use the same strategy as described in [26].
For each vertex vi we define a variable yi that labels vi such that

0 ≤ yi ≤ i, 1 ≤ i ≤ k.

We also require that adjacent vertices have the same label, forcing all vertices
in the same cycle to have the same label:

yi ≤ yj + i · (1− xe), ∀ e = vivj ∈ EH ,
yj ≤ yi + j · (1− xe), ∀ e = vivj ∈ EH .

We create a binary variable zi, for each vertex vi, to verify whether yi is equal
to its upper bound i:

i · zi ≤ yi, 1 ≤ i ≤ k.

Since all the yi variables in the same cycle have the same label but a different
upper bound, only one of the yi can be equal to its upper bound i. This means
that zi is 1 if the cycle with vertex i as representative is used in a solution.

Now, let L = {2j : j = 1, . . . , n} be the set of possible cycle lengths in H,
where n := min(|A|, |B|). We create the binary variable xei to indicate whether
e is in i, for each e ∈ EH and each cycle i. We also create the binary variable x`ei
to indicate whether e belongs to i and the length of cycle i is `, for each e ∈ EH ,
each cycle i, and each ` ∈ L.

We require that if an edge e belongs to a cycle i, then it can be true for only
one length ` ∈ L. Thus,∑

`∈L

x`ei ≤ xei, ∀ e ∈ EH and 1 ≤ i ≤ k. (4)

We create another binary variable z`i to indicate whether cycle i has length
`. Then ` ·z`i is an upper bound for the total number of edges in cycle i of length
`: ∑

e∈EM

x`ei ≤ ` · z`i , ∀ ` ∈ L and 1 ≤ i ≤ k.

The length of a cycle i is given by ` · z`i , for i = 1, . . . , k and ` ∈ L. On the
other hand, it is the total amount of matching edges e in cycle i. That is,∑

`∈L

` · z`i =
∑
e∈Em

xei, 1 ≤ i ≤ k.

We have to ensure that each cycle i must have just one length:∑
`∈L

z`i = zi, 1 ≤ i ≤ k.

Now we create the binary variable yri to indicate whether the vertex vr is in
cycle i. Thus, if xei = 1, i.e., if the edge e = vrvt in H is chosen in cycle i, then
yri = 1 = yti (and xe = 1 as well). Hence,

xei ≤ xe,
xei ≤ yri,
xei ≤ yti,
xei ≥ xe + yri + yti − 2,

 ∀ e = vrvt ∈ EH and 1 ≤ i ≤ k. (5)

Since yr is an integer variable, we associate yr to the corresponding binary
variable yri, for any vertex vr belonging to cycle i:

yr =

r∑
i=1

i · yri, ∀ vr ∈ VH .

Furthermore, we must ensure that each vertex vr may belong to at most one
cycle:

r∑
i=1

yri ≤ 1, ∀ vr ∈ VH .

Finally, we set the objective function as follows:

maximize

k∑
i=1

∑
`∈L

∑
e∈Em

wex
`
ei

`
.

Note that, with this formulation, we do not have any path as a component.
Therefore, the objective function above is exactly the family-free DCJ similarity
sffdcj(A,B) as defined in Equations (2) and (3).

Notice that the ILP formulation has O(N4) variables and O(N3) constraints,
where N = |A|+ |B|. The number of variables is proportional to the number of
variables x`ei, and the number of constraints is upper bounded by (4) and (5).

4 APX-hardness and Heuristics

In this section we first state that problem ffdcj-similarity is APX-hard and
then provide a lower bound for the approximation ratio.

Theorem 1. ffdcj-similarity is APX-hard and cannot be approximated with
approximation ratio better than 22/21 = 1.0476 . . ., unless P = NP.

Proof. See Appendix A.

We now propose three heuristic algorithms to compute the family-free DCJ
similarity of two given genomes: a greedy-like heuristic collecting the best density
cycles in the weighted adjacency graph, a greedy-like heuristic collecting cycles
of increasing lengths in the weighted adjacency graph, and a heuristic that tries
to collect sets of cycles of increasing lengths with maximum total density in
the weighted adjacency graph by a weighted maximum independent set (wmis)
algorithm.

The algorithms select disjoint cycles in the capped AGσ(A,B), inducing a
matching M in GSσ(A,B). In addition to being disjoint, the selected cycles
must also be consistent: we say that two edges in AGσ(A,B) are consistent if
one connects the head and the other connects the tail of the same pair of genes,
or if they connect extremities of distinct genes in both genomes. Otherwise they
are inconsistent. A set of edges, in particular a cycle, is consistent if it has no
pair of inconsistent edges. A set of cycles is consistent if the union of all of their
edges is consistent.

All three heuristics have a common adjustment step: the deletion of block-
ing genes, that works as follows. After some iterations of cycle selection that
increase the matching M , one or more genes may become blocking and thus
must be deleted. This happens when the algorithms either find no cycle, or
find some cycles but they are all inconsistent with previous selections, having
however genes in GSσ(A,B) unsaturated by M . We call them blocking genes.
Whenever this occurs, we can find and delete blocking genes by (i) finding genes
in GSσ(A,B) having all neighbors saturated by M and thus blocking or (ii) find-
ing a vertex set S ⊆ A or S ⊆ B such that, for the set of neighbors N(S) of

vertices in S, we have |S| > |N(S)| (Hall’s theorem), then choosing |S| − |N(S)|
genes in S as blocking. After deleting a blocking gene g, AGσ(A,B) must be
adjusted accordingly, removing edges corresponding to extremities gt or gh of g
and “merging” the two vertices that represented these extremities. At the end
of the three algorithms we have a matching M , and the union of selected cycles
is equivalent to AGσ(AM , BM).

The three heuristics have an initial step where all cycles of the weighted
adjacency graph are generated (see Step 4 of each one). Thus, the running time of
the heuristics is potentially exponential in the number of vertices of the weighted
adjacency graph. In Sect. 5, these three heuristics will be compared to the exact
ILP algorithm from Sect. 3 regarding quality and running time.

4.1 Best Density

The best density heuristic is shown in Algorithm 1 (Greedy-Density). Its first
step is to generate all cycles in the weighted adjacency graph based on the gene
similarity graph of two given genomes. Cycles are arranged in order decreasing
by their densities, i.e., the weight divided by the squared length. Then, consistent
cycles are collected following this criterion and the family-free DCJ similarity is
computed on these collected cycles and remaining components.

Algorithm 1 Greedy-Density(A,B, σ)

Input: genomes A and B, gene similarity function σ
Output: a family-free DCJ similarity between A and B
1: M := ∅; C := ∅.
2: Build the gene similarity graph GSσ(A,B).
3: Build the capped weighted adjacency graph AGσ(A,B).
4: List all cycles C of AGσ(A,B) in decreasing order of their density w(C)/|C|2.
5: While it is possible, select the best density consistent cycle C that is also consistent

with all cycles in C and add it to C, let AGσ(A,B) := AGσ(A,B) \ C, update M
by adding the new gene connections induced by C.

6: Find and delete blocking genes, returning to Step 4 if there are genes in GSσ(A,B)
unsaturated by M .

7: Return sσ(A,B) =
∑
C∈C

(
w(C)
|C|

)

Step 4 is the core of Greedy-Density, where cycles are obtained by a
procedure based on Johnson’s algorithm [18,19]. Although the number of cycles
may be exponential in the size of the input graph, the implemented algorithm
restricts the size of cycles found and is good enough for bipartite graphs and for
many experiments, as presented in Sect. 5.

4.2 Best Length

The best length heuristic is shown in Algorithm 2 (Greedy-Length). As in
the best density heuristic, the first step is to generate all cycles in the weighted

adjacency graph based on the gene similarity graph of the two given genomes.
However, cycles are arranged in order increasing by their lengths, where ties
are broken by selecting cycles with greater density. Similar to above, consistent
cycles are collected following this criterion, and the family-free DCJ similarity
is computed on these collected cycles and remaining components.

Algorithm 2 Greedy-Length(A,B, σ)

Input: genomes A and B, gene similarity function σ
Output: a family-free DCJ similarity between A and B
1: M := ∅; C := ∅.
2: Build the gene similarity graph GSσ(A,B).
3: Build the capped weighted adjacency graph AGσ(A,B).
4: List all cycles C of AGσ(A,B) in increasing order of their lengths |C|.
5: Iterate over the list of cycles as follows. Select consistent cycles of length 2, while

its is possible. Then, select consistent cycles of length 4. And so on, until there
are no more cycles. Let C be the cycle selected at each iteration. Add C to C,
let AGσ(A,B) := AGσ(A,B) \ C, update M by adding the new gene connections
induced by C.

6: Find and delete blocking genes, returning to Step 4 if there are genes in GSσ(A,B)
unsaturated by M .

7: Return sσ(A,B) =
∑
C∈C

(
w(C)
|C|

)

Again, Step 4 is the core of the algorithm and it is implemented based on
Johnson’s algorithm [18,19], but we first find and select cycles of length 2, then
of length 4, and so on.

4.3 Best Length with Weighted Maximum Independent Set

The best length heuristic with wmis is shown in Algorithm 3 (Greedy-wmis)
and is a variation of Greedy-Length. Instead of selecting cycles of greater
density for a fixed length, this algorithm selects the greatest amount of cycles
for a fixed length by a wmis algorithm. The heuristic builds a cycle graph where
each vertex is a cycle of AGσ(A,B), the weight of a vertex is the density of the
cycle it represents and two vertices are adjacent if the cycles they represent are
inconsistent. The heuristic tries to find next an independent set with the greatest
weight in the cycle graph. Since this graph is not d-claw-free for any fixed d, the
wmis algorithm [7] does not guarantee any fixed ratio.

5 Experimental Results

Experiments for the ILP and our heuristics were conducted on an Intel i7-4770
3.40GHz machine with 16 GB of memory. In order to do so, we produced sim-
ulated datasets by the Artificial Life Simulator (ALF) [14]. Gurobi Optimizer

Algorithm 3 Greedy-wmis(A,B, σ)

Input: genomes A and B, gene similarity function σ
Output: a family-free DCJ similarity between A and B
1: M := ∅; C := ∅.
2: Build the gene similarity graph GSσ(A,B).
3: Build the capped weighted adjacency graph AGσ(A,B).
4: List all cycles C of AGσ(A,B) in increasing order of their lengths |C|.
5: Iterate over the list of cycles as follows. Select a set of consistent cycles of length

2 trying to maximize the sum of densities by a wmis algorithm. Then, repeat for
consistent cycles of length 4. And so on, until there are no more cycles. Let C′ be the
set of cycles selected at each iteration. Add C′ to C, let AGσ(A,B) := AGσ(A,B)\C′,
update M by adding the new gene connections induced by C′.

6: Find and delete blocking genes, returning to Step 4 if there are genes in GSσ(A,B)
unsaturated by M .

7: Return sσ(A,B) =
∑
C∈C

(
w(C)
|C|

)

7.0 was set to solve ILP instances with default parameters, time limit of 1800
seconds and 4 threads, and the heuristics were implemented in C++.

We generated datasets with 10 genome samples each, running pairwise com-
parisons between all genomes in the same dataset. Each dataset has genomes
of sizes around 25, 50 or 1000 (the latter used only for running the heuristics),
generated based on a sample from the tree of life with 10 leaf species and PAM
distance of 100 from root to the deepest leaf. Gamma distribution with param-
eters k = 3 and θ = 133 was used for gene length distribution. For amino acid
evolution we used the WAG substitution model with default parameters and
the preset of Zipfian indels with rate 0.00005. Regarding genome level events,
we allowed gene duplications and gene losses with rate 0.002, and reversals and
translocations with rate 0.0025, with at most 3 genes involved in each event. To
test different proportions of genome level events, we also generated simulated
datasets with 2- and 5-fold increase for reversal and translocation rates.

Results are summarized in Table 1. Each dataset is composed of 10 genomes,
totaling 45 comparisons of pairs per dataset. Rate r = 1 means the default
parameter set for genome level events, while r = 2 and r = 5 mean the 2-
and 5-fold increase of rates. For the ILP the table shows the average time for
instances for which the optimal solution was found, the number of instances for
which the optimizer did not find the optimal solution after time limit and, for the
latter class of instances, the average relative gap between the best solution found
and the upper bound found by the solver, given by (upper bound

best solution − 1)× 100. For
heuristics, the running time for all instances of sizes 25 and 50 was negligible,
therefore the table shows only the average relative gap between the solution
found and the upper bound given by the ILP solver (if any).

Results clearly show the average relative gap of heuristics increases propor-
tionally to the rate of reversals and translocations. This is expected, as higher
mutation rates often result in higher normalized weights on longer cycles, thus
the association of genes with greater gene similarity scores will be subject to the

Table 1. Results of experiments for simulated genomes

ILP Greedy-Density Greedy-Length Greedy-wmis
Time (s) Not finished Gap (%) Gap (%) Gap (%) Gap (%)

25 genes, r = 1 19.50 0 – 5.03 5.84 5.97
25 genes, r = 2 84.60 2 69.21 30.77 43.57 43.00
25 genes, r = 5 49.72 0 – 43.83 55.38 55.38
50 genes, r = 1 445.91 7 19.56 18.74 19.36 18.90
50 genes, r = 2 463.50 29 38.12 65.41 66.52 64.78
50 genes, r = 5 330.88 29 259.72 177.58 206.60 206.31

selection of longer cycles. Interestingly, for some larger instances the relative gap
for heuristics is very close to the values obtained by the ILP solver, suggesting
the use of heuristics may be a good alternative for some classes of instances or
could help the solver finding lower bounds quickly. It is worth noting that the
Greedy-Density heuristic found solutions with gap smaller than 1% for 38%
of the instances with 25 genes.

In a single instance (25 genes, r = 2), the gap between the best solution found
and the upper bound was much higher for the ILP solver and for the heuristics.
This instance in particular is precisely the one with the largest number of edges in
GSσ(A,B) in the dataset. This may indicate that a moderate increase in degree
of vertices (1.3 on average to 1.8 in this case) may result in much harder instances
for the solver and heuristics, as after half of the time limit the solver attained no
significant improvement on solutions found, and the heuristics returned solutions
with a gap even higher.

Although we have no upper bounds for comparing the results of our heuris-
tics for genome sizes around 1000, the algorithms are still very fast. The average
running times are 0.30, 15.11 and 12.16 seconds for Greedy-Density, Greedy-
Length and Greedy-wmis, respectively, showing nevertheless little difference
on results. However, in 25% of the instances with r = 5, the solutions provided
by the heuristics varied between 10% and 24%, the best of which were given by
Greedy-Density. That is probably because, instead of prioritizing shorter cy-
cles, Greedy-Density attempts to balance both normalized weight and length
of the selected cycles. The average running times for the instances with r = 5
are 2.35, 97.28 and 102.67 seconds for Greedy-Density, Greedy-Length and
Greedy-wmis, respectively.

To better understand how cycles scale, we generated 5-fold instances with
100, 500, 1000, 5000, and 10000 genes, running the Greedy-Density heuris-
tic for these instances and counting different cycle lengths. The running time
was 0.008, 0.667, 1.98, 508 and 2896 seconds, respectively, on average. Results
(Fig. 5) show that most of the cycles found are of short lengths compared to the
genome sizes, providing some insight on why heuristics are fast despite having
to enumerate a number of cycles that could be exponential. Besides, even the
maximum number of longer cycles found for any instance is reasonably small.

[2
-1
0
]

[1
2
-2
0
]

[2
2
-3
0
]

[3
2
-4
0
]

[4
2
-5
0
]

[5
2
-6
0
]

[6
2
-7
0
]

[7
2
-8
0
]

[8
2
-9
0
]

[9
2
-1
0
0
]

[1
0
2
-1
1
0
]

[1
1
2
-1
2
0
]

[1
2
2
-1
3
0
]

[1
3
2
-1
4
0
]

[1
4
2
-1
5
0
]

[1
5
2
-1
6
0
]

[1
6
2
-1
7
0
]

[1
7
2
-1
8
0
]

[1
8
2
-1
9
0
]

[1
9
2
-2
0
0
]

[>
2
0
0
]

0

50

100

150

200

250

56

97 51
79

515

210
55

116

321

55

113

363

154

1158

75

204

571

57
109

174

223

Lenghts of cycles (range)

O
cc
u
rr
en

ce
s

100
500
1000
5000
10000

Fig. 5. Average count by lengths of cycles for the Greedy-Density heuristic for in-
stances with r = 5 and genome sizes of 100, 500, 1000, 5000, and 10000 genes. Numbers
above marks denote the maximum number of cycles for a pair of genomes in an instance
(only for values greater than 50). As seen, the number of cycles may be exponential,
therefore the heuristic implementation finds cycles of lengths up to 10, then up to 20,
and so on. Moreover, when finding cycles of lengths up to 20, the algorithm does not
try to find cycles composed by adjacencies in AGσ(A,B) already covered by shorter
cycles chosen previously. The same occurs for longer lengths.

6 Conclusion

In this paper we studied the family-free DCJ similarity, which is a large-scale
rearrangement measure for comparing two given genomes. We first presented
formally the (NP-hard) problem of computing the family-free DCJ similarity.
Then, we proposed an exact ILP algorithm to solve it. Following, we showed the
APX-hardness of the family-free DCJ similarity problem and presented three
combinatorial heuristics, with computational experiments comparing their re-
sults to the ILP. Results show that while the ILP program is fast and accurate
for smaller instances, the Greedy-Density heuristic is probably the best choice
for general use on larger instances.

One drawback of the function sffdcj as defined in Equation (3) is that distinct
pairs of genomes might give family-free DCJ similarity values that cannot be

compared easily, because the value of sffdcj varies between 0 and |M |, where
M is the matching giving rise to sffdcj. Therefore some kind of normalization
would be desirable. A simple approach could be to divide sffdcj by the size of
the smaller genome, because this is a trivial upper bound for |M |. Moreover, it
can be applied as a simple postprocessing step, keeping all theoretical results
of this paper valid. A better normalization, however, might be to divide by |M |
itself. An analytical treatment here seems more difficult, though. Therefore we
leave this as an open problem for future work.

Acknowledgments

We would like to thank Pedro Feijão and Daniel Doerr for helping us with hints
on how to get the simulated data for our experiments.

References

1. Angibaud, S., Fertin, G., Rusu, I., Thévenin, A., Vialette, S.: Efficient tools for
computing the number of breakpoints and the number of adjacencies between two
genomes with duplicate genes. Journal of Computational Biology 15(8), 1093–1115
(2008)

2. Angibaud, S., Fertin, G., Rusu, I., Thévenin, A., Vialette, S.: On the approxima-
bility of comparing genomes with duplicates. Journal of Graph Algorithms and
Applications 13(1), 19–53 (2009)

3. Angibaud, S., Fertin, G., Rusu, I., Vialette, S.: A pseudo-boolean framework for
computing rearrangement distances between genomes with duplicates. Journal of
Computational Biology 14(4), 379–393 (2007)

4. Ausiello, G., Protasi, M., Marchetti-Spaccamela, A., Gambosi, G., Crescenzi, P.,
Kann, V.: Complexity and Approximation: Combinatorial Optimization Problems
and Their Approximability Properties. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 1st edn. (1999)

5. Bafna, V., Pevzner, P.: Genome rearrangements and sorting by reversals. In:
Proc. of FOCS 1993. pp. 148–157 (1993)

6. Bergeron, A., Mixtacki, J., Stoye, J.: A unifying view of genome rearrangements.
In: Proc. of WABI 2006. LNBI, vol. 4175, pp. 163–173 (2006)

7. Berman, P.: A d/2 approximation for maximum weight independent set in d-claw
free graphs. In: Algorithm Theory - SWAT 2000: 7th Scandinavian Workshop on
Algorithm Theory Bergen. pp. 214–219 (2000)

8. Berman, P., Karpinski, M.: On some tighter inapproximability results. In: Inter-
national Colloquium on Automata, Languages, and Programming. pp. 200–209.
Springer (1999)

9. Braga, M.D.V., Willing, E., Stoye, J.: Double cut and join with insertions and
deletions. Journal of Computational Biology 18(9), 1167–1184 (2011)

10. Braga, M.D.V., Chauve, C., Dörr, D., Jahn, K., Stoye, J., Thévenin, A., Wittler,
R.: The potential of family-free genome comparison. In: Chauve, C., El-Mabrouk,
N., Tannier, E. (eds.) Models and Algorithms for Genome Evolution, chap. 13, pp.
287–307. Springer, London (2013)

11. Bryant, D.: The complexity of calculating exemplar distances. In: Sankoff, D.,
Nadeau, J.H. (eds.) Comparative Genomics, pp. 207–211. Kluwer Academic Pub-
lishers, Dortrecht (2000)

12. Bulteau, L., Jiang, M.: Inapproximability of (1,2)-exemplar distance. IEEE/ACM
Trans. Comput. Biol. Bioinf. 10(6), 1384–1390 (2013)

13. Crescenzi, P.: A short guide to approximation preserving reductions. In: Proceed-
ings of Computational Complexity. Twelfth Annual IEEE Conference. pp. 262–273
(1997)

14. Dalquen, D.A., Anisimova, M., Gonnet, G.H., Dessimoz, C.: Alf – a simulation
framework for genome evolution. Molecular Biology and Evolution 29(4), 1115
(2012)

15. Dörr, D., Thévenin, A., Stoye, J.: Gene family assignment-free comparative ge-
nomics. BMC Bioinformatics 13(Suppl 19), S3 (2012)

16. Hannenhalli, S., Pevzner, P.: Transforming men into mice (polynomial algorithm
for genomic distance problem). In: Proc. of FOCS 1995. pp. 581–592 (1995)

17. H̊astad, J.: Some optimal inapproximability results. Journal of the ACM (JACM)
48(4), 798–859 (2001)

18. Hawick, K.A., James, H.A.: Enumerating circuits and loops in graphs with self-arcs
and multiple-arcs. Tech. Rep. CSTN-013, Massey University (2008)

19. Johnson, D.: Finding all the elementary circuits of a directed graph. SIAM Journal
on Computing 4(1), 77–84 (1975)

20. Martinez, F.V., Feijão, P., Braga, M.D.V., Stoye, J.: On the family-free DCJ dis-
tance and similarity. Algorithms for Molecular Biology 10, 13 (2015)

21. Raman, V., Ravikumar, B., Rao, S.S.: A simplified np-complete maxsat problem.
Information Processing Letters 65(1), 1 – 6 (1998)

22. Rubert, D.P., Feijão, P., Braga, M.D.V., Stoye, J., Martinez, F.V.: Approximating
the DCJ distance of balanced genomes in linear time. Algorithms for Molecular
Biology 12, 3 (2017)

23. Sankoff, D.: Edit distance for genome comparison based on non-local operations.
In: Proc. of CPM 1992. LNCS, vol. 644, pp. 121–135 (1992)

24. Sankoff, D.: Genome rearrangement with gene families. Bioinformatics 15(11), 909–
917 (1999)

25. Shao, M., Lin, Y.: Approximating the edit distance for genomes with duplicate
genes under DCJ, insertion and deletion. BMC Bioinformatics 13(Suppl 19), S13
(2012)

26. Shao, M., Lin, Y., Moret, B.: An exact algorithm to compute the DCJ distance for
genomes with duplicate genes. In: Proc. of RECOMB 2014. LNBI, vol. 8394, pp.
280–292 (2014)

27. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations
by translocation, inversion and block interchanges. Bioinformatics 21(16), 3340–
3346 (2005)

A Proof of APX-hardness and Approximation Ratio
Lower Bound

For the APX-hardness proof of problem ffdcj-similarity, we first give some
definitions based on [13]. Thereby we restrict ourselves to maximization problems
and feasible solutions.

Given an instance x of an optimization problem P and a solution y of x,
val(x, y) denotes the value of y, which is a positive integer measure of y. The
function val, also referred to as objective function, must be computable in poly-
nomial time. The value of an optimal solution (which maximizes the objective
function) is defined as opt(x). Thus, the performance ratio of y with respect to
x is defined as:

RP (x, y) =
opt(x)

val(x, y)
. (6)

Given two optimization problems P and P ′, let f be a polynomial-time com-
putable function that maps an instance x of P into an instance f(x) of P ′, and
let g be a polynomial-time computable function that maps a solution y for the
instance f(x) of P ′ into a solution g(x, y) of P . A reduction is a pair (f, g). A
reduction from P to P ′ is frequently denoted by P ≤ P ′, and we say that P is
reduced to P ′. A reduction P ≤ P ′ preserves membership in a class C if P ′ ∈ C
implies P ∈ C. An approximation-preserving reduction preserves membership in
either APX, PTAS, or both classes. The strict reduction, which is the simplest
type of approximation-preserving reduction, preserves membership in both APX
and PTAS classes and must satisfy the following condition:

RP (x, g(x, y)) ≤ RP ′(f(x), y). (7)

We consider the following optimization problem, to be used within the proof
of Theorem 1 below:

Problem max-2sat3(φ): Given a 2-cnf formula (i.e., with at most 2
literals per clause) φ = {C1, . . . , Cm} with n variables X = {x1, . . . , xn},
where each variable appears in at most 3 clauses, find an assignment that
satisfies the largest number of clauses.

The formula φ as defined above is called a 2sat3 formula. max-2sat3 [4, 8] is
a special case of max-2satB (also known as B-occ-max-2sat), where each
variable occurs in at most B clauses for some B, which in turn is a restricted
version of max-2sat [21].

Theorem 1. ffdcj-similarity is APX-hard and cannot be approximated with
approximation ratio better than 22/21 = 1.0476 . . ., unless P = NP.

Proof (Theorem 1, first part). We give a strict reduction (f, g) from max-2sat3
to ffdcj-similarity, showing that

Rmax-2sat3(φ, g(f(φ), γ)) ≤ Rffdcj-similarity(f(φ), γ),

for any instance φ of max-2sat3 and solution γ of ffdcj-similarity with
instance f(φ). Since variables occurring only once imply their clauses and others
to be trivially satisfied, we consider only clauses that are not trivially satisfied in
their instance. Similar for clauses containing literals xi and xi, for some variable
xi.

(Function f .) We show progressively how to build GSσ(A,B) and define genes
and their sequences in chromosomes of A and B. For each variable xi occurring
three times, let Cx1i , Cx

2
i and Cx3i be aliases for the clauses where xi occurs

(notice that a clause composed of two literals has two aliases). We define a
variable component Ci adding vertices (genes) x1i , x

2
i and x3i toA, vertices (genes)

Cx1i , Cx
2
i and Cx3i to B, and edges exji = (Cxji , x

j
i) and exi

j = (Cxji , x
k
i) for

j ∈ {1, 2, 3} and k = (j + 1) mod 3 + 1. An edge exji (exi
j) has weight 1 (0) if

the literal xi (xi) belongs to the clause Cxji . Edges in the variable component
Ci form a cycle of length 6 (Fig. 6). Variable components for variables occurring
two times are defined in a similar manner. Genomes are A = {(xji) for each

occurrence j of each variable xi ∈ X} and B = {(Cxji) : Cxji is an alias to a

clause in φ with only one literal} ∪ {(Cxji Cx
j′

i′) : Cxji and Cxj
′

i′ are aliases to
the same clause in φ}.

The function f as defined here maps an instance φ of max-2sat3 (a 2-
cnf formula) to an instance f(φ) of ffdcj-similarity (genomes A and B and
GSσ(A,B)) and is clearly polynomial. Besides, since all chromosomes are circu-
lar, the corresponding weighted adjacency graph AGσ(A,B) (or AGσ(AM , BM)
for some matching M) is a collection of cycles only.

Now, notice that any maximal matching in GSσ(A,B) covers all genes in both
A and B, inducing in AGσ(A,B) only cycles of length 2, composed by (genes in)

chromosomes (xji) and (Cxj
′

i), or cycles of length 4, composed by chromosomes

(xji), (xlk) and (Cxj
′

i Cxl
′

k).

Define the normalized weight of cycle C as µ(C) = w(C)/|C|. In this trans-
formation, each cycle C is such that µ(C) = 0, 0.5 or 1. A cycle C such that
µ(C) > 0 is a helpful cycle and represents a clause satisfied by one or two literals
(µ(C) = 0.5 or µ(C) = 1, respectively). See an example in Fig. 7.

In this scenario, however, a solution of ffdcj-similarity with performance
ratio r could lead to a solution of max-2sat3 with ratio 2r, since the total
normalized weight for two cycles C1 and C2 with µ(C1) = µ(C2) = 0.5 (two
clauses satisfied by one literal each) is the same for one cycle C with µ(C) =
1.0 (one clause satisfied by two literals). Therefore, achieving the desired ratio
requires some modifications in f . It is not possible to make these two types of
cycles have the same weight, but it suffices to get close enough.

We introduce special genes into the genomes called extenders. For some p
even, for each edge exji = (Cxji , x

j
i) of weight 1 in GSσ(A,B) we introduce p ex-

tenders α1, . . . , αp into A (as a consequence, they are also introduced into A) and

p extenders αp+1, . . . , α2p into B (each exji of weight 1 has its own set of exten-

ders). Edge exji is replaced by edges (Cxji , α1) with weight 1 (which we consider

equivalent to exji) and (αp+1, x
j
i) with weight 0, and edges (αk, αp+k) with weight

0 are added toGSσ(A,B) for each 1 ≤ k ≤ p (extenders α1 and αp+1 are now part
of the variable component Ci). Regarding new chromosomes in genomes A and
B, A is updated to A∪{(α1 −αp)}∪{(αk −αk+1) : k ∈ {2, 4, . . . , p−2}} and B to
B∪{(αk −αk+1) : k ∈ {p+1, p+3, . . . , 2p−1}}. By this construction, which is still
polynomial, the path from xjti to Cxjti in AGσ(A,B) is extended from 1 to 1 +

p edges, from {(xjti , Cx
jt
i)} to {(xjti , αtp), (αtp+1, α

t
2), (αt3, α

t
p+2), (αtp+3, α

t
4), . . . ,

(αt1, Cx
jt
i)}. The same occurs for the path from xjhi to Cxjhi (see Fig. 8). Now,

cycles in AGσ(A,B) induced by edges of weight 0 in GSσ(A,B) have normal-
ized weight 0, cycles previously with normalized weight 1 are extended and have
normalized weight 1

1+p , and cycles previously with normalized weight 0.5 are

extended and have normalized weight 1
2+p . Notice that, for a sufficiently large p,

1
1+p is quite close to 1

2+p , hence the problem of finding the maximum similarity
in this graph is very similar to finding the maximum number of helpful cycles.

(Function g.) By the structure of variable components in GSσ(A,B), and since
solutions of ffdcj-similarity are restricted to maximal matchings only, any
solution γ for f(φ) is a matching that covers only edges exji or exi

j for each

variable component Ci. For a Ci, if edges exji (exi
j) are in the solution then the

variable xi is assigned to true (false), inducing in polynomial time an assignment
for each xi ∈ X and therefore a solution g(f(φ), γ) to max-2sat3. A clause is
satisfied if vertices (or the only vertex) corresponding to its aliases are in a
helpful cycle.

(Approximation ratio.) Given f(φ) and a feasible solution γ of ffdcj-similarity
with the maximum number of helpful cycles, denote by c′ the number of helpful
cycles in γ. Notice that c′ is also the maximum number of satisfied clauses of
max-2sat3, that is, the value of an optimal solution for max-2sat3 for any
instance φ, denoted here by opt2sat3(φ). Thus, c′ = opt2sat3(φ).

To achieve the desired ratio we must establish some properties and relations
between the parameters of max-2sat3 and ffdcj-similarity and set some
parameters to specific values.

Let n := |A| = |B| before extenders are added. We choose for p (the number
of extenders added for each edge of weight 1 in GSσ(A,B)) the value 2n and
define ω = 1

2+p = 1
2+2n and

ε =
1

1 + p
− 1

2 + p
=

1

4n2 + 6n+ 2
,

which implies that ω + ε = 1
p+1 . Thus, it is easy to see that nε < ω, i.e.,

ε <
ω

n
< 1. (8)

If optsim(f(φ)) denotes the value of an optimal solution for ffdcj-similarity
with instance f(φ) and c∗ denotes the number of helpful cycles in an optimal
solution of ffdcj-similarity, then we have immediately that

optsim(f(φ))

ω + ε
≤ c∗ ≤ optsim(f(φ))

ω
. (9)

Besides that
0 ≤ c∗ ≤ n, (10)

and
c∗ω ≤ optsim(f(φ)) ≤ c∗(ω + ε). (11)

Thus, we have

c∗(ω + ε) = c∗ω + c∗ε

< c∗ω +
c∗ω

n
(12)

≤ c∗ω + 1 · ω (13)

= c∗ω + ω, (14)

where (12) comes from (8) and (13) is valid due to (10).
Now, let cr be the number of helpful cycles given by an approximate solution

for the ffdcj-similarity with approximation ratio r. Then,

Rmax-2sat3(φ, g(f(φ), γ)) =
opt2sat3(φ)

cr
=
c′

cr
≤ r,

where the last inequality is given by Proposition 2 below. This concludes the
first part of the proof. ut

Proposition 1. Let c′ be the number of helpful cycles in a feasible solution of
ffdcj-similarity with the greatest number of helpful cycles possible. Let c∗ be
the number of helpful cycles in an optimal solution of ffdcj-similarity. Then,

c′ = c∗.

Proof. Since c′ is the greatest number of helpful cycles possible, it is immediate
that c∗ ≤ c′.

Let us now show that c∗ ≥ c′. Suppose for a moment that c∗ < c′. Since c∗

and c′ are integers, this implies that c∗ + 1 ≤ c′, i.e.,

c∗ ≤ c′ − 1. (15)

Let C′ be the set of cycles with c′ cycles, i.e., with the maximum number of
helpful cycles possible. Let µ(C′) :=

∑
C∈C′ µ(C) =

∑
C∈C′ w(C)/|C|. Then

µ(C′) ≥ c′ω = (c′ − 1)ω + ω

≥ c∗ω + ω (16)

> c∗(ω + ε) (17)

≥ optsim(f(φ)), (18)

where (16) follows from (15), (17) comes from (14), and (18) is valid due to (11).
It means that µ(C′) > optsim(f(φ)), which is a contradiction.

Therefore, c′ = c∗. ut

Fig. 6. GSσ(A,B) and AGσ(A,B) for genomes A = {(x11), (x21), (x31), (x12), (x22)} and
B = {(Cx11 Cx12), (Cx21), (Cx31 Cx22)} given by function f (Theorem 1) applied to
2sat(3) clauses C1 = (x1 ∨ x2), C2 = (x1) and C3 = (x1 ∨ x2). In GSσ(A,B), solid
edges correspond to exji and dashed edges correspond to exi

j . In AGσ(A,B), shaded
region corresponds to genes of genome B, and solid (dashed) edges correspond to solid
(dashed) edges of GSσ(A,B).

Proposition 2. Let cr be the number of helpful cycles given by an approximate
solution for ffdcj-similarity with approximation ratio r. Let c′ be the same
as defined in Proposition 1. Then,

cr ≥ c′

r
.

Proof. Given an instance f(φ) of ffdcj-similarity, let γr be an approximate

solution of f(φ) with performance ratio r, i.e., val(f(φ), γr) ≥ optsim(f(φ))
r . Let cr

Fig. 7. A matching M of GSσ(A,B) and cycles induced by M in and AGσ(AM , BM)
for genomes of Fig. 6. This solution of ffdcj-similarity represents clauses C1 and C3

of max-2sat3 satisfied.

be the number of helpful cycles of γr. Then

cr ≥
(optsim(f(φ))

r

)
ω + ε

>
optsim(f(φ))

r(ω + ω/n)
(19)

=
optsim(f(φ))

rω
· n

n+ 1

≥ c′ω

rω
· n

n+ 1
(20)

=
c′

r
·
(
1− 1

n+ 1

)
=
c′

r
− c′

r(n+ 1)

≥ c′

r
− 1 (21)

Fig. 8. Detail of graphs GSσ(A,B) and AGσ(A,B) for genomes of Fig. 6 including
extenders for edge (x11, Cx

1
1) for p = 4. Shaded region corresponds to genes of genome

B. Extending all edges of weight 1 and selecting the matching of Fig. 7, this helpful cycle
(only half of it is in this figure) would have normalized weight 4

4(p+1)
= 1

p+1
= 1

5
= 0.2.

where (19) follows from (8), (20) is valid from (11) and Proposition 1. Then,

from (21) we know that cr > c′

r −1 and, since cr is an integer number, the result
follows.

ut

We now continue with the proof of Theorem 1.

Proof (Theorem 1, second part). First, notice that if a problem is APX-hard,
the existence of a PTAS for it implies P = NP. Since a strict reduction preserves
membership in the class PTAS, finding a PTAS for ffdcj-similarity implies a
PTAS for every APX-hard problem and P = NP. A PTAS for ffdcj-similarity
would also imply an approximation ratio better than 2012/2011 = 1.0005 . . .,
unless P = NP. This follows immediately from the reduction in Theorem 1 with
Rmax-2sat3 = Rffdcj-similarity and the fact that max-2sat3 is shown in [8] to be
NP-hard to approximate within a factor of 2012/2011− ε for any ε > 0.

However, our result is slightly stronger. Notice particularly that the reduction
max-2sat3 ≤ ffdcj-similarity from the first part of the proof can be trivially
extended to max-2sat ≤ ffdcj-similarity by extending variable components
to arbitrary sizes. This increases the lower bound to 22/21 = 1.0476 . . . [17]. ut

