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Linear Time Algorithms for Finding andRepresenting all the Tandem Repeats in aStringDan Gus�eldz Jens StoyexAbstractA tandem repeat (or square) is a string ��, where � is a non-empty string. We present an O(jSj)-time algorithm that operates onthe su�x tree T (S) for a string S, �nding and marking the endpointin T (S) of every tandem repeat that occurs in S. This decoratedsu�x tree implicitly represents all occurrences of tandem repeats in S,and can be used to e�ciently solve many questions concerning tandemrepeats and tandem arrays in S. This improves and generalizes severalprior e�orts to e�ciently capture large subsets of tandem repeats.1 IntroductionA tandem repeat (square) is a string of the form �� where � is a non-emptystring.Given a string S of length n, a number of questions regarding tandemrepeats may be asked. The simplest question is whether S contains a tandemrepeat or is squarefree. Assuming a �xed alphabet size, this question iszResearch partially supported by grant DBI-9723346 from the NationalScience Foundation, and by grant DE-FG03-90ER60999 from the Depart-ment of Energy. email: gus�eld@cs.ucdavis.eduxResearch supported by the German Academic Exchange Service (DAAD).Present address: German Cancer Research Center (DKFZ), Abt. Theoretis-che Bioinformatik (H0300), Im Neuenheimer Feld 280, 69120 Heidelberg,Germany. 1



known be answerable in O(n) time [Cro83, ML85, Cro86, CR94]. One mightfurther be interested in identifying all occurrences of tandem repeats in S.Since there can be as many as n2=4 occurrences of tandem repeats in astring of length n, an e�cient algorithm for this task will depend on theoutput size, denoted z. Several O(n log n + z) time algorithms are known[ML84, LS93, SG98] for this task. It is often of interest to restrict the outputto those tandem repeats which do not contain shorter repeats. These arecalled primitive tandem repeats. It is known that there can be at mostO(n log n) occurrences of primitive tandem repeats in a string of length n, andseveral algorithms are known that identify those occurrences in O(n log n)time [Cro81, AP83, SG98].In a very impressive, though highly technical, extended abstract, Kosaraju[Kos94] addresses the question of �nding for each position i of S the shortesttandem repeat starting at position i, and sketches an O(n) time algorithmfor that problem. He also mentions the problem of �nding all occurrences ofprimitive tandem repeats in S and, without details, states that the sketchedalgorithm can be extended to solve this question in O(n+ z) time where, asabove, z is the size of the output.Recently it was shown that the number of di�erent types of tandem re-peats contained in a string of length n is bounded by O(n) [FS98]. Twotandem repeats �� and �0�0 are of di�erent type if and only if � 6= �0.Note that this O(n) bound counts each tandem repeat type only once, nomatter how many times that tandem repeat type occurs in the string. ThisO(n) bound leads to an interesting challenge: Can we �nd one occurrenceof each tandem repeat type in O(n) time? Such a list of di�erent repeattypes (or more precisely a start location and length of each) is called thevocabulary (of tandem repeats) of string S. For example, a vocabularyof tandem repeats of the string abaabaabbaaabaaba$ is given by the setof pairs f(1; 6); (2; 6); (3; 2); (3; 6); (8; 2)g representing the tandem repeatsabaaba, baabaa, aa, aabaab, bb. The set of occurrences of tandem repeatson the other hand contains a pair for each occurrence of a tandem repeatin S. In the above example, the set of occurrences of tandem repeats isf(1; 6); (2; 6); (3; 2); (3; 6); (6; 2); (8; 2); (10; 2); (11; 2); (11; 6); (12; 6); (14; 2)g.Main ResultIn this paper, we present an algorithm that �nds the vocabulary of a stringS of length n in O(n) time and space. In so doing, the algorithm implicitly2
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Figure 1: Su�x tree of string abaabaabbaaabaaba$. Circles indicate theendpoints of tandem repeats. Only the characters needed to spell out thetandem repeats are shown on the tree.lays out the complete structure of the tandem repeats in S. The result isachieved in a three-phase procedure. Phase I �nds a subset of the occurrencesof tandem repeats, which we call a leftmost covering set, using an extensionof Crochemore's linear-time algorithm that tests if S is squarefree [Cro83,Cro86, CR94], similar to the algorithm by Main [Mai89] which �nds theleftmost occurrence of each tandem repeat type in O(n) time. Phase II �ndsthe end locations in the su�x tree of S for some of the tandem repeat types inthe leftmost covering set. Phase III traverses parts of the su�x tree from theendpoints found in Phase II, to obtain the complete vocabulary of tandemrepeats. The end result is that the su�x tree of S is decorated with theendpoint of each tandem repeat in the vocabulary of S. For an example, seeFigure 1.Clearly, such a decorated su�x tree compactly represents all the di�erenttandem repeat types in S and the locations in S where they occur; it can beused to answer many questions regarding tandem repeats. For example, oncethe su�x tree has been decorated with the endpoint of each tandem repeatin the vocabulary, a standard linear-time traversal of the tree can identifyfor each location i in S, the shortest (and/or longest) tandem repeat that3



begins at position i. Using the decorated su�x tree, all the above-mentionedproblems concerning tandem repeats (and more) can be solved in time andspace bounds that are as good or better than previously established.Our O(n)-time method to decorate the su�x tree with the vocabulary oftandem repeats is based on ideas that are quite di�erent from the ideas in[Kos94], and also di�erent from those in [SG98].Independent of our work presented here, a recent analysis of the numberof possible runs of primitive tandem repeats was made, and a di�erent linear-time algorithm was obtained [KK98] that �nds all these runs in O(n) timeusing an extension of Main's algorithm [Mai89]. Their algorithm then allowsone to �nd all the z tandem repeat occurrences in S in O(n + z) time, andin O(n) space. However, their algorithm does not address the main result inour paper, �nding the vocabulary of tandem repeats and locating them in asu�x tree in linear time, and we do not see how to extend their algorithmto achieve those goals.2 Terminology and Technical BackgroundWe assume a �nite alphabet � of a �xed size. Throughout this paper we �xattention to a string S of length n = jSj. We assume S ends with a character`$' not occurring elsewhere in S. For 1 � i � j � n, S[i::j] denotes thesubstring of S beginning with the ith and ending with the jth character ofS; we say there is an occurrence of S[i::j] at position i in S. String wa iscalled the right-rotation of string aw, where a is a single character and w isa non-empty substring.A string w 2 �+ is a tandem repeat if it can be written as w = �� forsome � 2 �+. An occurrence of a tandem repeat �� = S[i::i + l � 1] isrepresented by a pair (i; l), called a tandem repeat pair. The �rst entry of atandem repeat pair is called the position entry, and the second entry is calledthe length entry. Two occurrences of tandem repeats S[i::i+ l � 1] = ��and S[i0::i0 + l � 1] = �0�0 are of the same type if and only if � = �0. Forsimplicity, we will sometimes specify a tandem repeat type by referring to anoccurrence (i; l) of that repeat type, even though the speci�c location is notof interest. The vocabulary (of tandem repeats) of S is a set of tandem repeatpairs such that each type of tandem repeat occurring in S is contained in theset exactly once. In contrast, the set of occurrences (of tandem repeats) ofS contains all the tandem repeat pairs of S.4



An interval of positions i; i + 1; : : : ; j is called a run of l-length tandemrepeats if (i; l); (i+ 1; l); : : : ; (j; l) are each tandem repeat pairs. A tandemrepeat pair (i; l) covers another tandem repeat pair (j; l) if and only if thereis a run of l-length tandem repeats in S that starts at i and contains j.Note that if (i; l) covers (j; l), then the substring S[j::j + l � 1] can beobtained by a series of successive right-rotations from the substring S[i::i+l � 1], and by de�nition, each string created by a right-rotation is also atandem repeat of length l. In our example string abaabaabbaaabaaba$, thetandem repeat pair (1; 6) covers the pairs (2; 6) and (3; 6), the pair (10; 2)covers (11; 2), and (11; 6) covers (12; 6).A set of pairs P is called a covering set if and only if at least one oc-currence of every repeat in the vocabulary of tandem repeats is covered byone of the pairs in P . That is, the runs starting from every pair in P col-lectively cover at least one occurrence of each tandem repeat type. A set ofpairs P is a leftmost covering set if the leftmost occurrence of each type oftandem repeat in S is covered by a pair. For example, f(1; 6); (8; 2); (11; 2)gis a covering set of abaabaabbaaabaaba$, but is not a leftmost covering setsince the leftmost occurrence of aa at position 3 is not covered. However,f(1; 6); (3; 2); (8; 2)g is a leftmost covering set.2.1 The Size of the VocabularyThe following result by Fraenkel and Simpson [FS98] is essential to ourpresent work.Theorem 1. For any position i in S, there can be at most two tandemrepeat types whose rightmost occurrences start at position i. Stated dif-ferently, even though there may be many tandem repeat types that occurstarting at position i, all but two (at most) of these types will also occurstarting somewhere to the right of i.Corollary 1. The size of the vocabulary of tandem repeats of any stringof length n is bounded by 2n.Actually, Fraenkel and Simpson give slightly tighter bounds for the size ofa tandem repeat vocabulary. They establish that for strings of length n � 5the size of the vocabulary is bounded by 2n� 8, and that for binary stringsof length n � 22, it is bounded by 2n � 29.5



2.2 Background on Su�x TreesWe use su�x trees extensively both as computation tools, and as the datastructure that holds the output of the computation. For a general introduc-tion to su�x trees, see [CR94] or [Gus97].We use T (S) to denote the su�x tree of S, i.e., the compacted trie of allthe su�xes of S; L(v) denotes the path-label of a node v i.e., the concate-nation of the edge labels along the path from the root to v. We say thatv is path-labeled L(v). D(v) = jL(v)j is the string-depth of v. Each leafv of T (S) is also labeled with index i if and only if L(v) = S[i::n]. For anon-empty substring w 2 �+ of S, we encode the endpoint of w in T (S) by apair (e;m), where e = (u; v) is an edge in T (S) and m is an integer satisfying0 < m � D(v)�D(u). The meaning is that string w ends m characters fromu (u is the parent of v) along the edge (u; v). Clearly, w = L(u)� where �is the m-length pre�x of the edge-label of e. Note that w is encoded on anedge (u; v) even if its endpoint is at node v.The su�x link of a node v with label L(v) = aw, a 2 �, w 2 ��, is apointer to the node labeled w. This node always exists if v is a non-rootinternal node of T (S). The character a is the label of the su�x link pointingfrom the node labeled aw to the node labeled w. It is well known thatthe su�x tree of S including the su�x links can be computed in O(n) time[Wei73, McC76, Ukk95, Far97].3 Phase I: Finding a Leftmost Covering SetCrochemore [Cro83, Cro86, CR94] developed a linear-time algorithm thatdetermines if a string is squarefree. In this section we show how this algo-rithm can be extended to �nd a leftmost covering set of the tandem repeatsof S. That is the key task of Phase I. Crochemore's algorithm, and ourmodi�cation of it, use two crucial tools. The �rst is a decomposition of thestring S, called the Lempel-Ziv (LZ) decomposition, and the second is therepeated use of longest common extension queries. We �rst describe the LZdecomposition of S [LZ76].For each position i of S, let li denote the length of the longest pre�x ofS[i::n] that also occurs as a substring of S starting at some position j < i;let si denote the starting position of the leftmost occurrence of this substringin S if li > 0, and si = 0, otherwise. The Lempel-Ziv (LZ) decomposition6



text a b a a b a a b b a a a b a a b a $position i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18li 0 0 1 5 4 3 2 1 3 2 6 6 5 4 3 2 1 0si 0 0 1 1 2 3 1 2 2 3 3 1 2 3 1 2 1 0Table 1: The de�nition of li and si.
a a b a a bba b a a a b a a b a $

1 2 3 4 5 6 7Figure 2: The Lempel-Ziv decomposition.of S is the list of indices i1; i2; : : : ; ik, de�ned inductively by i1 = 1 andiB+1 = iB+max(1; liB) for iB � n. The substring S[iB::iB+1�1], 1 � B � k,obtained in this way is called the Bth block of the LZ decomposition of S.It is well known that this decomposition can be computed in O(n) time,e.g. using the su�x tree of S [RPE81] 1. Table 1 shows the values si andli for the string abaabaabbaaabaaba$, and Figure 2 shows the Lempel-Zivdecomposition.The following two basic facts are stated explicitly or implicitly in [Cro83,Cro86, CR94] and connect tandem repeats to the blocks of the LZ decompo-sition.Lemma 1. The right half of any tandem repeat occurrence must touch atmost two blocks of the LZ decomposition.Proof. Assume the scenario shown in Figure 3, where the right half oftandem repeat �� touches more than two blocks. Let � be the �rst blockcompletely included in the right half of the tandem repeat, and let  be theremaining (necessarily non-empty) su�x of the right �. Since �� is a tandemrepeat, there is an earlier occurrence of � in S, namely as a su�x of the�rst half of the tandem repeat. But then the second � is not maximal with1There are several published variants of this decomposition, with di�ering names.Crochemore [CR94] uses the variant de�ned above, but calls it an f-factorization, andreserves the names Ziv and Lempel for a related decomposition. That decomposition iscalled Ziv-Lempel in [Gus97], where its e�cient computation is detailed. Those detailseasily extend to the LZ decomposition de�ned above.7
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SFigure 3: The right side of a tandem repeat must touch at most two blocksof the Lempel-Ziv decomposition.respect to having appeared earlier, contradicting the assumption that thesecond � is a full block. 2Lemma 2. The leftmost occurrence of any tandem repeat must touch atleast two blocks.Proof. By the de�nition of the LZ decomposition, any substring whichoccurs completely contained in one block has an occurrence starting at anearlier position in S. Hence it can not be the leftmost occurrence of thatsubstring. 2We say that the center of a tandem repeat �� is inside block B if therightmost character of the left copy of � is contained in B. The prior twoLemmas establish the following:Theorem 2. If the leftmost occurrence of a tandem repeat �� has its centerinside some block B, then either(Condition 1) �� has its left end inside block B and its right endinside block B + 1;or (Condition 2) the left end of �� extends into block B � 1 andpossibly further left. (The right end may be inside block B orinside block B + 1.)See Figure 4. 2It follows immediately that in order to identify the leftmost occurrence ofeach type of tandem repeat, it su�ces to look only for occurrences of tandem8
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Condition 1 Figure 4: The two conditions for leftmost tandem repeats.repeats that satisfy one of the two above conditions. This point is crucial inthe linear time bound for �nding a leftmost covering set.We now describe the second crucial tool of Phase I, the use of the longestcommon extension query.For two indices i and j of a string S, we de�ne the longest commonextension from i and j (in the forward direction) as the length of the longestsubstring in S that starts at i and matches a substring starting at j. Wede�ne the longest common extension in the backward direction as the longestsubstring of S that ends at i and matches a substring ending at j. It isknown that after linear processing time of S, any longest common extensioncomputation (forward or backward) can be executed in constant time. Thisis achieved in one of two ways, either by using a constant time least commonancestor algorithm, or more simply by using variants of Knuth-Morris-Prattor Boyer-Moore or Z-algorithm preprocessing. See [Gus97] pages 196 and208 for more details on these two approaches. We assume that string S hasbeen preprocessed so that any subsequent longest common extension querycan be executed in constant time.With the LZ decomposition, and the use of longest common extensionqueries, we can now begin to develop the Phase I algorithm that �nds a left-most covering set. The algorithm is an extension of Crochemore's algorithmfor determining if a string is squarefree. The algorithm processes blocks1; 2; : : : of the LZ decomposition in order, and it outputs an ordered list oftandem repeat pairs as each block is processed. The algorithm maintains theinvariant that after processing blocks 1; : : : ; B of the LZ decomposition, alloccurrences of tandem repeats whose center is inside some block B 0 from 1to B, and that satisfy either Condition 1 or Condition 2, will be covered bythe pairs output by the algorithm. Since the leftmost occurrence of any tan-dem repeat satis�es either Condition 1 or 2, the algorithm will have output9
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b a a b a a b b a a a b a a b a $aFigure 7: The result of Algorithm 1 on string abaabaabbaaabaaba$. Thetandem repeats from the leftmost covering set are shown as thicker linesbelow the string. The corresponding tandem-repeat pairs (i; l) are writtennext to them. (1; 6) is output by Algorithm 1b while processing block three;(3; 6) is output by Algorithm 1a while processing block three; (8; 2) is outputby Algorithm 1a on block four; (11; 2) is output by Algorithm 1a on block�ve; and (11; 6) is output by Algorithm 1b on block six.For each position i in S, let P (i) denote the list of pairs (i; lij) output byAlgorithm 1, which have position entry i. Let P denote the complete set ofthe output pairs, i.e., the union of the P (i). One additional implementationdetail is needed in Phase I, in order to facilitate the work in Phase II.Lemma 3. Without increasing the worst-case running time of Algorithm1, the lists P (i) can be accumulated so that for each position i, the pairs(i; lij) in P (i) are sorted by decreasing order of the length entry. That is,lij > lij+1.Proof. This is achieved by attaching an initially empty list P (i) to eachposition i of S. Then as each pair (i; l) is output by Algorithm 1, the pair (i; l)is pre-pended to the list P (i). To see that this gives the desired result, focuson a �xed pair (i; l) output while block B is processed. We claim that at thetime (i; l) is output, all the pairs (i; l0) with l0 < l, have already been addedto list P (i). First consider all pairs (i; l0) with center in blocks 1; : : : ; B � 1.These pairs were output in earlier iterations of Algorithm 1, and hence arealready in P (i). Moreover, l0 < l because l0 (respectively l) is the distancebetween i and the center of the tandem repeat (i; l0) (respectively (i; l)).Second, when processing block B, Algorithms 1a and 1b do not outputpairs with the same i value. The reason is that Algorithm 1a outputs pairswhose i falls in block B, while Algorithm 1b outputs pairs whose i falls inblocks before B. 12



Finally, Algorithm 1a (and 1b) vary k in increasing order, and henceif (i; l0) and (i; l) are output in that order when Algorithm 1a (or 1b) isprocessing block B, then l0 < l.For the time bound, note that because the tandem repeat pairs are outputin O(n) time and each entry in a list is pre-pended to the list in constanttime, the ordered lists are accumulated in O(n) time as well. 24 Phase II: Marking the endpoints of sometandem repeat typesEach tandem repeat pair in the leftmost covering set P found in Phase I spec-i�es a particular tandem repeat occurrence, and hence a particular tandemrepeat type. (Note we are not talking about the repeats covered by a repeatpair, but only the single repeat speci�ed by the pair itself.) Let Q denote theset of tandem repeat types speci�ed by P . To introduce the idea of PhaseII, we motivate it by saying that we would ideally like to mark the endpointsof the repeats in Q during Phase II. However, because of time constraints,that will not be possible, and Phase II will only mark the endpoints of aparticular subset Q0 of Q. The full explanation for the use of Q0 will have towait until part of Phase III is introduced.Phase II processes every non-root node of T (S) during a linear-time,bottom-up traversal. To start, each leaf i is given the list P (i) computed inPhase I, and Q0 is the empty set. During the traversal, each internal node vwill be given some end-portion of a list given to one of its children (detailsbelow). The list given to v will be denoted P (v); by induction and Lemma3, P (v) is guaranteed to be sorted by decreasing order of its length entries.The algorithm processes each node v (which could be a leaf), whose parentis denoted u, as follows:RepeatLet (i; l) denote the pair at the head of the list P (v);If l > D(u) fTandem repeat (i; l) ends at node v or on the interior of the edge (u; v).gThen beginStore the number l �D(u) on edge (u; v) to record that (i; l) ends l�D(u)characters from u along edge (u; v);Remove (i; l) from P (v); fFor the exposition, place pair (i; l) into list P 0.g13



end;Until either P (v) is exhausted, or l � D(u).Since the traversal is bottom-up, a node u is processed only after all ofits children have been processed. When u is processed it would be appealingto merge-sort the current lists of the children of u, according to the lengthentries of the pairs, and give that merged list to u. If that were done for eachnode u, then the algorithm would record the endpoint of each repeat in Q.However, over the entire tree, that approach would take 
(n2) time for themerges, even though the size of all the lists is O(n). But, as will be provedin the next section, merging can be avoided as follows.Before the traversal, label each node with the smallest leaf number in itssubtree. Note that the label at each node u agrees with the label of exactlyone of its children. Then during the bottom-up traversal, after all the childrenof an internal node u have been processed, set the list P (u), given to u, tothe current list P (v), where v is the child of u with the smallest label. Thetraversal now takes O(n) time, since the size of the original lists is O(n), andno lists are merged. Moreover, if node u is labeled with leaf i, then the actof creating and \giving" a list to u is implemented by passing a pointer tou that points to the appropriate position in list P (i). Hence Phase II takesO(n) time.Let Q0 be the set of distinct tandem repeat types speci�ed by the pairs inP 0 at the end of Phase II. Clearly, Q0 is the set of tandem repeat types thatare recorded in T (S), and Q0 is a subset of Q and might be a strict subset.The utility of Q0 will be explained in the next section.5 Phase III: Using Q0 to record the endpointsof the full vocabularyThe end result of Phase II is the decoration of the su�x tree with the end-points of the tandem repeat types in Q0. We will now use those endpoints to�nd the endpoints of all the tandem repeats in the full vocabulary of tandemrepeats. The key algorithmic operation is that of a su�x-link walk, which isa common operation in building and using su�x trees.Consider a tandem repeat �� = a, where a is a single character. A su�x-link walk (or walk for short) from the end of �� �rst moves to a location14
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Figure 8: The de�nition of a su�x link walk.in T (S) labeled with the string . There are two cases to consider. In the�rst case, the end-location in T (S) of �� is at a node v. In this case, thesu�x-link walk �rst moves along the su�x link (v; v0) to the node v0 labeled. In the second case, the endpoint of �� is strictly in the interior of anedge (u; v) entering v. In that case, denote Q(u) by aw, and let � denote the(non-empty) pre�x of the label of edge (u; v) such that  = w� (see Figure8). In this case, the walk starting at the end of �� �rst moves to node u, andthen follows the su�x link of node u to a node denoted u0. By construction,the su�x link (u; u0) is labeled a, and the node u0 is labeled w. From u0,the su�x-link walk follows the path labeled � (which always exists) until itreaches the end-location of string  = w�.When the su�x-link walk reaches the end of string , in either of the twocases, the algorithm tests if there is some path from the endpoint of  thatstarts with the character a (the starting character of ��). If that continuationexists, the algorithm moves to the endpoint of string a, and the su�x-linkwalk is called successful ; otherwise the walk terminates at the endpoint of and is called unsuccessful. A successful walk from a corresponds to aright-rotation of a, creating the tandem repeat a. Hence a run of right-rotations in S de�nes a chain of successful walks, each walk starting wherethe previous one ended.For e�ciency, one implementation detail is needed in the second case.When a walk follows the path labeled � from node u0, it can traverse each15



edge e on the path in constant time, no matter how long the label of e is.This is accomplished by using the skip/count trick that is standard in manysu�x tree algorithms: since a path labeled � must extend from u0, any edgewhose label is shorter than (the remainder of) � can be skipped in one step,and the walk continued at the next node with the appropriately truncatedsu�x of �. Determining which edge to traverse from any encountered nodesimply requires �nding the unique edge whose label starts with the correctnext character of �. For more details on the skip/count trick see [Gus97].Now that the su�x-link walk has been de�ned, we can more fully explainthe utility of Q0. We de�ne a set Q� of tandem repeat types to be su�cientif the endpoint in T (S) of every tandem repeat in the vocabulary of S canbe reached by some chain of successful su�x-link walks starting from theendpoint in T (S) of some tandem repeat type in Q�.Theorem 4. The subset Q0 of Q de�ned during Phase II is a su�cient setof tandem repeat types.Proof. By the de�nitions of a chain of walks and a run (of right rotations),if the pair (i; l) covers the pair (j; l) in S, then a chain of successful walksin T (S) starting at the endpoint of the tandem repeat (i; l) must reach theendpoint of the tandem repeat (j; l). It follows that Q is su�cient, since P isa (leftmost) covering set. Moreover, by transitivity, if the endpoint of everytandem repeat type in Q is reached by a chain of walks from the endpoint ofsome tandem repeat type in Q0, then Q0 is also su�cient.De�ne Q00 to be the set of tandem repeat types in Q whose endpoints inT (S) are not reached by any chain of successful walks from Q0. To prove thetheorem, assume for contradiction, that Q00 6= ;. Let P 00 � P be the set ofpairs in P which specify tandem repeat types in Q00. Let (j; l) be a repeatpair in P 00 such that j is smaller or equal to the position entry of any pair inP 00. Let �� denote the tandem repeat type speci�ed by (j; l).Clearly, if j were the leftmost starting position of �� in S then (j; l)could never have been removed in Phase II, so (j; l) would be in P 0 and notin P 00. So, the leftmost occurrence of �� must start at some position q < j.Now because P is a leftmost covering set, there is some pair (r; l) 2 P whichcovers (q; l). But r � q < j, so (r; l) is in P 0 by the choice of j. Hence achain of walks in T (S) from the endpoint of the tandem repeat speci�ed by16



(r; l) must reach the endpoint of �� in T (S), a contradiction. We concludethat Q00 is empty, and Q0 is su�cient. 2Now we are ready to present the Phase III algorithm which decorates thesu�x tree. Recall that an endpoint of a tandem repeat in Q0 is recorded inT (S) on edge (u; v) if the repeat ends at node v or in the interior of edge(u; v). We will continue to use this convention to record the endpoints ofadditional tandem repeats that we �nd. However, we distinguish betweentandem repeats in Q0 and the new ones found in Phase III.At the high level, Phase III executes a linear-time (depth-�rst say) traver-sal of T (S). This traversal is interwoven with su�x-link walks. In detail,when the traversal encounters a tandem repeat �� in Q0 recorded at someedge (u; v), it executes a chain of su�x-link walks in T (S) (starting from theend of ��), to �nd and record in T (S) all of the right rotations of �� whichare tandem repeats. This chain of walks ends the �rst time an unsuccessfulwalk ends, or the �rst time that a successful walk ends at the endpoint ofa tandem repeat that has already been recorded in T (S). After terminatingthis chain of walks, the algorithm returns to edge (u; v). It executes onechain of walks for each tandem repeat in Q0 recorded on edge (u; v). Afterall of these walks have been executed, the algorithm continues its linear-timetraversal of T (S) from edge (u; v). Some additional implementation detailswill be introduced when the time analysis is considered.In the example shown in Figure 9, the pair (11; 6) (representing tandemrepeat aabaab) is in list P (11), but aabaab is not in Q0 (because of leaf3). However, the endpoint of tandem repeat abaaba is in Q0, and two right-rotations of it create aabaab. Hence the endpoint of aabaab is reached inPhase III after two successful su�x-link walks.5.1 Analysis of Phase III5.1.1 CorrectnessTheorem 5. Phase III correctly records the endpoint in T (S) of each tan-dem repeat in the vocabulary of S.Proof. Recall that Q0 is su�cient, and a run of right-rotations from a pair(i; l) corresponds to a chain of successful su�x-link walks that start at theendpoint of the tandem repeat de�ned by (i; l). Hence, if every chain of su�x17
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Figure 9: Example (cont.)link walks from endpoints of tandem repeats in Q0 ended only at the end ofan unsuccessful walk, then correctness of Phase III would be immediate.However, a chain of su�x-link walks may also end at the endpoint of atandem repeat that is already recorded in T (S). If that ending tandemrepeat is guaranteed to be in Q0, then correctness is again immediate, sincea chain of walks will be (or has been) started from the end of that tandemrepeat.We will show that every chain of walks in Phase III ends either with anunsuccessful walk, or at the endpoint of a tadem repeat in Q0. For contra-diction, suppose two chains of successful walks start at the endpoints of twotandem repeats in Q0, �� and �0�0 respectively, and that both chains con-tain successful walks that end with the same tandem repeat �00�00 not in Q0.Suppose one of those chains �rst �nds and records the end of �00�00, and theother later encounters this record. Suppose the chain from �� contains morewalks than the other chain does.A successful walk in T (S) corresponds to a right rotation of a speci�cstring. Hence, two successful walks that end at the same point in T (S) musthave also started at the same point. Repeating this reasoning, the chain from�� must contain the chain from �0�0. But this is not possible in Phase III,for then the chain from �� would have ended with the walk that ends atthe endpoint in T (S) of string �0�0. We conclude that every chain of walks18



in Phase III ends either with an unsuccessful walk, or at the endpoint of atandem repeat in Q0, and the correctness of Phase III is proven. 25.1.2 Time and Space Analysis of Phase IIIWe begin with two Lemmas.Lemma 4. For any edge e = (u; v) in T (S), at most two tandem repeattypes end in the interior of edge e or at node v.Proof. For each node v of T (S), let R(v) denote the largest of all leaf-labelsin the subtree below v. Then the rightmost occurrence of a substring of Swhose endpoint ends in the edge e = (u; v) starts at position i = R(v) inS. Since there can be at most two tandem repeat types whose rightmostoccurrences start at the same position i (see Theorem 1), the number oftandem repeats whose endpoints are contained in edges which end at nodeswith the same R-value is bounded by two. In particular this means, thatthere can be at most two tandem repeats whose endpoints are contained inedge (u; v) or at node v. 2Lemma 5. The total number of edges traversed during all the su�x-linkwalks in Phase III is bounded by O(j�jn).Proof. By Corollary 1, the number of di�erent tandem repeat types in Sis bounded by 2n. Each su�x-link walk begins at the endpoint of a distincttandem repeat type, no walk is repeated twice. Therefore, the total numberof su�x-link walks, and hence su�x-link traversals, is bounded by 2n. Wenext bound the total number of edges skipped by the skip/count trick.The su�x-link walk from a tandem repeat whose endpoint is at a nodeinvolves no edge skipping, hence edges are skipped only when the startingpoint of a walk is in the interior of an edge. Before analyzing the time forthese skips, consider an edge (u; v) labeled with string �. There is a singlesu�x link, labeled a say, from u to u0, and a single su�x link from v to v0,also labeled a. By construction, v0 must be a descendant of u0, and the pathfrom u0 to v0 must be labeled with the string �. Therefore, any su�x-linkwalk that starts on the edge (u; v) must end on the path from u0 to v0. Againby construction, there can be no node strictly between u0 and v0 that has an19
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recorded on any edge. Finally, the only additional space needed in Phase IIIis used to record the endpoints of the tandem repeats in T (S). Since eachsuch record takes constant space, and there are only a linear number of them,we conclude with the followingTheorem 6. Phase III runs in O(n) time and space, and when �nished,the endpoints of all tandem repeat types are recorded in T (S). Hence T (S)can be decorated with the complete tandem repeat vocabulary of S in O(n)time and space.Corollary 2. By a linear time traversal of T (S), the complete vocabularyof the tandem repeats of S can be collected and output (as position, lengthpairs) in O(n) time and space.6 Extensions of the Basic Algorithm6.1 Many immediate extensionsOnce the su�x tree T (S) is decorated with the endpoints of all tandemrepeats, several questions regarding tandem repeats in S can easily be an-swered. In this section we mention some of these.Certainly, all occurrences of tandem repeats in S can be found if foreach tandem repeat location, the subtree below this location is traversedand the labels of all leaves in this subtree are reported. The space requiredfor this algorithm is only O(n), and since each subtree traversal is possiblein time proportional to the number of its leaves, the total running time ofthis extension is O(n + z), where z is the output size2. Note that existingalgorithms that �nd all occurrences of tandem repeats and run in O(n log n+z) time were previously declared (in some places) to be time-optimal, because2We should note that Algorithm 1 can be extended to directly �nd all occurrences oftandem repeats in this time bound, using 
(n+ z) space. The key is to pick up and copythose tandem repeats that are entirely contained in a single block, since all others arecollected in the original Algorithm 1. We leave the details to the reader. Crochemore'soriginal algorithm [Cro83, Cro86, CR94] that tests if a string is squarefree, can also beextended to �nd either the leftmost occurrence of each tandem repeat in O(n) time andspace [Mai89], or to �nd all the runs of tandem repeats in O(n) time and space, [KK98],and to �nd all occurrences of tandem repeats in O(n+ z) time and �(n) space [KK98].21



in worst-case there can be 
(n2) occurrences. Hence our new algorithm withits O(n + z) time bound is \more optimal" than the previous \optimal"algorithms.Several questions can be answered in O(n) time by propagating informa-tion about the tandem repeats down towards the leaves of the su�x tree.These questions include �nding the number of tandem repeats starting ateach position of S (and hence the total number of tandem repeats in S), and�nding the shortest or the longest tandem repeat starting at each position ofS. The details are left to the reader. More complex extensions are discussedin the next subsection, and in Section 7.6.2 Primitive Tandem RepeatsRecall from the introduction that a primitive tandem repeat is a tandemrepeat �� where � is primitive, i.e., � = �k for some non-empty string �only if k = 1.We decorate the su�x tree with the endpoints of all the primitive tandemrepeat types in S by �ltering out non-primitive repeats from the su�x treedecorated with the complete repeat vocabulary. We use an auxiliary datastructure depth-array of size n, where all cells are initialized to zero.Tree T (S) is traversed in a depth-�rst order. Each time an endpoint ofa tandem repeat of length l, say, is encountered, we do the following. If theentry of cell l in the depth-array is 0, we insert the value l into cell 2l of thedepth-array. If the entry of cell l is k 6= 0, we insert the value k into cell l+kof the depth-array, and we mark the tandem repeat we just encountered asnon-primitive. When the depth-�rst traversal backs up to the endpoint of atandem repeat of depth l (primitive or not), it sets the depth-array value forcell l to zero.After the depth-�rst traversal, every non-primitive tandem repeat type inthe vocabulary is marked in T (S), so the primitive tandem repeat types canbe collected in O(n) time with another linear-time tree traversal. Further, allthe occurrences of primitive tandem repeats can be found in optimalO(n+z)time, where z is now the number of occurrences of primitive tandem repeatsin S. This algorithm is again \more optimal" than the previous O(n log n)time algorithms. 22



7 Tandem ArraysA tandem array is a string w = �k with k � 2. If � is primitive, w is aprimitive tandem array. Generalizing the goal of �nding the vocabulary ofall tandem repeat types, we would like to �nd the set of all distinct tandemarray types or (more often) the distinct primitive tandem array types in astring. We don't know the size of those sets, but assuming there are z distinctprimitive tandem array types in the string, we can �nd one representative ofeach type in O(n + z) time. The method again relies heavily on the use ofsu�x trees.The algorithm works in two phases. To explain the �rst phase, we de�nea set Q of primitive tandem repeat types to be p-su�cient if the endpointin T (S) of every primitive tandem repeat type can be reached by a chainof successful su�x-link walks from the endpoint of some primitive tandemrepeat in Q. A minimal p-su�cient set Q is a p-su�cient set satisfying thecondition that the removal of any tandem repeat type from Q creates a setthat is no longer p-su�cient.Note that if �� = wa is in a minimal p-su�cient set Q, then eitherwa is not the right-rotation of another tandem repeat type aw in S, or allrotations of �� are tandem repeats in S, but none of these is in Q exceptfor �� itself. (Due to the second possibility, a minimal p-su�cient set of Sis not necessarily unique.)7.1 The First PhaseIn the �rst phase of the algorithm, we identify a minimal p-su�cient set oftandem repeats; we use that set in the second phase to �nd the endpoints inthe su�x tree of all the distinct primitive tandem array types.A minimal p-su�cient set can easily be found in linear time, using theset of all primitive tandem repeats (whose endpoints in T (S) are found asdescribed in Section 6.2). Let W denote the set of endpoints in T (S) ofall the primitive tandem repeat types. Algorithm 4 will mark all the pointsin W , using marks of M , C and R, whose meanings will be explained later.Initially, all endpoints inW are markedM . The following �ltering procedurethen �nds a minimal p-su�cient set.Algorithm 4In any order, consider each endpoint (denoted v, but not necessarily a node) in Wexactly once, and do the following. 23



1. If the endpoint v is marked R, then end.2. Set v0 to v.3. Perform a su�x-link walk from v0.4. If the walk is unsuccessful then end.5. If the walk ends at point v, then mark v with C, and end.6. Otherwise, set v0 to the endpoint reached in the walk; mark v0 with R andgo to step 3.At the end of the algorithm, the tandem repeats marked M or C areplaced in a set called MC. We claim that set MC forms a minimal p-su�cient set. The distinction between tandem repeats marked M and thosemarked C will be explained in the next section. Minimality of MC is easyto establish. For primitivity, note that a successful walk from tandem repeataw ends at the endpoint of a tandem repeat wa, and that aw is a primitivetandem repeat if and only if wa is also (this is proved in [SG98]). We leavethe full proof that MC is a p-su�cient set to the reader.We also claim that the running time of Algorithm 4 is O(n). That can beproven by an extension of Lemma 5, and we leave the details to the reader.Also, in the same time bound, the algorithm can mark the endpoint in T (S)where each marked tandem repeat is found. We assume that this is done inPhase I.7.2 The Second PhaseTo begin to describe Phase II, we �rst state the following key fact, whoseproof is immediate.Lemma 6. Let � be a right rotation of string �. If �i is a tandem arraysomewhere in S, for i > 2, then the �i�1 must also be a tandem array in S.Reversing roles, if there is no occurrence of �i in S, then there cannot be anoccurrence of �i+1 in S.Lemma 6 tightly connects the length of the longest tandem array of �'swith the length of the longest tandem array of any rotation of �: thoselengths can di�er by at most one. In Phase II, the algorithm successivelyfocuses on each minimal p-su�cient tandem repeat �� in MC, trying to24



�nd the length of the longest tandem array of �'s, along with the lengthof the longest tandem array of each rotation of �. In particular, for each isuch that �i is in S, and �i is also in S for each right rotation � of �, thealgorithm determines whether �i+1 is in S, and then uses a modi�ed versionof a su�x-link walk to determine whether �i+1 is in S, for every rotation � of�. By Lemma 6, this process ends at a value of i where some �i+1 (includingpossibly �i+1) is found to be missing from S.We now develop this in more detail. Assume � = a, and we know theendpoint in T (S) of string �i�, where i � 2, � 2 �+ and �i� is the longestpre�x of �i+1 that occurs anywhere in S. Hence � = � if and only if �i+1occurs in S. For each right rotation � of �, we would like to �nd the endpointin T (S) of the longest pre�x of �i+1 that occurs in S. We describe how thisis done for the �rst rotation of �, i.e., for � = a.We start by executing a standard su�x-link walk performed from theendpoint of �i�, arriving at the endpoint of string (a)i�1�, which is guar-anteed to be in T (S). Note that during this su�x-link walk, we use thestandard skip/count trick when appropriate (see a more detailed discussionin Section 5). Next, the walk continues down the tree (explicitly comparingcharacters along the path) to �nd the endpoint in T (S) of the longest pre�xof (a)i+1 that occurs in S. We call that point v, although it may not be anode in T (S). We call this walk a generalized su�x-link walk. Note that if itis started at the endpoint of a tandem array, and if the right-rotation of thattandem array also occurs in the su�x tree, then the generalized su�x-linkwalk is identical to the standard su�x-link walk.To �nd the longest pre�x of �i+1 that occurs in S, for � de�ned by tworight rotation steps of �, simply start from v and execute another generalizedsu�x-link walk. Continuing in this for exactly j�j generalized su�x-linkwalks, the algorithm �nds for each rotation � of �, the endpoint in T (S) ofthe longest pre�x of �i+1 that occurs in S. Moreover, those j�j walks endexactly where they began, i.e, at the endpoint in T (S) of �i�. We call sucha series of generalized su�x-link walks a su�x-link cycle.Lemma 7. Any su�x-link cycle, started at the endpoint of �i�, takesO(j�j) time.Proof. First, the cycle traverses exactly j�j su�x links, and those traversalstake O(j�j) time. So we only have to show that the number of node skips25



(using the standard skip/count trick), and the number of explicit charactercomparisons in all the down-traversals is bounded by O(j�j).To count the number of node skips, we consider how the node-depthschange as points are traversed during a cycle. Recall that the node-depth ofa point v in T (S) is the number of nodes on the path from the root to v. Eachsu�x-link traversal decreases the node-depth by at most one, and each nodeskip increases the node-depth by exactly one. Since the node depth at theend of the cycle is exactly the same as it is at the start, the number of nodeskips cannot exceed the number of su�x-link traversals, which is exactly j�j.Now we consider the number of explicit character comparisons done dur-ing a cycle. Each generalized su�x-link walk ends the �rst time a mismatchoccurs, hence there are at most j�j mismatches during a cycle. To bound thenumber of matches, recall we are �nding for each rotation � of �, the longestpre�x of �i+1 that occurs in S. We bound the number of matches that occurduring a cycle by considering pl which is de�ned as the length of that pre�xminus i � j�j. The key observation is that if pl = k after some generalizedsu�x-link walk, then pl � k � 1 after the next generalized su�x-link walk.For example, if (a)ia� is the longest pre�x of (a)i+1 in S, then (a)i� is apre�x of (a)i+1 and it is also in S. That means that if there are m charactercomparisons that are matches during a generalized su�x-link walk, then plafter that walk is exactly m� 1 larger than before the walk. Since pl mustbe bounded by j�j, the total number of matches that occur during a cycle isbounded by 2j�j. 27.3 Algorithm 5We now present the algorithm that decorates the su�x tree with the end-positions of all primitive tandem arrays, given the endpositions of all thetandem repeats from a minimal p-su�cient set MC.The endpoints in T (S) of all the primitive tandem repeats have alreadybeen located and marked in Phase I. Moreover, if �� is a tandem repeat inMC and is markedM , then there is some right rotation � 0 of � such that �0�0is not in S. Hence by Lemma 6 there is no right rotation � of � (including�) such that �3 is in S. So if �i for i > 2 is a tandem array in S and � is arotation of �, where �� is inMC, then �� must be labeled C. The followingalgorithm restricts attention to the C labeled tandem repeats, and �nds theendpoints in T (S) of every primitive tandem array �i for i > 2.26



Algorithm 5For each endpoint of a tandem repeat �� in MC marked C, set i to 1, and do thefollowing:RepeatSet i to i+ 1.Walk in T (S) from the end of �i to the end of the longest pre�x of �i+1 thatoccurs in T (S). Call that point v.Perform a su�x-link cycle starting at v to locate in T (S) the endpoints ofevery tandem array �i+1 that occurs is S, where � is a right rotation of �.Until there is a � (possibly �) such that �i+1 is not in S.7.3.1 Analysis of Algorithm 5The endpoint of every tandem array �i for i > 2 is located at least onceby Algorithm 5 because MC is p-su�cient, and it is located at most oncebecause MC is minimal. In more detail, if �� and �0�0 are two C markedtandem repeats in MC, then � is a rotation of at most one of the strings� or �0. If that were not true, then MC would not be minimal. Hencethe endpoint of every tandem array �i for i > 2 is located exactly once byAlgorithm 5. Because of this non-redundancy, the time analysis of Algorithm5 can concentrate separately on the time used for each execution of Algorithm5, i.e., for each C-labeled tandem repeat in MC.Time complexityWe have already established that Phase I takes O(n) time, so we analyzethe time used for Algorithm 5. For a �xed C-labeled tandem repeat ��,each iteration of the steps inside the Repeat statement involves at most j�jindividual character comparisons, followed by the traversal of a su�x-linkcycle. So, using Lemma 7, the time for an iteration is O(j�j).By construction, at the start of each iteration of the Repeat statement(where i is set say to k), it is known that �k is in S for each of the j�j rotations� of �. Hence, when i is set to k, the time to execute the statements insidethe Repeat statement can be charged to the j�j tandem arrays �k. It followsthat the time for Algorithm 5 is proportional to z, the number of primitivetandem arrays in S, and the total time for both phases is O(n + z).27



7.4 Final extensionNote that the above algorithm starts with the su�x tree decorated with theendpoints of all the primitive tandem repeats occurring in S, and �nds theendpoints of all the primitive tandem arrays occurring in S. Similarly, if onestarts the algorithm with all the tandem repeat endpoints marked, one getsalso the endpoints of all the tandem arrays marked, even though in mostcases we only wish to locate the primitive tandem arrays.8 ConclusionLinear-time decoration of the su�x tree of S with the endpoints of the O(n)tandem repeat types provides a compact representation of all the tandemrepeat occurrences and tandem repeat types in a string. Many problemsconcerning tandem repeats can then be easily solved using this decoratedsu�x tree, resulting in algorithms which are as fast, as space e�cient (andsimpler) or faster, or more space e�cient, or both (but perhaps not simpler)than previously proposed algorithms.Implementations of the algorithms discussed in this paper (and otheralgorithms concerning repeats) can be found at:http://www.cs.ucdavis.edu/~gusfield/strmat.htmlReferences[AP83] A. Apostolico and F. P. Preparata. Optimal o�-line detection ofrepetitions in a string. Theor. Comput. Sci., 22:297{315, 1983.[CR94] M. Crochemore and W. Rytter. Text Algorithms. Oxford UniversityPress, New York, NY, 1994.[Cro81] M. Crochemore. An optimal algorithm for computing the repetitionsin a word. Inf. Process. Lett., 12(5):244{250, 1981.[Cro83] M. Crochemore. Recherche lin�eaire d'un carr�e dans un mot. C. R.Acad. Sci., Paris, 296:781{784, 1983.28
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