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Chapter 1

Introduction

Pattern matching is one of the classic fields in theoretical computer science. Pattern matching
algorithms include methods for finding (short) patterns in (long) texts as they are used, for
example, in linguistics and bioinformatics.

One usually distinguishes between exact and approximate pattern matching. In approximate
matching one seeks for occurrences of the pattern in the text within a certain error bound,
while exact matching requires that the pattern and a part of the text exactly coincide.

Within exact string matching, depending on the situation, different techniques are applied:
If pattern and text are not known in advance, one uses methods like those based on the
Boyer-Moore algorithm [BM77] where the pattern is preprocessed in a simple way to allow
for an efficient search. If the pattern is known in advance and the same pattern is to be
searched in different texts, techniques based on finite automata are the methods of choice.
In the opposite case where the text is statically known and the pattern varies from search
to search, a preprocessing of the text is worthwhile.

A data structure frequently used for preprocessing texts are (compact) suffix trees. They
allow in a particularly useful way to store the subwords of the text (hence they are also
called subword trees). Apostolico describes the virtues of this data structure as follows:

“. . . , no digital index seems to outperform subword trees in versatility and ele-
gance.” [Apo85]

Different methods for the efficient construction of compact suffix trees are known, starting
with the “classic” one by Weiner [Wei73], followed by methods of McCreight [McC76] and
Chen and Seiferas [CS85], and finally the online construction of Ukkonen [Ukk93] where the
text is read character by character from left to right and after the ith step the suffix tree of
the first i characters is completed.

Upon closer inspection of this procedure, one may ask whether reading the text from right
to left, or even in a bidirectional way, would be possible as well. In the latter case, the
construction could start at any position in the text and then proceed “inside out” in both
directions. In the present work we will show that an extension of the data structure is
advantageous here. The graph obtained is called an affix tree and has a duality property
described in [GK94a] that is not possessed by compact suffix trees. Since the size of affix
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trees does not significantly differ from the size of suffix trees, we will examine if these, like
suffix trees, can be constructed in time proportional to the length of the text.

This work is based on ideas presented in a paper by R. Giegerich and S. Kurtz [GK94a]. For
the extension of Ukkonen’s algorithm we use a notation similar to the one in [Kur95].

The thesis has the following structure: We first introduce the basic data structures in Chap-
ter 2. On the basis of these data structures we define affix trees in Chapter 3 and show a few
of their properties. The fourth chapter is devoted to the online construction of affix trees. In
the fifth chapter we analyze the complexity of this algorithm, without a satisfactory result,
though. Finally, a short application of affix trees is presented in Chapter 6.

The code of the programs written as part of this thesis can be obtained from the author
upon request.
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Chapter 2

Basic Data Structures

Giegerich and Kurtz [GK94a] observe a duality of atomic suffix trees and the respective
suffix link trees. To show that this duality is a property not only of suffix link trees, here
we go a more general way than via suffix links. From the beginning we demand a symmetry
from the resulting data structure that will be of high importance later on.

The notation and terminology introduced in this section follow [GK94a] and [Kur95].

2.1 Basic Notions

Let A be a finite set of characters, the alphabet. A sequence of characters from A is called a
string or text over A, |t| denotes the length of text t, i. e., the number of characters t consists
of. The empty string of length zero is denoted ε. Am is the set of all strings of length m
over A, A∗ is the set of all strings over A, A+ = A∗ \ {ε}. Throughout this work, a, b, c, x,
y denote characters from A; s, t, u, v, w denote strings over A. Characters themselves are
written in type writer font: a, b, c, . . . .

The m-fold repetition of a string t is denoted tm, the reverse an . . . a1 of string t = a1 . . . an

is denoted t−1. For any partitioning of t = vwu into (possibly empty) v, w and u, v is called
a prefix of t, w is called a substring of t (or a t-word), and u is called a suffix of t. If v 6= t
(u 6= t), v (u) is a proper prefix (proper suffix ) of t. The set of all substrings of t is denoted
t-words .

If the variable names for t-words are irrelevant, these will also be symbolized by underlined
spaces:

t = v ⇐⇒ v is a prefix of t,

t = w ⇐⇒ w is a t-word,

t = u ⇐⇒ u is a suffix of t.

A dot in this notation denotes a single character from A:

t = v . ⇐⇒ v is a proper prefix of t,

t = . u ⇐⇒ u is a proper suffix of t.
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For the start/end of a substring w = al+1 . . . ar of t = a1 . . . an we use the notation t = lwr

where 0 ≤ l ≤ r ≤ n.1

A prefix or suffix of t is called nested if it also occurs at another position in t:2

t =
{

v
. v

}
⇐⇒ v is a nested prefix of t,

t =
{

u
u .

}
⇐⇒ u is a nested suffix of t.

A prefix (suffix) that is nested in t hence always is a proper prefix (suffix) of t. A non-nested
prefix (suffix ) of t is a prefix (suffix) of t that is not nested.3

A t-word w is called right-branching resp. left-branching if t is of the form

t =
{

wx
wy

}
, x 6= y resp. t =

{
xw
yw

}
, x 6= y.

By definition, the empty string ε is both left- and right-branching in every string.

2.2 A+-Trees and Related Data Structures

2.2.1 A+-Trees

Following [GK94a] we introduce a large part of the suffix tree terminology for a more general
data structure, the A+-tree.

Definition 2.1 (A+-Tree)

An A+-tree T is a rooted tree whose edges are labeled with strings from A+. Each node k in
T has at most one outgoing edge k

a−→ •4 whose label starts with an a, a so-called a-edge.
2

Terminology:

• The set of all edges of an A+-tree T is denoted edges(T ), the set of all nodes is denoted
nodes(T ), and the root of T is denoted root(T ). A node in nodes(T ) is a leaf of T if
there is no edge starting at that node. All other nodes are internal nodes of T .

• The number of nodes |nodes(T )| of an A+-tree T is called the size of T , short |T |.

• An internal node is called branching if there are at least two edges starting at that
node, otherwise it is called non-branching.

1Note that the indices l and r do not denote characters of t but the borders between characters. For a
motivation of this notation see [Mei86].

2The notation t =
{

w1
w2

}
denotes that t is both of the form t = w1 and of the form t = w2.

3But not an arbitrary string w ∈ A∗ that is not a nested prefix (suffix) of t!
4We will use the variable k to denote nodes (“Knoten” in German), in some cases we will use longer

names. In cases where the name of a node is irrelevant, it may be denoted by a bullet •. Here this is the
node where the a-edge ends.
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• For a given A+-tree T , s-path(k) denotes the concatenation of the edge labels on the
(unique) path from the root to node k. By p-path(k) we denote the concatenation of
the reversed edge labels on the path from node k to the root of T .5

Obviously, s-path(k) = (p-path(k))−1.

• Conversely, due to the unique a-edges in an A+-tree T there exists for a given string w
at most one node k in T with s-path(k) = w and at most one node k with p-path(k) = w.
Due to this correspondence every node k can be identified with its s-path or its p-path.
We use two interchangeable notations:

1. k = −→w if w = s-path(k).

2. k =←−w if w = p-path(k).

• It is easy to see that for any node −→v on the path from the root to a node −→w , v is
a prefix of w. Moreover, due to the uniqueness of a-edges T does not contain other
nodes that represent prefixes of w.
Similar properties hold for←−w : On the path from the root to node←−w we pass only and
all nodes ←−v in T with w = v.

• A string w is represented as an s-word in T if T contains a node −→w . The set of all
strings represented in T as s-words is denoted s-words(T ).
Similarly, p-words(T ) = {w ∈ A∗|←−w ∈ nodes(T )}.
Obviously, we have that w ∈ s-words(T ) if and only if w−1 ∈ p-words(T ).

• Following [Ukk93], given a string w ∈ s-words(T ) we call the pair (−→v , u) a reference
pair of w in T if −→v is a node in T and w = vu.6 If v is the longest such prefix of w,
locT (w) = (−→v , u) is called the canonical reference pair or location of w in T .

• A canonical reference pair of the form (−→v , ε) is called an explicit node; a canonical
reference pair of the form (−→v , au) is called an implicit node because a node −−→vau does
not explicitly exist in T , but it can be interpreted as implicitly occurring “inside” the
edge −→v au.−→ −−−→vau. .

Sometimes it will be useful to extend the notation of canonic reference pairs to quadru-
ples:

locT (w) = (−→v , au, s,−−−→vaus )

if w = vau and (−→v , au) is an implicit node “inside” the edge −→v aus−→ −−−→vaus of T .

• The three trees Ta, Ti and Tc in Figure 2.1 show that the set of strings represented in
an A+-tree T does not uniquely determine the structure of T . Ta, Ti and Tc represent
the same sets of strings

s-words(Ta) = s-words(Ti) = s-words(Tc) = {ε, a, aa, aab, aaba, b, ba, bab, bb}
5The terms s-path and p-path are an anticipation of suffix and reverse prefix trees as they will be introduced

in Section 2.2.2. Usually, one considers paths of the s-kind in suffix trees while paths of the p-kind are used
in reverse prefix trees.

6Similarly one can define reference pairs for w ∈ p-words(T ). The result, though, does not differ signifi-
cantly from the one above: (←−u , v) is a reference pair if ←−u is a node in T and w = vu.
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�
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b
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Figure 2.1: Three A+-trees that represent the same set of strings: on the left an atomic tree
Ta, on the right a compact tree Tc, and in between an intermediate tree Ti.

and

p-words(Ta) = p-words(Ti) = p-words(Tc) = {ε, a, aa, ab, abaa, b, baa, bab, bb},

respectively.

• Ta only contains edges with labels of length 1. Such edges are called atomic edges. An
A+-tree that only contains atomic edges is called an atomic A+-tree.

On the other hand, an A+-tree that apart from the root only contains branching
internal nodes is called a compact A+-tree. The tree Tc shown in Figure 2.1 (right) is
compact.

• As shown in [GK95], among all A+-trees representing a given set of strings the atomic
variant contains the maximal number of explicit nodes and the compact variant con-
tains the minimal number of explicit nodes. The atomicA+-tree is a normal form under
edge splitting, and the compact A+-tree is a normal form under edge contraction.

2.2.2 Suffix Trees

We introduce suffix trees as a special form of A+-trees. Hence the notation introduced above
carries over automatically.

Definition 2.2 (Suffix Tree)

A suffix tree of a text t is an A+-tree T with s-words(T ) = t-words . 2

Remarks on Definition 2.2

1. Like all A+-trees, suffix trees can vary in the degree of compactness. Figure 2.2 shows
the atomic suffix tree ast(t) and the compact suffix tree cst(t) of the text t = aababa.

2. As shown in [AHU74], using a proper representation of edge labels, suffix trees of a
text t of length n = |t| require the following amounts of space:
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b
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Figure 2.2: Atomic and compact suffix tree of t = aababa.

• O(n2) for the atomic suffix tree ast(t),

• O(n) for the compact suffix tree cst(t).

That is why for realistic applications, especially for long texts, the compact variant is
to be preferred.

3. An important property of the compact suffix tree, also mentioned by [CL94], is the
following:

I. Each internal node −→w of cst(t) corresponds to a right-branching t-word w.7

II. Each leaf −→w of cst(t) corresponds to a non-nested suffix w of t.8

Similar to the suffix tree definition is the following:

Definition 2.3 (Reverse Prefix Tree)

A reverse prefix tree of a text t is an A+-tree T with p-words(T ) = t-words . 2

This definition is equivalent to the one given in [GK94a]:

A reverse prefix tree of a text t is a suffix tree for the reverse text t−1

because a string w ∈ A∗ is a t-word if and only if w−1 is a t−1-word.

Hence we do not need to introduce a separate notation for prefix trees: The atomic prefix
tree of a text t equals ast(t−1), and the compact reverse prefix tree of t equals cst(t−1).

7Because we consider ε being right-branching by definition, root(cst(t)) representing ε is automatically
included in case I., whereas [CL94] introduce a special case for the root.

8[CL94] only consider texts t that end with a special character $ that does not occur elsewhere in t.
Hence, they observe a general correspondence of the suffixes of t and the leaves of the suffix tree.
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Tnl −→ε =←−εr





















�
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b

a

9

c

b

−−→cba =←−−abc r

?
a

	a−→a =←−arJJ
J

J
J

J
J

J
Ĵ

d

b

a

z

d

b

−−→dba =←−−abdr

T−1
nl −→εr

?

a

−→ar

�

b

c

−−→abcr U

b

d

−−→abdr

Figure 2.3: An A+-tree Tnl with suffix links and its suffix link tree T−1
nl which is not an

A+-tree.

2.2.3 Suffix Link

Important for the efficient construction of suffix trees and several applications is an additional
kind of edges which lie somewhat orthogonally to the original tree structure. While these
“suffix links” were first introduced by [McC76] only for suffix trees, like [GK94a] we define
them more generally for A+-trees:

Definition 2.4 (Suffix Links)

Let −−→aw be a node in an A+-tree T . The suffix link of −−→aw is the edge −−→aw ≺·········· −→v where
v is the longest suffix of w such that −→v is also a node in T .9 For distinction we will print
suffix links with dotted lines.

Suffix link −−→aw ≺·········· −→v may be labeled with the characters that are removed from node
−−→aw = −→uv to node −→v in reverted order: −→uv

u−1

≺·········· −→v . 2

Remarks10 on Definition 2.4

1. Suffix links play an important role in the efficient construction of suffix trees whose
most efficient versions are [McC76] and [Ukk93]:

“All clever variations of subword trees are built in linear time by resorting
to similar properties.” [Apo85]

2. The suffix links of an A+-tree T themselves form a tree, the suffix link tree of T ,
denoted T−1. In general the suffix link tree is not an A+-tree, as the example T−1

nl in
Figure 2.3 shows.

3. In an atomic suffix tree, all suffix links are atomic. In a compact suffix tree, the suffix
links of internal nodes are atomic.

9Compared to the definition in [GK94a], our suffix links are in the opposite direction so that they form
a tree without having to be turned. Nevertheless, we will say that the suffix link “starts” at node −−→aw and
“ends” at node −→v .

10From [GK94a].
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Tnd −→ε =←−εr
�

�
�

�
�

��

b

a

−→ba =←−ab r
A
A
A
A
A
AU

c

a

−→ca =←−acr
Figure 2.4: An A+-tree Tnd for which a dual A+-tree does not exist.

2.2.4 Duality of A+-trees

This section introduces a general notion of duality for two A+-trees:

Definition 2.5 (Duality of two A+-trees)

Two A+-trees T1 and T2 are dual if for every node −→w in T1 there exists a node ←−w in T2 and
vice versa. 2

Remarks on Definition 2.5

1. Not for every A+-tree there exists a dual A+-tree. For example, an A+-tree that is
dual to the tree Tnd shown in Figure 2.4 would need to contain nodes

−→
ab and −→ac . An

A+-tree containing these two nodes, however, also contains the node −→a . But then it
can not be dual to Tnd because ←−a /∈ nodes(Tnd).

2. If there exists a dual tree for an A+-tree T then this is the suffix link tree of T .

The proof of the second remark will be given in Section 2.3.2 (Lemma 2.12) because the
argumentation will be easier with the notation introduced until there.

2.2.5 Duality of Suffix Trees

The duality properties described next are from [GK94a] where also the proof of Theorem
2.7 can be found.

Theorem 2.6 (Duality of Atomic Suffix Trees)

The dual A+-tree of an atomic suffix tree ast(t) always exists and equals the atomic reverse
prefix tree ast(t−1). 2

After the above remarks this is obvious since every t-word is represented by an explicit node
−→w in ast(t) and by an explicit node ←−w in ast(t−1).

For compact suffix trees only a weaker duality holds because in cst(t) not for every node −→w
there is a corresponding node ←−w in cst(t−1):

Theorem 2.7 (Weak Duality of Compact Suffix Trees)

The suffix link tree (cst(t))−1 of a compact suffix tree cst(t) is an A+-tree whose node set is
a subset of the node set of cst(t−1). Moreover, we have: ((cst(t))−1)−1 = cst(t). 2
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Figure 2.5: Two A+-trees S and P and their mutual extensions SP and PS.

This observation raises the question if there is a possibility to combine the efficiency of
compact suffix trees with the symmetric properties of dual trees. As we will see in Chapter 3,
affix trees are an elegant solution.

2.3 Bi-Trees

In spite of its name, strictly spoken the affix tree is not a tree but a special case of a bi-tree,
a graph formed by combination of two trees. Bi-trees will now be introduced as the last of
our basic data structures.

2.3.1 Definition of the Data Structure

Definition 2.8 (Extension of A+-Trees)

Let T and U be two A+-trees. The U-extension of T , denoted TU , is the A+-tree that is
obtained from T if one introduces in T an explicit node −−−→wau whenever (−→w , au) is an implicit
node in T and ←−−−wau is an explicit node in U . 2

Figure 2.5 shows two A+-trees S and P and their mutual extensions SP and PS.
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Figure 2.6: The reverse union S
⋃̃

P of the two A+-trees S and P from Figure 2.5.

Remarks on Definition 2.8

1. The set of strings represented by an A+-tree remains unchanged upon extension.

2. Atomic A+-trees are invariant upon extension because they do not contain implicit
nodes.

Definition 2.9 (Reverse Union of two A+-trees, Bi-tree)

Let S and P be two A+-trees. The reverse union of S and P , denoted S
⋃̃

P , is defined as
follows:

1. S
⋃̃

P contains all nodes of SP and PS with the constraint that a node −→w ∈ nodes(SP )

is identified with a node ←−w ∈ nodes(PS) yielding a node −→w =
←−−
w−1:11

nodes(S
⋃̃

P) = nodes(SP ) ∪̃ nodes(PS),

where

A ∪̃ B = {−→w =
←−−
w−1|−→w ∈ A ∧←−w ∈ B}

∪ {−→w |−→w ∈ A ∧←−w /∈ B} ∪ {
←−−
w−1|←−w ∈ B ∧ −→w /∈ A}.

2. S
⋃̃

P inherits all edges of SP and PS:

s-edges(S
⋃̃

P) = edges(SP ),

p-edges(S
⋃̃

P) = edges(PS).
2

Figure 2.6 shows the reverse union S
⋃̃

P of the A+-trees S and P from Figure 2.5. s-edges
are printed as solid lines, p-edges are printed as dotted lines.

11Here a little asymmetry regarding S and P is introduced in the notation: A node −→w ∈ nodes(SP )
remains −→w in S

⋃̃
P whereas ←−w ∈ nodes(PS) is turned into

←−−−
w−1. This, however, is only an artifact due to

the notation. The structure of S

⋃̃
P is in perfect symmetry with regard to S and P .

11



Terminology:

• The bi-colored, rooted multigraph with edge labels from A+ formed this way is called a
bi-tree12, the node −→ε =←−ε is called the root of S

⋃̃
P , short root(S

⋃̃
P), and |nodes(S

⋃̃
P)|

is the size of S
⋃̃

P , short |S
⋃̃

P |.

• The subgraph of S
⋃̃

P consisting only of s-edges is identical to SP and is called the
s-subtree (of S

⋃̃
P). It represents the same strings as S:

s-words(S
⋃̃

P) = {w ∈ A∗|−→w ∈ nodes(S
⋃̃

P)} = s-words(S).

Similarly, the subgraph of S
⋃̃

P consisting only of p-edges equals PS and is called the
p-subtree (of S

⋃̃
P). It represents

p-words(S
⋃̃

P) = {w ∈ A∗|←−w ∈ nodes(S
⋃̃

P)} = p-words(P ).

Hence, the property w ∈ s-words(T ) ⇐⇒ w−1 ∈ p-words(T ) of A+-trees in general
does not hold for bi-trees (but for dual bi-trees that we will define in the next section).

• Based on these two A+-trees that are contained in S
⋃̃

P we define the terms leaf in the
s-/p-subtree and internal branching/non-branching node in the s-/p-subtree for bi-trees
in the obvious way.

• In T = S
⋃̃

P we have two different types of reference pairs:

– For w ∈ s-words(T ) we call (−→v , u) an s-reference pair of w if and only if −→v ∈
nodes(T ) and w = vu.

– For w−1 ∈ p-words(T ) we call (←−u , v) a p-reference pair of w if and only if ←−u ∈
nodes(T ) and w = vu.

The terms canonical s-/p-reference pair and s-/p-location (s-locT (w), p-locT (w)) are
defined in the obvious way following the definition of these terms for A+-trees.

• As for A+-trees we have for bi-trees: On the path from the root to a node −→w following
s-edges one finds only and all the nodes −→v in S

⋃̃
P that represent prefixes v of w.

Similarly, following p-edges from the root to node ←−w one finds only and all the nodes
in ←−u in S

⋃̃
P for which w = u.

• The atomic and compact bi-tree are defined in a similar way as for A+-trees: A bi-
tree that only contains atomic edges is called an atomic bi-tree, a bi-tree that (with
the possible exception of the root) does not contain internal nodes that are branching
neither in the s- nor in the p-subtree is called a compact bi-tree.

12This term, not to be confused with a binary tree, has already been used by Weiner [Wei73] for the dual,
atomic variant of our structure.
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2.3.2 Duality of Bi-Trees

Definition 2.10 (Dual Bi-Tree)

A bi-tree S
⋃̃

P is called dual if each node of S
⋃̃

P is both a node in the s-subtree and in the
p-subtree of S

⋃̃
P . 2

The connection between the duality of bi-trees and the duality of A+-trees is given by the
following theorem:

Theorem 2.11 (Equivalence of Dualities)

S
⋃̃

P is dual ⇐⇒ SP and PS are dual A+-trees.

2

Proof

S
⋃̃

P is dual ⇐⇒ each node −→w =
←−−
w−1 ∈ nodes(S

⋃̃
P) is a node both in

the s- and in the p-subtree of S
⋃̃

P

⇐⇒ −→w ∈ nodes(SP ) if and only if ←−w ∈ nodes(PS)

⇐⇒ SP and PS are dual.

2

Now it is easy to see the correctness of the above unproved second remark on Definition 2.5,
namely that the A+-tree that is dual to a given A+-tree T equals the suffix-link tree of T ;
or equivalently in the terminology of bi-trees:

Lemma 2.12 (Dual Tree is Suffix Link Tree)

The p-Edges of a dual bi-tree S
⋃̃

P are the suffix links of the s-subtree in S
⋃̃

P and vice versa.
2

Proof

Assume a node −−→aw ∈ nodes(S
⋃̃

P). Let u be the longest suffix of w such that −→u is a node in

S
⋃̃

P as well. We show that S
⋃̃

P contains a p-edge that starts at node −→u and ends at node
−−→aw : −→u a

··········� −−→aw ∈ p-edges(S
⋃̃

P).

1. Due to the duality of S
⋃̃

P , −−→aw is a node in the p-subtree of S
⋃̃

P . Hence, there exists
a p-path from the root to node −−→aw .

2. Obviously, node −→u lies on this path because u is a suffix of aw.

3. It remains to be shown that there can not be another node between −→u and −−→aw on
this path. Such a node would be named −→zu with w = .zu, z ∈ A+, which is in
contradiction to the assumption that u is the longest suffix of w that is represented by
an explicit node in S

⋃̃
P .

13



Due to its duality, S
⋃̃

P does not contain nodes that only exist in its p-subtree and hence
there also can not be any additional p-edge that is not the suffix link of some node −−→aw .

Due to the symmetry of the bi-tree this proof also holds if the s- and the p-subtree are
exchanged. 2

Hence a bi-tree can also be seen as an A+-tree with labeled suffix links. In this “suffix tree
view” a p-edge • ··········� k will also be called the suffix link of node k.

14



Chapter 3

Affix Trees

3.1 Definition of the Data Structure

The terms and concepts introduced in Section 2 build the basis of the data structure intro-
duced next:

Definition 3.1 (Affix Tree)

The reverse union of a suffix tree and a reverse prefix tree of the same text t is called an
affix 1 tree of t. 2

The s-subtree of an affix tree is a suffix tree, the p-subtree is a reverse prefix tree of t. Hence,
the s-edges of an affix tree are also called suffix (tree) edges and the p-edges are also called
prefix (tree) edges.

Remarks on Definition 3.1

1. The normal forms of affix trees under edge-splitting/edge-contraction are:

• the atomic affix tree of t, short aat(t), which is the reverse union of ast(t) and
ast(t−1). It contains the same nodes as the atomic suffix tree of t.

• the compact affix tree cat(t) which is the reverse union of cst(t) and cst(t−1).
Except for the root each internal node is branching in the suffix- or in the prefix-
subtree.

In Figure 3.1 the atomic (left) and the compact affix tree (right) of t = aababa are
shown, as well as an intermediate one (center).

2. As for compact suffix trees, we find important correspondences between substrings of
the text and the nodes in the compact affix tree:

The compact affix tree cat(t) contains

I. an internal branching node in the suffix-subtree for every right-branching t-word,

II. a leaf in the suffix-subtree for every non-nested suffix of t,

1In linguistics, “affix” is a generic term that denotes substrings of a string including prefixes and suffixes.
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Figure 3.1: Three affix trees of t = aababa.

III. an internal branching node in the prefix-subtree for every left-branching t-word,
and

IV. a leaf in the prefix-subtree for every non-nested prefix of t.

Note that it is possible that some of the nodes are branching both in the suffix- and
in the prefix-subtree (nodes of types I. and III.) or are leaves in both subtrees (types
II. and IV.) as the compact affix tree of Figure 3.1 shows:

node in cat(aababa) −→ε −→a −→aa −−→
aab

−−−→
aaba

−−−−→
aabab

type I./III. I./III. IV. IV. IV. IV.

−−−−−→
aababa

−→
ab

−−→
aba

−−−−→
ababa

−−−→
baba

II./IV. III. III. II. II.

However, it is not possible that the same node is both an internal branching node
in one subtree and a leaf in the other subtree. This would correspond to a right- or
left-branching t-word that is a non-nested suffix or prefix at the same time, obviously
an impossible situation.

To obtain disjoint types one has to introduce two additional classes:

V. doubly branching nodes for simultaneously right- and left-branching t-words;

VI. double-leaves for t-words that are simultaneously non-nested suffixes and non-
nested prefixes of t.

Obviously, only the complete string t can be of type VI.

3. A compact affix tree may contain non-atomic edges that lead to internal nodes. An

example is the edge −→a ba
··········�

−−→
aba in cat(aababa), Figure 3.1 (right). In the suffix

tree view this means that cat(t) may contain internal nodes that have a non-atomic
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suffix link. It is easy to see, though, that such a node −−→aw can not be branching in the
suffix-subtree of cat(t): Otherwise (due to I.) aw would be a right-branching t-word,
and so would be w, implying that the suffix link of −−→aw is atomic because w is the
longest suffix of aw that is represented by an explicit node: −−→aw

a
≺·········· −→w .

A fundamental property of affix trees that underlines their symmetric structure is expressed
by the following theorem:2

Theorem 3.2 (Duality of Affix Trees)

Affix trees are dual. 2

Proof

Let S be a suffix tree and P be a reverse prefix tree of the same text t. We show that SP

and PS are dual, i.e., −→w ∈ nodes(SP ) ⇐⇒ ←−w ∈ nodes(PS).

“=⇒” Let −→w ∈ nodes(SP ).
⇒ w ∈ s-words(SP ) = s-words(S) = t-words = p-words(P ), w−1 hence

is represented in P as an explicit or implicit node.
⇒ 2 cases: 1. ←−w is an explicit node in P ;

⇒ ←−w is explicit in PS as well;

or 2. w is represented by an implicit node in P ;
⇒ −→w is an explicit node in S, otherwise −→w would not

be an explicit node in SP ;
⇒ ←−w is made explicit during the S-extension of P

yielding PS.

“⇐=” The opposite direction can be shown in exactly the same way. 2

3.2 Space Usage of Affix Trees

In this section we study the size of the extreme cases of affix trees, aat and cat. The
asymptotic results given first are a simple consequence of the definition of affix trees. The
discussion of the exact maximal space usage of cat that follows is somewhat more elaborate.
The section finishes with a few remarks on the expected size of affix trees over random texts.

3.2.1 Asymptotic Space Usage

In the reverse union of two A+-trees the number of nodes is at most added. Hence, for a
text of size n = |t| we get the following asymptotic bounds for the size of affix trees:

aat(t) is the reverse union of ast(t) and ast(t−1) and hence contains O(n2) nodes,

cat(t) is the reverse union of cst(t) and cst(t−1) and hence contains O(n) nodes.

2Motivated by this one might consider to completely abstract from the terms prefix and suffix in favor of
a more general terminology (expressible, for example, by the terms fix and antifix ). This, however, would
reduce clarity and in examples one would have to instantiate these terms as fix = suffix and antifix = prefix
(or vice versa) anyway.
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In general, bi-trees may contain nodes that are only reachable on one path. Each node in an
affix tree, however, is contained in the suffix- and in the prefix-subtree. Except for the root,
at each node ends exactly one suffix-edge and one prefix-edge. Hence, each affix tree with p
nodes contains exactly 2p− 2 edges, so the edges of cat(t) require O(n) space as well. This
includes edge labels because, as for suffix trees, edge labels can be stored in constant space
as will be shown in Section 3.3.2.

In the following discussion of the exact space usage hence we can focus on the number of
nodes in the affix tree.

3.2.2 Maximal Space Usage of Compact Affix Trees

While in a complexity analysis asymptotic values are of main interest, for the practical
implementation of an algorithm it is of a similar importance to know the constant factor
that upper-bounds the worst case. This will be determined for the more interesting case
of the compact affix tree whose size, as shown above, increases only linearly with the text
length.

First recall that the compact suffix tree of a text t of length n > 1 contains at most n − 1
nodes. An example is the text t = an−1$ whose compact suffix tree contains n leaves and
n− 1 branching internal nodes.

For symmetry reasons we get the same number for the compact reverse prefix tree. By the
reverse union of the two trees this value can maximally double: 4n− 2. At least two nodes,

however, are merged, namely the root and the node
−→
t =

←−−
t−1. For n > 1, hence, 4n − 4 is

an upper bound on the number of nodes of cat .

We can not give an example where this value is exactly reached but we will discuss a text
whose relative deviation from the node number 4n becomes arbitrarily small as the text
length increases, showing that the constant factor is 4.

Consider an alphabet Ak of size k,

Ak = {a1, a2, a3, . . . , ak},

and the text
tk = a1(a2a3 . . . ak−1)

kak.

The length of this text is n = |tk| = 1 + k(k − 2) + 1 = k2 − 2k + 2.

To find the exact number of nodes of cat(tk), we have listed in Table 3.1 all six possible types
of tk-words that correspond to the classes I. – VI. of nodes in the compact affix tree cat(tk).
The center column shows these strings using the example k = 6, A6 = {a, b, c, d, e, f},
t6 = a(bcde)6f. The number of words for arbitrary k is given in the right column of
Table 3.1.

In total cat(tk) contains

|cat(tk)| = 2(k − 3)(k − 1) + 2(n− 1) + (k − 1) + 1

= 2(k2 − 4k + 3) + 2(k2 − 2k + 2)− 2 + (k − 1) + 1

= 4k2 − 11k + 8
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node type k = 6, n = |tk| = 26 in general

I. internal node in the suf-
fix-subtree (right- but not
left-branching tk-word)

abcdebcdebcdebcdebcdebcdef

· · ·
(k − 3)(k − 1)

II. leaf in the suffix-subtree
(non-nested suffix that is
not a non-nested prefix of
tk)

abcdebcdebcdebcdebcdebcdef

· · ·
n− 1

III. internal node in the
prefix-subtree (left- but not
right-branching tk-word)

abcdebcdebcdebcdebcdebcdef

· · ·
(k − 3)(k − 1)

IV. leaf in the prefix-sub-
tree (non-nested prefix that
is not a non-nested suffix of
tk)

abcdebcdebcdebcdebcdebcdef

· · ·
n− 1

V. doubly branching node
(both right- and left-
branching tk-word)

abcdebcdebcdebcdebcdebcdef
k − 1

VI. double-leaf (both non-
nested suffix and non-
nested prefix)

abcdebcdebcdebcdebcdebcdef
1

Table 3.1: The nodes of cat(tk) for k = 6 (center column) and in general (right column).
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Figure 3.2: The size of cat(t) for random texts t versus the text length n for alphabets of
different size |A|.

nodes.

For large k the relative deviation from 4n = 4k2 − 8k + 8 becomes arbitrarily small:3

|cat(tk)| − 4n

4n
=

−3k

4k2 − 8k + 8
=

− 3
k

4− 8
k

+ 8
k2

−→
k→∞

0.

3.2.3 Expected Space Usage

In the previous section we have considered the example tk where the fraction |cat (tk)|
n

for
large k asymptotically approaches 4.

In contrast, for random4 texts one finds that for large alphabets the tree size decreases (see
Figure 3.2). The text length does not have an influence on this phenomenon, which is not
surprising.

To explain the dependence on the alphabet size that one finds similarly for suffix trees (see
Figure 3.3), we make three assumptions:

1. Due to [AS92], the expected size of the longest repeat in a text t ∈ An is of the order
O(log n). Hence we can ignore the effect of nested suffixes and assume that the number
of leaves in the suffix tree is n as for texts that end with a character $ not occurring
elsewhere in t.

2. The branching structure of internal nodes depends on k, the alphabet size. In what
follows we will assume a constant value q ≥ 2. (As we will see, the exact value is
irrelevant for qualitative results.)

3The notation q −→
k→∞

0 is short for lim
k→∞

(q) = 0.
4For the Bernoulli distribution used here, see e. g. [AS92].
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3. For random texts, the suffix tree is balanced such that all leaves have the same depth.

Under these assumptions, a compact suffix tree of depth d (i. e., with d + 1 levels i = 0 . . . d)
contains in level i exactly qi nodes, and hence in total

d−1∑
i=0

qi =
qd − 1

q − 1
internal nodes and qd leaves.

This yields the following ratio for internal nodes and leaves:

qd − 1

q − 1
· 1

qd
=

1− 1
qd

q − 1
−→
d→∞

1

q − 1
.

For small alphabets (q ≈ 2) one hence expects a fraction of 1 while for larger alphabets
(q → ∞) this fraction asymptotically approaches 0. This corresponds to a node number
of 2n for small alphabets. For large alphabets the number of nodes comes close to 1n, a
behavior that corresponds well to the empirical results shown in Figure 3.3.5

Qualitatively, this behavior should carry over to affix trees because for random texts |cat(t)|
should be proportional to |cst(t)|. Comparing Figures 3.2 and 3.3 quantitatively, a factor
between 1.6 and 1.8 seems appropriate.

3.3 Representation of Affix Trees

In this section we describe how affix trees can be stored efficiently. First, we compare two
general representation techniques for A+- and bi-trees6, and then we discuss a special con-

5Blumer, Ehrenfeucht and Haussler [BEH89] who performed a similar quantitative study obtain similar
results.

6A similar comparison for suffix trees has been carried out in [CS85].
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vention that is important for an efficient implementation of the online construction algorithm
for compact affix trees presented in Chapter 4.

3.3.1 Edge vs. Node Labels

A standard implementation of A+-trees is formalized by the following recursive type defini-
tion:7

AplusTree a = Node [(Label a,AplusTree a)].

An A+-tree is represented by a root node and a list of labeled edges leading to subtrees of
the same type. Leaves are nodes with an empty edge/subtree list. Here, edge labels are
denoted in an abstract way as (Label a). We will describe below how these labels can be
represented using only constant space per label.

The corresponding type definition of bi-trees contains two lists of edges, one for suffix edges
and one for prefix edges:8

BiTree a = Node [(Label a, BiTree a)] [(Label a, BiTree a)].

Alternatively, an A+-tree can be represented with node labels

AplusTree2 a = Node (Label a) [AplusTree2 a],

i. e., a tree with root node −→w is represented by the string w, again denoted as (Label a) in
an abstract way, and the list of its subtrees. For bi-trees two subtree lists are necessary:

BiTree2 a = Node (Label a) [BiTree2 a] [BiTree2 a].

Comparing these two representations, one finds that the second variant is slightly more
powerful: Given the labels of two neighboring nodes it is easily possible to compute the edge
label of the connecting edge

−→u −→ −→uv ⇒ • v−→ •,

while without knowledge of the position in the tree, the opposite is not possible. On the
other hand, the representation by node labels is restricted in the sense that it can not be
applied to arbitrary edge-labeled graphs.

We now compare the space usage of the two representations. As noted above, we will assume
that every (Label a) can be stored using the same, constant space.

For A+-trees the difference between the two representations is negligible. They contain
roughly the same number of edges and nodes.

For bi-trees this is different: Here we have one or two edges ending at each node other than
the root. In particular affix trees, like all dual bi-trees, contain almost twice as many edges
as nodes. Hence, for affix trees node labels are the preferred representation. That does not

7We use the syntax of the lazy functional programming language Haskell [FHPW92].
8Due to the symmetry of the data structure it is not said which of the two lists represents the suffix

edges and which list represents the prefix edges. We do not need to make a choice here but in an actual
implementation one has to decide and fix the order, of course.
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Figure 3.4: cat(aababa) with node labels and index pairs.

mean, though, that in total we save half of the memory: edges still have to stored, but
without their label. Nevertheless, in our implementation in the programming language C
[KR78] that we describe later, we gain a noticeable space reduction of about 40% (128 rather
than 224 bytes per node).

3.3.2 Node Labels

One assumption in the discussion of the space usage above was the possibility to store edge
and node labels of type (Label a) in constant space. This is possible for suffix trees and for
affix trees because for any node −→w ∈ nodes(T ), w is a t-word and hence the label of node
−→w can be represented by a pair of indices (Label a) = (l, r) if t = lwr .

This notation is extended in [Ukk93] where edges that end at a leaf of the suffix tree are
represented as so-called open edges, i. e., the right index r = |t| remains open, which is
symbolized by an infinity-sign: (l, |t|) = (l,∞).

This convention can be applied to node labels in an affix tree T as well: A leaf −→w in the
suffix-subtree of T is represented as an open suffix leaf by the index pair (l, +∞) if t = lw|t|,
and a leaf ←−w in the prefix-subtree of T is represented as an open prefix leaf by the index
pair (−∞, r) if t = 0w

−1
r .

In such cases we extend our previous notation for node labels, −→w (←−w ), by three dots yielding
−−→w... (←−−...w). Figure 3.4 shows cat(aababa) with node labels and index pairs.

3.4 Neuralgic Points in the Affix Tree

3.4.1 Active Suffix and Active Prefix

One location in the suffix tree is of main importance during the online construction [Ukk93],
the active point. This point moves up and down the tree, and its role is described in [GK94a]
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as follows:

“If t is to be extended to the right by another letter, changes in the suffix tree
(if any) will start at this point.”

The active point is the location of the active suffix of t in cst(t):

Definition 3.3 (Active Suffix, Active Prefix)

The active suffix of a text t, denoted α(t), is the longest nested suffix of t. The active prefix
of a text t, denoted α−1(t), is the longest nested prefix of t. 2

A simple, frequently used property of the active suffix/prefix is expressed by the following
lemma:

Lemma 3.4 (Active Suffix, Active Prefix)

If the active suffix α(t) is not left-branching in t, then it is a prefix of t.
If the active prefix α−1(t) is not right-branching in t, then it is a suffix of t. 2

Proof

Let t = xu, u = α(t), and let u be not left-branching in t. Because u is the active suffix

of t, u must occur a second time in t =
{

xu
u.

}
. The letter to the immediate left of u

in the lower row can not be an x (if so, xu would be the active suffix of t), nor can it be a
different letter y 6= x (if so, u would be left-branching). Hence only ε is possible to the left

of u, i. e., u is a prefix of t =
{

xu
u.

}
, and u does not occur a second time in t.

The symmetric assertion for the active prefix can be shown similarly. 2

3.4.2 Active Suffix Leaf and Active Prefix Leaf

For the construction of compact affix trees, another location in the tree turns out to be
important as well, the active suffix leaf/active prefix leaf.9

Taking a look at a compact affix tree T = cat(t) it is easy to see that the p-path from node−→
t to the root consists of a number of atomic suffix links that one after the other connect the
leaves of the suffix-subtree of T . These suffix-leaves represent shorter and shorter non-nested
suffixes of t.

Definition 3.5 (Active Suffix Leaf, Active Prefix Leaf)

The leaf in the suffix-subtree of cat(t) that represents the shortest non-nested suffix of t is
called the active suffix leaf of cat(t). Similarly, the leaf in the prefix-subtree of cat(t) that
represents the shortest non-nested prefix of t is called the active prefix leaf of cat(t). 2

The active suffix leaf in cat(aababa) (Figure 3.4) is
−−−−→
baba... . The active prefix leaf is −−−→...aa .

9Actually, the active suffix leaf is important for the construction of suffix trees as well, but only if suffix
links of the leaves are considered which usually is not the case.
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Remarks on Definition 3.5

1. The suffix link of the active suffix leaf ends at the node that represents the longest
nested suffix s of t for which −→s is an explicit node in cat(t).

2. If the active suffix α(t) is represented by an explicit node
−−→
α(t) in cat(t), then s = α(t)

and the suffix link of the active suffix leaf is atomic.

3. The active suffix leaf is the only leaf in the suffix-subtree of cat(t) whose suffix links may
be non-atomic. This is the case if and only if the active suffix α(t) is not represented
by an explicit node.

Clearly, symmetric properties hold for the active prefix leaf.

3.5 Construction of Compact Affix Trees

In this thesis we suggest three ways for the construction of compact affix trees. Two of these
are briefly described in Sections 3.5.1 and 3.5.2, the third approach is extensively studied
and developed to a concrete algorithm in Chapter 4.

3.5.1 Construction of Compact Affix Trees by Edge Contraction

The algorithm described here originally was developed to quickly have a method at hand to
automatically construct affix trees, so as to avoid errors and to minimize effort for the manual
construction. To this end it seemed suitable to use a functional programming language that
on the one hand results in relatively slow and memory intensive programs, on the other hand
allows much quicker program development.10

The algorithm is very simple: As noted in Section 3.1, the compact affix tree of a text
t, among all affix trees of t is the normal form under edge contraction. Hence, given an
arbitrary affix tree of t, for example aat(t), it is possible to construct cat(t) by elimination
of all internal nodes that are branching neither in the suffix- nor in the prefix-subtree. The
atomic affix tree aat(t) as the starting point is a suitable choice because it contains the same
nodes as ast(t) for which simple construction methods exist.11

On the other hand this method in the worst case requires quadratic time and space because
the intermediate structure of the atomic affix tree has to be constructed completely. Never-
theless, the requirements for a prototypic method for testing the final system are perfectly
fulfilled.

10Indeed, the ideas described here have been implemented in Haskell during one afternoon while the
development of the methods described in the next chapter and their implementation in C took about two
months.

11See for example [GK94b].
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3.5.2 Construction of Compact Affix Trees by Reverse Union of
Suffix and Reverse Prefix Tree

The second approach to construct compact affix trees immediately follows Definition 3.1:
First S = cst(t) and P = cst(t−1) are constructed. Then these trees are mutually extended
yielding SP and PS. Finally cat(t) is constructed by merging the edges of one of these two
trees into the other one.

While it is well known that the first step only takes O(n) time, it seems not so easy to see
how the other two steps can be implemented in linear time. At this point we are unable to
finally answer the question if this approach can be formed into a method for the linear-time
construction of cat(t).

3.6 Applications of Affix Trees

Several applications of suffix trees12 are described in [Apo85]. Since affix trees completely in-
clude the suffix tree structure, these methods can be carried out with affix trees as underlying
data structure as well.

However, it is not obvious that also the time complexity remains the same. As shown in
Section 3.1, the suffix-subtree of a compact affix tree is not a compact suffix tree and some
suffix links are non-atomic. This might lead to an increase in the number of steps one has to
go even if the paths traversed in the suffix tree are the same. Such a case will be discussed
in detail in Section 5. However, the following remark can be made here:

In all cases where paths from the root into the affix tree are traversed spelling the characters
of a pattern, this does not lead to an increase in worst case time complexity as compared to
the corresponding path in the suffix tree because the path from the root to node −→w in the
suffix tree as well as in the affix tree is of length |w|.
This alleviates the drawback described above because many of the applications described in
[Apo85] traverse only paths top-down into the tree. These include:13

• recognizing if w occurs in t in O(|w|) time;

• finding the first/last occurrence of w in t in O(|w|) time;

• finding the weight of a string w in a weighted vocabulary in O(|w|) time;

• finding all repeats of a text in O(output) time.

Beyond these applications that are directly inherited from suffix trees, the symmetric struc-
ture of affix trees can also be used for more flexible applications. At this point we refer to the
program bigrep that was developed as part of this thesis and that is described in Chapter 6.

12To be precise, Apostolico considers the subword tree of text t ∈ A∗, the suffix tree of the text appended
by an additional character $ not occurring in A.

13The complexity measures given here only account for the time of the mentioned applications and not
for the time of the affix tree construction. Moreover, like [Apo85] we assume the alphabet size and hence
the time for finding at each internal node the edge leading to the desired successor node to be constant. In
practice this can be achieved by using suitable implementation techniques (edge list as array, hashing, etc.).
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This program allows to perform exact string matching in a text that can be extended online
both to the left and to the right, an application that is impossible with methods that only
use suffix trees.
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Chapter 4

Online Construction of Compact Affix
Trees

The method for the online construction of compact affix trees presented in this chapter can
be seen as an extension of Ukkonen’s algorithm for the construction of compact suffix trees
[Ukk93]1, called ukk in the following. The affix tree, like the suffix tree in ukk , is constructed
online: Starting with the affix tree of the empty text, cat(ε), the text is read character by
character, and with each new character a the existing affix tree cat(t) is extended yielding
the affix tree of the elongated text cat(ta).2

While ukk is restricted to the case where t is extended to the right, here it will be possible
to extend the text to the left as well and hence to construct cat(at) from cat(t). This way
the construction can start at any position in the text and extensions are possible in both
directions.

The main part of the following discussion will deal with the step from cat(t) to cat(ta),
though. The opposite direction cat(t) → cat(at) is symmetric and hence does not need a
separate treatment if certain conditions are fulfilled.

The algorithm is presented in a top-down manner. First we examine the differences between
cat(t) and cat(ta) on an abstract level. Section 4.2 then develops the resulting consequences
for a procedure that converts cat(t) into cat(ta). In Section 4.3 the results are summarized
giving a formal algorithm. Section 4.4 finally discusses the aspects that have to be taken
into consideration when the method is applied bidirectionally.

4.1 Differences between cat(t) and cat(ta)

In this section we analyze the differences between cat(t) and cat(ta) statically (i. e., without
operational aspects).

1For comparisons the reader might prefer the presentation in [Kur95] whose notation is more similar to
the one used here.

2In this and in the next chapter, t always denotes the text read so far (for which the affix tree is already
constructed) and a denotes the new character by which the text is extended. The length of t is n.
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We discuss how the active suffix and the active prefix change, which nodes are added and
which nodes are removed. From these changes, the necessary modifications of the edges and
the active leaves are easily derived so that they do not need to be considered separately.

Some of these results are identical to corresponding ones for compact suffix trees and can be
carried over from ukk . Yet, several properties are new and will be proven in the following.

4.1.1 Changes of the Active Suffix and the Active Prefix

We first have a look at the active suffix α(ta) as compared to α(t). As explained in detail
in [GK94b], α(ta) is a suffix of α(t)a. Hence, the active suffix can lengthen by at most one
character. On the other hand, it can shrink by several characters, at most by its whole
length which is the case if the new character a does not occur in t.

What are the possible changes of the active prefix, how can α−1(ta) look like as compared
to v = α−1(t)?

1. Obviously it is not possible that the active prefix shrinks because v is a nested prefix
of ta as well.

2. The active prefix can remain unchanged as the example t = aababa, a = b shows:
aababa→ aababab (the active prefix in both cases is underlined).

3. The active prefix can also increase as the example aababa → aababaa shows. This
elongation, however, can be by at most one character as is established in the following
theorem.

Theorem 4.13 (Elongation of the Active Prefix)

Let v = α−1(t). In the step t→ ta the active prefix increases by the character a if and only
if v (as a prefix of t) is followed by a and v simultaneously is a suffix of t:

α−1(ta) = va ⇐⇒ t =
{

va
.v

}
.

Otherwise the active prefix remains unchanged. 2

Proof

“=⇒” Given: (i) v is the active prefix of t.
(ii) va is the active prefix of ta = va a.

To show: t =
{

va
.v

}
.

1. t = va is an obvious consequence of (ii).

2. (i) ⇒ v is the longest nested prefix of t; va does not occur nested in t;
(ii)⇒ va is the longest nested prefix of ta; va occurs a second time in

ta, not as a prefix. This occurrence can only be as a suffix of ta
because this is the only place where t and ta differ: ta = .va

⇒ t = .v

3This is a formal version of the “beer theorem” by R. Giegerich and S. Kurtz, the first step towards affix
trees.
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“⇐=” Given: (i) v is the active prefix of t.

(ii) t =
{

va
.v

}
.

To show: va is the active prefix of ta.

(ii) ⇒ ta =
{

va a
.va

}
⇒ va is nested in ta, hence it is the active prefix if there is no longer

prefix that is nested in ta as well.
Assuming there is a longer prefix vaz for some z ∈ A+ that is
nested in ta implies that va is nested in t which is in contradiction
to (i).

In all other cases where t is not of the form t =
{

va
.v

}
, the active prefix remains unchanged

because

1. it can not shrink (see the first remark above),

2. an extension by another character b 6= a is impossible:

ta =
{

vb a
.vb

}
⇒ either t =

{
vb

v

}
⇒ a = b

or t =
{

vb
.vb

}
⇒ α−1(t) = vb ,

3. and an elongation by more than one character is impossible as well: assume α−1(ta) =
vzb, z ∈ A+, b ∈ A

⇒ ta =
{

vzb a
.vzb

}
⇒ t =

{
vzb
.vz

}
⇒ α−1(t) = vz

which is in contradiction to the assumption α−1(t) = v.

2

This theorem implies a number of further properties of the active points. The first of the
following two theorems describes a surprising relation between the active prefix and the
active suffix:

Theorem 4.2 (Relation of Active Prefix and Active Suffix)

If the active prefix lengthens in the step t → ta, then the new active prefix equals the new
active suffix:

α−1(ta) = α−1(t)a =⇒ α−1(ta) = α(ta).

2

Proof

Let v = α−1(t). Then

α−1(ta) = va
Theorem 4.1

=⇒ t =
{

va
.v

}
=⇒ ta =

{
va a

.va

}
.
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1. The suffix va of ta is nested in ta, hence α(ta) has the suffix va.

2. α(ta) can not be longer than va, otherwise α(ta) = zva for some z ∈ A+ implying

ta =

 va a
zva a

.zva

 ⇒ t =

 va
zva

.zv


which is in contradiction to the assumption that v (rather than va) is the active prefix
of t.

2

As the example ta = aaba shows, the reverse of Theorem 4.2 does not hold because here the
new active suffix equals the new active prefix (α(ta) = α−1(ta) = a) but the active prefix
was not extended in the step t→ ta (α−1(ta) = α−1(t) = a).

What follows are two theorems that describe the relation between the active points and
modifications of the strings represented in the affix tree:

Theorem 4.3 (Left-Branching Active Suffix)

If the new active suffix u = α(ta) is not represented by an explicit node in cat(t), then it is
a left-branching ta-word:

−→u /∈ nodes(cat(t)) =⇒ ta =
{

xu
yu.

}
, x 6= y.

2

Proof

Let u = α(ta), −→u /∈ nodes(cat(t)).

Assume that u is not left-branching in ta, hence

Lemma 3.4
=⇒ ta =

{
.u

u.

}
and no other occurrence of u in ta

=⇒ t = u and no other occurrence of u in t

which implies that u is a non-nested prefix of t and hence is represented by a prefix leaf in
cat(t). This is in contradiction to the assumption that −→u /∈ nodes(cat(t)) which proves the
theorem. 2

Theorem 4.4 (Nesting of a Prefix)

Every non-nested prefix w of t is a non-nested prefix of ta as well, except if w is the extended
active prefix, w = α−1(ta) = α−1(t)a. 2

Proof

Let w be a non-nested prefix of t: t = w and w does not occur a second time in t
⇒ ta = w a. Then we have:

1. w is a prefix of ta as well.
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2. The only possibility for w to be nested in ta is as a suffix of ta:

ta =
{

w a
.w

}
⇒ w = va for some v ∈ A∗

⇒ ta =
{

va a
.va

}
⇒ t =

{
va

.v

}
and w = va does not occur a second time in t (see above)

⇒ α−1(t) = v.

Hence w becomes a nested prefix of ta if it is of the form w = va, v = α−1(t), and t ={
va

.v

}
.

Due to Theorem 4.1 this is the case if and only if the active prefix lengthens:

w = va = α−1(t)a = α−1(ta).

2

4.1.2 Changes of the Node Set

In their description of the suffix tree nodes that are added in the step t→ ta, Giegerich and
Kurtz [GK94b] use the following term:

Definition 4.5 (Relevant Suffix)

A suffix sa of ta is called relevant if and only if s is a nested suffix of t and sa is a non-nested
suffix of ta. 2

This allows to describe the changes of substrings of types I. – IV. as defined in Section 3.1
which correspond to the different node types in a compact affix tree:4

I. Let w be a right-branching t-word.

a) Then w is a right-branching ta-word as well.

b) In addition, s is a new right-branching ta-word if sa is a relevant suffix of ta and
s was not already a right-branching t-word.

II. Let w be a non-nested suffix of t.

a) Then wa (rather than w) is a non-nested suffix of ta.

b) In addition, all relevant suffixes sa of ta are new non-nested suffixes of ta.

III. Let w be a left-branching t-word.

a) Then w is a left-branching ta-word as well.

4The changes in the suffix tree (cases I. and II.) are established in detail in [GK94b] using a similar
terminology as we use here. At those assertions of III. and IV. that are not obvious we refer to the respective
theorems of the previous section.
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b) In addition, the new active suffix u = α(ta) is a new left-branching ta-word if −→u
was not an explicit node in cat(t) (Theorem 4.3).

IV. Let w be a non-nested prefix of t.

a) Then w is a non-nested prefix of ta as well, except if w is the elongated active
prefix (Theorem 4.4).

b) In addition, the complete string ta is a new non-nested prefix of ta.

Note that in contrast to the online construction of suffix trees, due to (IV.a) it is possible that
cat(t) contains nodes that do no longer exist in cat(ta). An example is t = aababa, a = a:
The node −−−→...aa of cat(t) is removed in cat(ta) because the prefix aa that was non-nested in
t becomes nested in ta.

4.2 Operational Consequences

Next we assemble the observed changes in a suitable order such that an algorithm is obtained
that constructs the nodes of cat(ta) from the nodes of cat(t) .

In doing so, we keep the following in mind:

• The elongation of the non-nested suffixes (II.a) does not need to be performed explicitly
if the leaves are represented as “open leaves”.

• With this “automatic elongation” also the node
−→
ta is constructed, accounting for

(IV.b).

• On the other hand, the non-nested prefix t gets lost as an explicit node, such that
−→
t

has to be inserted again if t is a non-nested prefix of ta as well. This is the case if and
only if ta 6= an+1.

However, for the implementation of (IV.a) the node −→va has to be removed anyway if
the active prefix v = α−1(t) increases to va = α−1(ta) (which is the case for ta = an+1),
and hence this step can be split: First, always the node

−→
t is inserted, and later the

node −→va (in this case
−→
t ) is removed.

In summary, we have the following algorithm:5

Algorithm 4.6 (cat(t)→ cat(ta))

1. Lengthen the text (and thereby implicitly lengthen every leaf in the suffix tree) and
insert node

−→
t (II.a, IV.b).

2. Insert for every relevant suffix sa of ta an internal node −→s if such a node does not yet
exist (I.b) and a leaf −→sa in the suffix-subtree (II.b).

3. Insert the node
−−−→
α(ta) if it does not yet exist (III.b).

5Items (I.a) and (III.a) do not need to be considered explicitly because they do not describe a change in
the node set.
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Figure 4.1: Elongation of the text (T1a → T1b) and insertion of the node
−→
t (T1b → T1c) for

t = aababa, a = a.

4. If the active prefix lengthens, remove the node
−−−→
α(ta) =

−−−−−→
α−1(ta) (IV.a together with

Theorem 4.2).

What follows is a detailed description of the individual steps. We will try, though, not to
lose the global view or become overparticular.

We describe the necessary changes to the nodes of the tree and how the relevant locations
are found. It will not be necessary to talk about node labels because the label (l, r) of an
inserted node −→w always can be determined easily.

For the individual modifications of the tree we define functions that will be used in Section 4.3
for a concluding formulation of the online construction algorithm.

4.2.1 Elongation of the Text and Insertion of Node
−→
t

The first step of Algorithm 4.6 consists of two parts that we consider here separately: the
elongation of the text t yielding ta and the following insertion of node

−→
t . These steps are

illustrated in Figure 4.1 for the example t = aababa, a = a.

Elongation of the Text

Like in procedure ukk the automatic elongation of all leaves in the suffix tree destroys the
structure of the tree. While in ukk an A+-tree remains, what we get here is not even a
bi-tree. This becomes apparent at the active suffix leaf whose path-label changes in the
suffix-subtree while its position in the prefix-subtree remains unchanged.

However, the structure remains a bi-tree if at the time of elongating the text all suffix-leaves
are removed from the prefix subtree. This is done by deleting the suffix link of the active
suffix leaf. Now, ignoring the prefix edges that connect the leaves in the suffix-subtree one
again has a bi-tree that we denote by T1b, see Figure 4.1. The active suffix leaf

−−−−−→
babaa...

that was removed from the prefix-subtree is indicated by an additional circle re.
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In Step 3 of Algorithm 4.6 where after insertion of the node
−−−→
α(ta) the active suffix is

represented by an explicit node, the leaves of the suffix-subtree are re-attached by inserting

an atomic prefix edge from node
−−−→
α(ta) to the node that then is the active suffix leaf.

Insertion of the Node
−→
t

In general, when inserting a node −→w =
←−−
w−1 into a bi-tree T , one first has to test if w is

already an s-word and if w−1 is already a p-word in T . If that is the case, then w is already
represented by implicit nodes in T . To make it explicit, one has to split the edges that
“contain” w and/or w−1, respectively.

Tr

?r

r

?pChildr
sLoc
= s-locT (w)

b p-locT (w−1)b −→

T ′r
A
A
AU newNode = −→w =

←−−−
w
−1r

�
�

��sChild r

r
�r

U pChildr
insert iNode(T, sLoc, pChild)⇒ (T ′, newNode)6

For the case where both w is an
s-word and w−1 is a p-word in T ,
we define the function insert iNode
(see box). This function splits the
edge “containing” the implicit node
sLoc and the prefix edge that ends
at node pChild and then inserts the

new node −→w =
←−−
w−1. Moreover, we

assume that function insert iNode
is also defined if sLoc is already an
explicit node, in which case nothing happens: T ′ = T and newNode = −→w ; pChild is ignored.

If w is not an s-word or w−1 is not a p-word in T , a new leaf has to be created in the
respective subtree. Therefore one has to find the node that represents the longest prefix
resp. suffix of w because that is where the edge leading to the new node starts.

In the special case of node
−→
t in the step cat(t)→ cat(ta) we have:

• The previously explicit node
−→
t has become

−→
ta by the automatic elongation so that

s-locT1b
(t) is implicit. This location is “within” the suffix-edge that ends at node

−→
ta .

• As a p-word t does not occur in T1b any more because the edge that was removed in
the step cat(t) → T1b was part of the prefix-path to the former node

−→
t . Hence, the

new node
−→
t needs to be newly inserted as a new prefix leaf. As already mentioned

in 3.4.2, node −→s where the (now removed) prefix edge leading to the active suffix leaf
started is the longest nested suffix s of t that is represented by a node. Moreover, all
nodes −→u that represent longer (non-nested) suffixes of t have been elongated to −→ua .
Hence, the prefix edge leading to

−→
t starts at node −→s which is the same location where

the edge to the active suffix leaf was previously removed.

Because t is not a p-word in T1b, we can not use function insert iNode here. Instead we
define a special function insert node t that performs the complete procedure in one step:
elongation of the text, removal of the prefix edge that ends at the active suffix leaf, and
insertion of the node

−→
t (more correctly the node

−→
...t because it is a prefix leaf), see the

following box:

6The double arrow “⇒” in the function definition can be read as “yields”.
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insert node t(T, asl)⇒ (T ′, newNode)

Because suffix leaves are represented with open labels, function insert node t needs not be
parameterized with the new character a.

4.2.2 Insertion of the Relevant Suffixes

Step 2 of Algorithm 4.6 describes an iteration over all relevant suffixes of ta and can be
realized like function update7 in ukk : Starting with the longest relevant suffix ua (u = α(t)),
in each step an internal node −→u is created if it does not already exist, and a suffix-leaf
−−−→ua... is inserted. Between the steps u shrinks by its leftmost character which is achieved by
traversing a suffix link followed by a “canonization”. The procedure stops if u is empty or if
for a (possibly shrunk) u there already exists a continuation a. In this case the new active
suffix is α(ta) = ua.

In contrast to ukk , however, here the underlying data structure is an affix tree, causing two
serious differences:

1. Not only internal nodes, but also newly introduced leaves in the suffix-subtree have
to be inserted in the corresponding position in the prefix-subtree. (In the suffix tree
view: leaves need suffix links as well.)

2. Since prefix edges leading to internal nodes might be non-atomic, it is possible that by
traversing a suffix link the active suffix is shortened by more than one character.

We now discuss in detail how these two problems can be solved.

Insertion of New Internal Nodes and Leaves

As in ukk , the s-location of the active suffix is an invariant during the whole construction,
and hence when node −→u is inserted, its position in the suffix-subtree is known.

The corresponding p-location can also be found similar as it is done in algorithm ukk : A
newly inserted node −→u splits the suffix link of the node that was inserted8 previously, −→.u .

When inserting the first relevant suffix, i. e., when node
−−→
α(t) is inserted, the edge to be split

7To be precise, one has to use this function as it is described in [GK94b] or function ukkstep in [Kur95]
while the functionality of update in [Ukk93] differs slightly.

8It is possible that node −→.u already exists in cat(t). Then this node is not inserted but “passed”.

36



is the suffix link of node
−→
...t because α(t) is the longest suffix of t that is represented by an

explicit node in cat(ta).

Similar for the leaves: The prefix edge starting at a newly inserted leaf −−−→ua... (the new active
suffix leaf) always ends at the leaf −−−→.ua... inserted in the previous step (the previous active
suffix leaf). This way all the leaves of the suffix-subtree keep being connected by atomic
prefix edges, sorted according to their length. After this step there is no prefix edge ending
at the leaf that was inserted last. As noted above, this edge is inserted not before Step 3.

Tppp
?sFather −→wr

�

rppp
?

r
�

aslr
�

re
−→

T ′ppp
?sFather −→wr

�

rppp
?

A
A
AU asl′ = −−−→wa...r

R aslr
�

r
re
r

�

insert sLeaf (T, sFather , asl)⇒ (T ′, asl ′)

The new internal nodes are inserted
using function insert iNode described
above. The leaves in the suffix-sub-
tree are inserted using a new function
insert sLeaf (see box). This function
is parameterized with the tree T , the
node sFather where the newly inserted
suffix edge starts, and the node asl
above which the new node is inserted
into the prefix-subtree. The result is
the modified tree T ′ and the newly in-
serted suffix leaf asl ′.

The complete procedure of inserting a relevant suffix ua into tree T is realized by function
insert relevant suffix ; uLoc is the location of u in T , pChild represents the node

−→
...t or the

last inserted or “passed” internal node, and asl is the active suffix leaf:

insert relevant suffix (T, uLoc, pChild , asl)
= (T ′′, new iNode, new sLeaf )

where (T ′′, new sLeaf ) = insert sLeaf (T ′, new iNode, asl)
(T ′, new iNode) = insert iNode(T, uLoc, pChild).

Shortening the Active Suffix

To shorten the active suffix, similar as in [Kur95] we define a function linkloc:

linklocT (s-locT (.w))⇒ s-locT (w).

“Naively” this function can be implemented by traversing the suffix-edges from the root while
spelling the string w. From similar considerations on the suffix tree it is known, however,
that this approach will lead to a quadratic-time algorithm (as an example, consider the text
t = an−1$), prohibiting our desired goal of an online construction of cat(t) in linear time.
That is why in ukk suffix links are used to reach the location of the shortened active suffix
in amortized O(1) time.

In affix trees due to the non-atomic suffix links, this is not always possible in the direct way.
Sometimes one has to traverse a “detour” for which we suggest two possible ways, illustrated
in Figure 4.2 (t = aababa, u = aba, a = a; see also Figure 4.3) where the non-atomic suffix

link
−−→
aba

ba
≺·········· −→a “misses” the (implicit) node

−→
ba :
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Figure 4.2: The two possibilities to shorten the active suffix (T2a → T2b) for t = aababa,
u = aba, a = a (see also Figure 4.3).

a) One starts at the active point and traverses “upwards” in the suffix-subtree until one
reaches a node with an atomic suffix link:

(
−−→
aba , ε)

a←− (
−→
ab , a)

b←− (−→a , ba).

Then one follows this suffix link

(−→a , ba)
a

≺·········· (−→ε , ba),

which shortens the active suffix. Finally one canonizes as in ukk (this is not necessary
in the example of Figure 4.2 because (−→ε , ba) is already a canonical reference pair).

The upwards-traversal at the latest terminates at the root where in general we have
a reference pair (−→ε , cu). Here, the active suffix can be shortened simply by removing
the first character yielding (−→ε , u).

b) The second possibility is similar but traverses “downwards”: One follows the suffix
edges (but not the just inserted edge to the active suffix leaf) until one reaches a node
with an atomic suffix link

(
−−→
aba , ε)

baa−→ (
−−−−−−→
ababaa... ,−baa),9

then one follows this link

(
−−−−−−→
ababaa... ,−baa) a

≺·········· (
−−−−−→
babaa... ,−baa)

9The notation “−u” denotes a negative offset: (−→v ,−u) is an s-reference pair of w if −→v is a node in T
and v = wu.
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Figure 4.3: Insertion of the relevant suffixes for t = aababa and a = a.

and canonizes “upwards” by the appropriate amount:

(
−−−−−→
babaa... ,−baa) babaa←− (−→ε , ba).

There is a simple reason why following the path “downwards” always is unique: None
of the nodes with a non-atomic suffix link is branching in the suffix-subtree (see Remark
3 on Definition 3.1).

The downwards-traversal surely terminates because at a suffix-leaf there is always an
atomic suffix link. It is not possible that this is the active suffix leaf (whose suffix link
was deleted previously) because this case was explicitly excluded above.

The insertion of all relevant suffixes of ta is described by Function ukkstep10:

ukkstep(T, a, actS , pChild , asl)

=


(T, downT (actS , a), asl), if occurs(actS , a)
(T ′, actS , asl ′), else if actS = (root(T ), ε)
ukkstep(T ′, a, linklocT ′(actS ), pChild ′, asl ′), otherwise

where (T ′, pChild ′, asl ′) = insert relevant suffix (T, actS , pChild , asl).

Throughout the procedure, actS denotes the current location of the active suffix. The
predicate occurs(actS , a) (see [Kur95]) tests if there exists a continuation a at location actS ,
and downT (s-locT (w), a) yields s-locT (wa).

In summary, we have:

ukkstep(T1, a, actS 1, node t , asl1)⇒ (T2, actS 2, asl2),

where Ti, actS i and asl i denote the bi-tree, the location of the active suffix and the active
suffix leaf after Step i of Algorithm 4.6, and node t is the node

−→
...t that was introduced in

Step 1.

Figure 4.3 shows the two iterations for t = aababa, a = a.

10For an explanation see also [Kur95].
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4.2.3 Making the Active Suffix Explicit

In the next step, the insertion of node
−−−→
α(ta) , we will encounter a similar difficulty as above

in function linkloc. The following fact describes a property of the tree T2 that will be helpful:

Theorem 4.7 (Active Suffix after Step 2)

If the new active suffix ua = α(ta) in T2 is not represented by an explicit node, then it is of
the form s-locT2(α(ta)) = (−→u , a). 2

Proof

Let ua = α(ta) after Step 2 of Algorithm 4.6 be not explicit. We show that s-locT2(α(ta)) =
(−→u , a) which is clearly the case if −→u is an explicit node.

There are two possibilities for Step 2:

a) Before encountering an a-continuation at u, the active suffix has already been shortened
by one or more characters. Then there surely exists a different continuation b 6= a of

α(t) = .u in t =
{

.u
ub

}
, and hence u is a right-branching ta-word.

b) ta does not have any relevant suffixes, the active suffix immediately is elongated:
α(ta) = α(t)a = ua. In this case −→u was already an explicit node in cat(t):

Assume that −→u =
−−→
α(t) was not an explicit node in cat(t). Then it was removed in

Step 4 of the previous iteration of the construction because the active prefix has been
elongated there. By Theorem 4.1 in combination with Theorem 4.2 then we have that

t =
{

ua
.u

}
and there is no other occurrence of ua in t.

This means, however, that ua is a non-nested prefix of t and hence was represented
as an explicit node −→ua in cat(t). This is in contradiction to the assumption of the
theorem.

2

Hence, whenever at the beginning of Step 3 the active suffix is not explicit, we have the
following situation: The implicit node s-locT2(α(ta)) = (−→u , a) needs to be made explicit.
In order to find the corresponding location in the prefix-subtree, p-locT2

(au−1), we define
function find pLoc:

find pLocT (s-locT (w))⇒ p-locT (w−1).

Similar as above we suggest two possible ways for finding the desired p-location11, see Fig-
ure 4.4 (t = aababa, u = aba, a = b):

11The “naive” solution to always walk into the tree starting at the root here requires quadratic time in
the worst case as well (for an example consider t = a(ab)i as in Figure 5.1). This already caused Weiner in
the development of his “classic” suffix tree construction algorithm [Wei73] to traverse a detour “inside” the
tree which is very similar to the “upward” way we describe here under a).
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Figure 4.4: The two possibilities to find the corresponding location of the active suffix in the
prefix-subtree for t = aababa, u = aba, a = b.

a) One starts at the active point and walks “upwards” until one reaches a node where an
atomic a-suffix edge starts:

(
←−−
aba, ε)

ab
≺·········· (←−a , ba).

Then one follows this edge

(←−a , ba)
b−→ (
←−
ba, ba)

and finally one “canonizes” by the appropriate amount “downwards”. (In the example
this is not necessary: (

←−
ba, ba) is already a canonical p-reference pair.)

Again, the way “upwards” at the latest terminates at the root of the tree where
(←−ε , u−1) can be elongated manually yielding (←−ε , au−1).

b) The second possibility is similar but traverses “downwards” in the tree: One follows
the prefix edges12 until one reaches a node where an atomic a-suffix edge starts (this
is definitely the case when a leaf is reached)

(
←−−
aba, ε)

a
··········� (

←−−−−
abaa...,−a),

then one follows this edge

(
←−−−−
abaa...,−a) b−→ (

←−−−−−
babaa...,−a),

and finally one “canonizes” by the appropriate amount “upwards”:

(
←−−−−−
babaa...,−a) aab

≺·········· (
←−
ba, ba).

12During this walk there might be more than one prefix edge yielding “downwards”. In such a case
one has to look at the successor node along the a-suffix edge. This node is not branching in the prefix-
subtree (otherwise it had an atomic prefix link) and hence the prefix edge starting there begins with the
same character as the edge one has to follow because it leads to a node that lies “below” the location
p-locT2

(au−1) we are aiming at.
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re
insert pEdge(T, pFather , asl)⇒ T ′

After this step, node
−−−→
α(ta) will be explicit

and as mentioned above the leaves in the
suffix-subtree can be re-inserted into the tree
by a prefix edge that connects

−−−→
α(ta) and the

active suffix leaf asl . To this end, we define
function insert pEdge (see box).

The complete Step 3 of Algorithm 4.6 is im-
plemented by function insert asl :

insert asl(T, actS , asl) = (insert pEdge(T ′, actSnode, asl), actSnode)

where (T ′, actSnode) = insert iNode(T, actS , pChild)
(•, , , pChild) = find pLocT (actS ).

Note that find pLoc is only evaluated if actS is an implicit node because only in this case
insert iNode uses its argument pChild .

4.2.4 Elongation of the Active Prefix

The following lemma follows from a combination of Theorems 4.2 and 4.4 and allows to
efficiently test for the condition “if the active prefix lengthens”:

Lemma 4.8 (Elongation of the Active Prefix)

The new active suffix α(ta) is represented in cat(t) by a prefix leaf if and only if the active
prefix lengthens in the step t→ ta. 2

Tr
A
A
AU −→wr
�

�
��r

r
�r

Ur
−→

T ′r

?r

r

?r
s-locT ′ (w) b

delete iNode(T,−→w )⇒ (T ′, s-locT ′(w))

Then removing the node
−−−→
α(ta) is straight-

forward: One just connects the suffix edges
leading upwards and downwards as well as
the prefix edges leading upwards and down-
wards, which is carried out by function
delete iNode (see box).

The complete Step 4 of Algorithm 4.6 is im-
plemented by function lengthen actP :

lengthen actP(T, actSnode) = delete iNode(T, actSnode), if actSnode = −−→...u
= (T, (actSnode, ε)), otherwise .

Figure 4.5 continues our example t = aababa, a = a.
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Figure 4.5: Removal of the active node for t = aababa, a = a, actS = (−−−→...aa , ε).

4.3 The Online-Algorithm (Unidirectional)

By composition of the four functions that implement Steps 1 – 4 of Algorithm 4.6, we get
catstep:

catstep(T, a, actS , asl) = (T4, actS 4, asl2)

where (T4, actS 4) = lengthen actP(T3, actSnode3)
(T3, actSnode3) = insert asl(T2, actS 2, asl2)
(T2, actS 2, asl2) = ukkstep(T1, a, actS , node t , asl)
(T1, node t) = insert node t(T, asl).

Function cat iteratively applies catstep to all characters of a string:

cat(T, ε, actS , asl) = T
cat(T, aw, actS , asl) = cat(T ′, w, actS ′, asl ′)

where (T ′, actS ′, asl ′) = catstep(T, a, actS , asl).

Summarizing this chapter, we have:

Theorem 4.9 (Online Construction of Compact Affix Trees)

Let T0 = cat(ε). Then cat(T0, t, (root(T0), ε), root(T0)) constructs the compact affix tree of
text t.13 2

Above we have reformulated Algorithm 4.6 in a functional way. Nevertheless, function cat
can not easily be implemented in a purely functional programming language because the

13For a proper applicability of insert node t(T0, root(T0)), the root of T0 = cat(ε) needs a suffix link and a
prefix link pointing at itself. These links, however, are irrelevant for the remaining construction and therefore
have not been mentioned so far. Alternatively, one could also directly start with cat(a).
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algorithm locally modifies the global structure of the affix tree which is not possible with the
usual data types of traditional lazy functional programming languages.14 However, because
the demand for single-threadedness is fulfilled (i. e., no copies of parts of the global data
structure are made), an implementation by more modern techniques as provided by present-
day languages like Haskell or Clean [Pla95] might be possible. Such an implementation of
ukk is described in [Kur95] and [Kra95]. Here we have, however, refrained from a similar
functional implementation of cat because such an undertaking seemed to be too far away
from the original problem definition.

4.4 Comments on the Bidirectional Application

Affix trees are completely symmetrical with respect to an exchange of suffix and prefix view.
Hence, without any modification Algorithm 4.6 can be applied in the opposite direction
cat(t)→ cat(at) as well.

The two neuralgic points where all modifications in the tree are performed then are the
location of the active prefix and the active prefix leaf. As for the active suffix and the active
suffix leaf these are invariants of the construction, i. e., before the step cat(t)→ cat(at) the
p-location of α−1(t) and the active prefix leaf in cat(t) need to be known, and after this step
the corresponding locations in cat(at) are available.

To be able to extend t in both right and left direction, though, one has to ensure that during
the extension in one direction, the invariants needed for the other direction keep up-to-date.

To see how this can be done, we again have a look at the step cat(t)→ cat(ta):

1. In Section 4.1.1 we have discussed the possible changes of the active prefix. Because
in lengthen actP it is tested anyway if the active prefix lengthens, it is easy to perform
the necessary changes of the reference pair of the active prefix there as well.

Moreover, it is possible that the active prefix is made explicit during the insertion of
an internal node in function insert relevant suffix . Hence, in such a case the reference
pair of the active prefix needs to be updated as well.

2. The active prefix leaf might change in two situations:

(a) If before inserting the node
−→
t the (elongated) node

−→
ta was the active prefix leaf,

then
−→
t becomes the active prefix leaf.

(b) It is easy to see that the node that is deleted in function lengthen actP always is
the active prefix leaf. The new active prefix leaf then is the prefix leaf that is one
character longer and was connected to the old one by an atomic suffix edge.

It is possible during the online affix tree construction in one direction to keep the invariants
of the other direction up-to-date. Hence the method is bidirectional.

14A detailed discussion of these matters for algorithm ukk can be found in [GK94b].
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Chapter 5

Complexity Analysis

The goal of this chapter is to show that the online construction algorithm presented in Chap-
ter 4 runs in practically linear time and in linear space. While the linear space requirements
are obvious1, the worst case time analysis turns out to be unexpectedly difficult.

Indeed, we can not finally answer the question about the time complexity of our algorithm,
although a few hints in favor of linearity exist. Additionally, the time complexity also
depends on the alphabet size. This, as in ukk , is implied by the fact that the branching
degree of the tree increases proportionally to the alphabet size. Here, however, we will not
consider such effects and rather assume a constant alphabet size.2

5.1 Overview

We separately discuss the functions insert node t , ukkstep, insert asl , and lengthen actP
that implement the four steps of Algorithm 4.6. Because already the unidirectional analysis
is rather difficult, we refrain from discussing cases where the direction of the construction
changes in an unfavorable situation.

Step 1: insert node t

Each of the n steps for the construction of cat(t) calls insert node t exactly once. The active
suffix leaf is known at that time and insert node t does not contain any loops or recursions.
Hence the total time usage is O(n).

Step 2: ukkstep

While it is known from [Ukk93] that the online construction of compact suffix trees is possible
in O(n) time, the proof can not without further consideration be adopted to the modified

1Apart from the text and the tree which are both of size O(n) no additional space is used. Although
during the construction nodes are removed from the tree, the size of the tree increases monotonically (in
each step at most one node is removed and at least one node is inserted), and hence we can exclude the
possibility that intermediate structures are larger than the final affix tree.

2For a discussion of the effect of the alphabet size on the construction time of suffix trees see [Kur95] who
compares the different possibilities to find the correct successor at a branching node in the tree.
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Figure 5.1: An example for quadratic behavior of ukkstep if linkloc always chooses the
“upwards” way: t = aa(ba)i, a = a.

data structure of the suffix-subtree in the affix tree.

While the number of new nodes and leaves inserted into the tree is the same as in ukk , here
it is more expensive to reach the corresponding locations in the tree by function linkloc. If
in the search for an atomic suffix link one always chooses the “upwards” way (which is most
similar to the corresponding step in ukk), the algorithm requires quadratic time in the worst
case as one can easily see for t = aa(ba)i, a = a (Figure 5.1).

This is why in the following we assume that always the shorter of the two possible ways
(“upwards” or “downwards”) described in Section 4.2.2 is chosen. This can be realized,
for example, by traversing both directions in parallel, and as soon as one of the two ways
encounters an atomic suffix link, the other one is stopped.

For the detailed analysis, as in [Ukk93] we split linkloc in three sub-functions: find aLink ,
canonize down, and canonize up. See Sections 5.2.1 – 5.2.3.
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Step 3: insert asl

While the insertion of the new node is possible in constant time and the parameters actS and
asl are known because they are invariants of the construction, determining the p-location of
the new active suffix using function find pLoc might be expensive. Due to our experiences
with linkloc, here we also always choose the shorter of the two possible ways. Section 5.2.4
contains the details of the analysis.

Step 4: lengthen actP

Following Lemma 4.8, the condition for an elongation of the active prefix was: “If the new
active suffix is represented by a prefix leaf”. This can be tested in O(1) time, and removing

the node
−−−→
α(ta) is possible in constant time as well. Hence for the complete text all calls to

lengthen actP together require O(n) time.

5.2 Discussion of the Difficult Cases

5.2.1 find aLink

The following theorem shows that the search for an atomic suffix link is necessary only if the
canonic reference pair of the (possibly already shortened) active suffix actS is an explicit,
only left-branching node:

Theorem 5.1 (Atomic Suffix Link of the Implicit Active Suffix)

If actS is an implicit node at the time of calling linkloc in ukkstep and it is not the root,

hence actS = (
−→
bu , cv), then it always has an atomic suffix link

−→
bu

b
≺·········· −→u . 2

Proof

Let actS = (
−→
bu , cv) be the canonical reference pair of the (possibly shortened) active suffix

of t =
{

.bucv
bucv.

}
. We show that

−→
bu has an atomic suffix link, i. e.,

−→
bu

b
≺·········· −→u ∈

p-edges(cat(t)).3 Following Remark 3 on Definition 3.1 this is certainly the case if
−→
bu is

branching in the suffix-subtree of cat(t).

Suppose for a contradiction that
−→
bu is non-branching in the suffix-subtree of cat(t), which

is equivalent to bu being a left- but not a right-branching t-word. Two cases are possible:

1. t =
{

xbucv
ybuc

}
, x 6= y, hence buc is a left-branching t-word as well, which is in

contradiction to the assumption that (
−→
bu , cv) is a canonical reference pair.

3While at this point of the algorithm the tree has already been modified, the location considered here
still is the same as in cat(t).
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2. t =

 xbucv
xbucv.

ybu

 , x 6= y ⇒ bucv = ybu

⇒ t =

 xbucv
x ybu.

ybu

 ⇒ . = c, because bu by the assumption is not right-

branching

⇒ t =

 xbucv
x ybuc

ybu

 , x 6= y,

i. e., buc is a left-branching t-word which, as above, is a contradiction to the assumption
that (

−→
bu , cv) is a canonical reference pair.

2

Find aLink hence requires more than one step only if actS is an explicit node that is branch-
ing only in the prefix-subtree.

What follows are some remarks on this class of nodes which represent only left-branching
t-words:

1. Such nodes are created in cat only by function insert asl . Hence there can exist
maximally n of them during the whole construction.

2. If in a series of two or more steps the set of relevant suffixes is empty (and hence
the active suffix several times in a row is only elongated without being shortened in
between), then a “chain” of these nodes is formed.

Such a “chain” causes the quadratic behavior of function find aLink if one always
chooses the “upwards” direction (Figure 5.1).

3. Each call to find aLink , however, “disarms” such a node by inserting a new atomic
suffix link that leads to the node that will be inserted in the next step.

Due to Items 1 and 3, hence, function find aLink takes at most O(n log n) time if always
the shorter of the two ways is chosen: The maximal total length of all “chains” is n. Each
call to find aLink splits a chain in two sub-chains which in later steps are further split, and
so on. In the worst case, each time one has to walk the maximal number of steps, which is
the case if each time a chain is split in two halves of equal length. This gives the logarithmic
behavior.

This result, however, by no means includes all constraints that diminish the number of steps
needed by find aLink . For example, not every sequence of active suffixes is possible. In the
described scenario the active suffix has to be located two or more times in the same “chain”.
To achieve this, however, there have to be certain steps in between which might amortize
the additional effort for walking the same chain several times.

The existence of this and other constraints and the empirical results presented in Section 5.3
suggest a linear worst-case behavior of find aLink .
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Figure 5.2: On the discussion of canonize up.

5.2.2 canonize down

The proof for the amortized linear time behavior of the “downwards canonization” can be
taken over from [Ukk93]:

The second element of the reference pair of the active suffix is elongated during the whole
construction at most n times. Because each step of canonize down shortens this element by
at least one character, in total there are at most n steps possible for canonize down.

5.2.3 canonize up

The problem here is the following (see Figure 5.2): Let actS = (
−→
bu , ε) be the active suffix

that is going to be shortened, and let
−−−→
buvw be the first node “below”

−→
bu with an atomic

suffix link. How many nodes −→uv on the “way back” are maximally possible?

The following holds for node −→uv :

1.
−−→
buv is not an explicit node, otherwise find aLink would have come across an atomic

suffix link
−−→
buv

b
≺·········· −→uv already there.

2. −→uv is not branching in the prefix-subtree because not even −→u is branching in the prefix
subtree. Hence −→uv is branching only in the suffix-subtree.

Unfortunately these observations do not give a criterion for the maximal number of nodes
traversed by canonize up. The empirical results given in Section 5.3, however, hint at a
particularly harmless linear behavior with a constant factor of 1

2
in the worst case.

5.2.4 find pLoc

Function find pLoc seems to be the sub-function of cat with the most delicate behavior.
Nevertheless, two interesting observations can be made:
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First, it is possible to show that a “canonization” is not necessary if for finding the corre-
sponding p-location one chooses the “downwards” direction.

The scenario has already been described in Section 4.2.3 (see also Figure 5.3): An “upward
canonization” is only necessary if there exists an (internal) node of the form −−−−−−−→vi . . . v1ua .
Such a node, however, can not exist because vi . . . v1ua is neither left-branching (otherwise
vi . . . v1u would be left-branching as well and be represented by an explicit node) nor right-
branching (with the same reasoning for ua).

Moreover, we have observed that if one always chooses the shorter way, also in cases where
the upwards direction is chosen, no canonization is necessary. This motivates the following
claim that, however, can not be proven here, but was empirically verified on all strings over
{a, b} up to a length of n = 20:

Proposition 5.2 (Downwards-Canonization is Not Necessary)

Whenever in function find pLoc the “upwards” walk in its canonization phase traverses
nodes, then the “downwards” walk takes only one step. More precisely, there exists an edge
−→u ··········� −−−→...v1u that ends at a prefix leaf. 2

Nevertheless, the main question remains unanswered, namely how far it is to reach the next
atomic a-edge from node −→u .

As long as this is unsolved, one has to assume the complexity O(n2) of the naive solution,
although the empirical results of the next section do not exclude even a linear time behavior.

5.3 Empirical Results

Because we were unable to derive satisfactory analytic results for the complexity of functions
find aLink , canonize up, and find pLoc, we have empirically counted the number of steps
performed in these functions. The goal of these investigations was
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• either to find examples where the method behaves worse than linear,4

• or to get hints for further analytic studies, for example by determination of the constant
factor that upper-bounds the number of steps in the worst case.

Tables 5.1, 5.2 and 5.3 summarize the results. For increasing text lengths n we have created
all strings t ∈ {a, b}n. (Strings that are equal except for the exchange of a and b, however,
are considered only once.) The text length n is given in the left column, the center column
contains the maximal number of steps of the respective function, and the right column, in
parentheses, shows the number of occurrences of this worst case (again, strings that are
equal upon exchanging a and b are counted only once) as well as the “worst case texts”
themselves.

While find aLink and canonize up show a clear linear behavior (and hence it surprises that
the analytic proof seems so difficult), the interpretation of the results of find pLoc is more
difficult:

In the beginning, the pattern t = abi seems to describe the worst case (with a linear behavior
and a constant factor of 1). Starting with n = 13, however, a second pattern joins in,
t = aab2iabia, which for n = 16 even surpasses the first pattern. This second pattern (if
generalized for longer sequences) again describes a linear behavior with a constant factor
of 1.33. Beginning with n = 26, another pattern is found with a worse behavior (t =
aab4iab2iabia with a constant factor of 1.43), and so on.

As a consequence of these observations, one might ask if this series of patterns converges
against a sequence of worst case patterns. And does this generalized pattern still show a
linear behavior or does the constant factor constantly increase such that the general behavior
is worse than linear?

One possible generalization of the above worst case patterns is the sequence

t = aab2kiab2k−1i . . . ab2iabia, n = (2k+1 − 1)i + (k + 3).

The following table shows the number of steps of find pLoc for some values of k and i:

i
k 1 2 3 5 10 15

2 6 18 42 186 6138 196602
3 10 28 64 280 9208 294904
5 18 48 108 468 15348 491508

10 38 98 218 938 30698 983018
20 78 198 438 1878 61398 ?

100 398 998 2198 9398 306998 ?
in general 4i− 2 10i− 2 22i− 2 94i− 2 3070i− 2 98302i− 2

n 3i + 4 7i + 5 15i + 6 63i + 8 2047i + 13 65535i + 18

# of steps
n

∼ 4
3

∼ 10
7

∼ 22
15

∼ 94
63

∼ 3070
2047

∼ 98302
65535

≈ 1.33 ≈ 1.43 ≈ 1.467 ≈ 1.492 ≈ 1.4998 ≈ 1.499992

4Indeed, this way we found the text ta = aa(ba)ia which provides an example for the quadratic complexity
of find aLink if always the “upwards” direction is chosen.
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text length n
# of steps in

the worst case
(#) texts

0 0 —
1 0 —
2 0 —
3 0 —
4 0 —
5 0 —
6 1 (1) a(ab)2b

7 1 (4) a(ab)2aa, a(ab)2bb, aa(ab)2b, ba(ab)2b

8 2 (1) a(ab)3b

9 3 (1) a(ab)3aa

10 4 (1) a(ab)4b

11 5 (1) a(ab)4aa

12 6 (1) a(ab)5b

13 7 (1) a(ab)5aa

14 8 (1) a(ab)6b

15 9 (1) a(ab)6aa

16 10 (1) a(ab)7b

17 11 (1) a(ab)7aa

18 12 (1) a(ab)8b

19 13 (1) a(ab)8aa

20 14 (1) a(ab)9b

21 15 (1) a(ab)9aa

22 16 (1) a(ab)10b

23 17 (1) a(ab)10aa

24 18 (1) a(ab)11b

25 19 (1) a(ab)11aa

26 20 (1) a(ab)12b

27 21 (1) a(ab)12aa

28 22 (1) a(ab)13b

29 23 (1) a(ab)13aa

30 24 (1) a(ab)14b

31 25 (1) a(ab)14aa

32 26 (1) a(ab)15b

33 27 (1) a(ab)15aa

34 28 (1) a(ab)16b

Table 5.1: Worst cases of find aLink for texts up to a length of 34 over the alphabet {a, b}.
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text length n
# of steps in

the worst case
(#) texts

0 0 —
1 0 —
2 0 —
3 0 —
4 0 —
5 0 —
6 0 —
7 1 (1) a(ab)2aa

8 1 (4) a(ab)3b, . . .
9 1 (13) . . .

10 2 (1) a(ab)4b

11 2 (6) . . .
12 3 (1) a(ab)5b

13 3 (4) a(ab)5bb, a(ab)5aa, aa(ab)5b, ba(ab)5b

14 4 (1) a(ab)6b

15 4 (4) . . .
16 5 (1) a(ab)7b

17 5 (4) . . .
18 6 (1) a(ab)8b

19 6 (4) . . .
20 7 (1) a(ab)9b

21 7 (4) . . .
22 8 (1) a(ab)10b

23 8 (4) . . .
24 9 (1) a(ab)11b

25 9 (4) . . .
26 10 (1) a(ab)12b

27 10 (4) . . .
28 11 (1) a(ab)13b

29 11 (4) . . .
30 12 (1) a(ab)14b

31 12 (4) . . .
32 13 (1) a(ab)15b

33 13 (4) . . .
34 14 (1) a(ab)16b

Table 5.2: Worst cases of canonize up for texts up to a length of 34 over the alphabet {a, b}.
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text length n
# of steps in

the worst case
(#) texts

0 0 —
1 0 —
2 0 —
3 0 —
4 1 (+1) (1) ab3

5 2 (+1) (1) ab4

6 3 (+1) (1) ab5

7 4 (+1) (1) ab6

8 5 (+1) (1) ab7

9 6 (+1) (1) ab8

10 7 (+1) (1) ab9

11 8 (+1) (1) ab10

12 9 (+1) (1) ab11

13 10 (+1) (2) ab12, aab6ab3a

14 11 (+1) (3) ab13, aab7ab3a, aab6ab3ab

15 12 (+1) (6) ab14, aab8ab3a, aab7ab4a, . . .
16 14 (+2) (1) aab8ab4a

17 15 (+1) (2) aab9ab4a, aab8ab4ab

18 16 (+1) (6) . . .
19 18 (+2) (2) aab10ab5a, aab8ab4ab2a

20 19 (+1) (4) . . .
21 20 (+1) (10) . . .
22 22 (+2) (3) ab12ab6a, aab10ab5ab2a, aab8ab4ab2ab2a

23 23 (+1) (7) . . .
24 24 (+1) (18) . . .
25 26 (+2) (5) aab14ab7a, aab11ab6ab3a, . . .
26 28 (+2) (1) aab12ab6ab3a

27 29 (+1) (2) aab13ab6ab3a, aab12ab6ab3ab

28 30 (+1) (10) . . .
29 32 (+2) (2) aab14ab7ab3a, aab11ab6ab3ab3a

30 34 (+2) (1) aab12ab6ab3ab3a

31 35 (+1) (2) aab13ab6ab3ab3a, aab12ab6ab3ab3ab

32 36 (+1) (8) . . .
33 38 (+2) (3) aab16ab8ab4, aab14ab7ab3ab3,

aab11ab6ab3ab3ab4

34 40 (+2) (1) aab12ab6ab3ab3ab4

Table 5.3: Worst cases of find pLoc for texts up to a length of 34 over the alphabet {a, b}.
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Figure 5.4: Running times of bigrep for random texts versus the text length n for alphabets
of different size |A|.

For strings of this type hence the ratio of the number of steps of find pLoc divided by the
string length n seems to stay below 1.5. The first derivative of the number of steps in the
worst case (the numbers in parentheses in the center column of Table 5.3) suggest a linear
behavior with the same factor: For larger n, two steps (+1) and two steps (+2) alternate.

Unfortunately, due to the exponentially growing number of sequences to be examined these
empirical measurements could not be carried on further. In particular, it was almost im-
possible to perform similar measurements for larger alphabets. Because the measurements
performed (|A| = 3 up to n = 20, |A| = 4 up to n = 15) in the worst case always yielded
exactly the same results as were obtained for |A| = 2, one can assume, though, that the
alphabet {a, b} already allows to form all “bad” sequences.

5.4 Computation Times

Finally we validated the above results for longer texts as they are more relevant in practice.
We measured the computation times for random texts over alphabets of different size (again
using a Bernoulli distribution). The results are shown in Figure 5.4.5

It is easy to see the increase of the running time with the alphabet size due to the larger
branching degree, a behavior that is well known from ukk . The curves also suggest a linear
increase with respect to the text length, although a slight “sagging” can be observed. How-
ever, this could also result from the memory management of the computer and hence needs
not be overemphasized. At least in the average case the assumption of a time complexity of
O(|A|n) seems to be supported by the data.

5The runs were measured on a SPARC station 20 with 32 MB of main memory. The memory, however
was never completely used (maximal process size: 13 MB). The operating system was Solaris 2.4, the times
were measured using the Unix tool rusage. All values are averages over ten independent runs.

55



By a quantitative comparison with the running times of ukk 6 we found that the construction
of cat takes about three times as long, see the following table:7

type of text (n = 100000) ukk cat

random sequence, |A| = 4 0.7 2.2
random sequence, |A| = 20 1.6 4.3
random sequence, |A| = 50 2.8 7.9
random sequence, |A| = 90 4.8 14.6

genetic data8 0.8 2.3
manual page 1.2 2.9

Fibonacci string 0.2 1.3

Moreover, the memory used is about four times as high. This is due to the larger size of
the data structure. To store the affix tree not only one needs to store two suffix trees; it
is also necessary to represent all edges bidirectionally and to store leaves as complete nodes
because they simultaneously are internal nodes of the other subtree.

Nevertheless, the resources of the computer described above sufficed to construct affix trees
of texts up to a length of 250 000 characters within the available main memory.

6Here we used the C implementation described in [GK95].
7The time measurements are in seconds, again averaged over ten runs.
8Excerpt from the nucleotide sequence of chromosome XI of Saccharomyces cerevisiae over the DNA

alphabet A = {C,G, T,A}.

56



Chapter 6

The Program bigrep

Here we briefly describe a simple application of affix trees that was developed as part of this
thesis. The program bigrep can be used to find (short) patterns in (long) texts similar to
the well known Unix tool grep.

The distinctive feature of bigrep is that in contrast to grep and all of its known variants
both text and pattern are treated bidirectionally. Moreover, it is possible to search the same
text for the occurrence of several patterns one after the other, and the text can be extended
interactively in both directions.

The following commands are recognized by bigrep:

r <text> appends <text> to the right of the current text,
l <text> appends <text>

−1 to the left of the current text,
f <pattern> searches for <pattern> in the current text,
b <pattern> searches for <pattern>

−1 in the current text,
t prints the current text,
a prints the compact affix tree of the current text,
c deletes the current text,
q quits bigrep,
? displays a short help message.

Internally, upon entering or extending a text by the commands r and l, the compact affix
tree for this text is created. The commands f and b, respectively, initiate a search for
<pattern> following the suffix- resp. prefix-edges of this tree. If this way an occurrence of
<pattern> resp. <pattern>

−1 in the text is found, the program outputs SUCCESS; if at some
point there is no continuation in the tree, the program outputs FAIL.

The program bigrep is a direct implementation of the online construction algorithm as de-
scribed in Chapter 4 of this thesis. Hence, no further comments are necessary here.
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Chapter 7

Summary

This thesis was devoted to a new data structure called affix trees. Affix trees generalize suffix
trees for bidirectional applications, supporting exact string matching in a flexible manner.

The presentation started with the introduction of the basic data structures. We defined a
general notion of duality for A+-trees, and we developed the data structure of a bi-tree, on
the basis of which the affix tree was introduced. We have shown the duality of affix trees, the
linear space requirement of their compact variant, we have determined their maximal size,
discussed different possibilities for their representation, and have chosen the representation
which is best suited for affix trees. Because affix trees completely subsume the structure of
suffix trees, it was easy to see that all applications of suffix trees can be carried over to affix
trees. We have suggested three ways to construct affix trees. One of these possibilities, the
bidirectional online construction was detailed in the fourth chapter. In doing so, we found out
that the algorithm is not a simple generalization of the corresponding method by Ukkonen
for compact suffix trees. Several larger extensions were necessary. The following complexity
analysis could not, as was initially hoped, show the linearity of the method, although for most
of its parts this was possible. Three steps, however, could not be answered to satisfaction.
For this reason we studied these sub-procedures empirically which at least for two of the three
problematic cases clearly showed a linear behavior. The third case could not be classified
uniquely, though. A generalization of the worst cases we found, as well as measurements of
the actual running times using random sequences hinted at a linear time behavior as well.

We have implemented two methods for the construction of compact affix trees. One inefficient
program in the lazy functional programming language Haskell as a rapid prototype, and an
efficient implementation of the online construction algorithm in the programming language
C. The latter one is by a factor of three slower than a corresponding implementation for
suffix trees.

On the other hand, the larger data structure also has its advantages: text and pattern
are handled bidirectionally which enables new pattern matching methods as they might
be applied in bioinformatics and other disciplines with similar search problems. Moreover,
one could examine if for genetic applications instead of the reverse union the definition of
a “reverse complementary union” would be advantageous where the two complementary
strands of a DNA double helix are represented and can be studied in the same tree. An
extension of the matching procedure for approximate matching or for use in data compression
methods seems possible as well.
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We have seen: Affix trees support everything that is supported by suffix trees, and even
more; or in Apostolico’s words:

Affix trees seem to outperform subword trees in versatility and elegance.
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(Bernd Bütow und Stephan Thesing)

95–02 Computer Based Training-Software: ein interaktiver Sequenzierkurs
(Frank Meier, Garrit Skrock und Robert Giegerich)

95–03 Fundamental Algorithms for a Declarative Pattern Matching System
(Stefan Kurtz)

95–04 On the Equivalence of E-Pattern Languages
(Enno Ohlebusch und Esko Ukkonen)

96–01 Static and Dynamic Filtering Methods for Approximate String Matching
(Robert Giegerich, Frank Hischke, Stefan Kurtz und Enno Ohlebusch)

96–02 Instructing Cooperating Assembly Robots through Situated Dialogues
in Natural Language
(Alois Knoll, Bernd Hildebrandt und Jianwei Zhang)

96–03 Correctness in System Engineering
(Peter Ladkin)

96–04 An Algebraic Approach to General Boolean Constraint Problems
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