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Chapter 1IntroductionOn the molecular level, the machinery which is responsible for the reproduction oflife and the connected evolutionary diversi�cation can well be described as stringprocessing. The primary structures are sequential data which are manipulated bya complex metabolic system. An enormous e�ort of research is devoted to the elu-cidation of the underlying biochemical interactions. Starting with the discovery ofthe molecular structure of genetic information by J. D. Watson and F. H. C. Crickmore than forty years ago, data output from biological laboratories, mostly in formof nucleic acid and protein sequences, and { with a continuously decreasing delay {databases storing those data grow so rapidly that there is a strong need for e�cientas well as e�ective algorithms to handle these data and to extract and analyze thecontained information.To give an impression of the involved quantities, Figure 1.1 displays the prolif-eration of one of the largest genomic databases over the last �fteen years. A clearexponential growth can be observed, and the current trend of doubling every twenty-two months does not seem to be likely to change within the near future. Comparedwith the information content still to be uncovered, this is still a fairly small amount.For example, the human genome alone consists of twenty-three pairs of chromosomeswith typically a hundred million nucleotides each. In order to sift through, classify,and understand the raw data, a general technique has been well established amongmolecular biologists: Seeking for similarities, biosequences are compared with eachother systematically, hoping that what is true for one sequence { either physically orfunctionally { might be true for its analogue(s) as well. Consequently, methods forautomatic sequence comparison are indispensable. The present thesis contributes tothis important �eld of research.As is well-known, biology is not the only and was not the �rst application ofstring comparison techniques. Other major applications are found in computer sci-ence where string correction/string editing and the comparison of computer �les areimportant tasks. Error detection and error correction are crucial in coding theoryand data transmission. Speech processing, bird song and handwriting analysis areexamples of comparison of continuous data streams. Even geological strata have been1



2 CHAPTER 1. INTRODUCTION
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yearFigure 1.1: The amount of DNA sequence data in GenBank [226, 219, 29, 36, 37, 25,26, 27, 28].analyzed by methods very similar to those studied here. Kruskal [119] gives a surveyof these and further applications. Yet, the focus of the present work will be on stringcomparison as a tool for the molecular biologist.1.1 PreliminariesIn this section, we introduce our terminology, and we discuss some questions whichhave led to the development of a new algorithm, the Divide-and-Conquer Alignmentalgorithm (DCA). This section cannot be a self-contained introduction to compu-tational biology. For this purpose, the reader might use any one of the relevanttextbooks (e.g. [193, 3, 48, 34]).The most prominent biological sequences are proteins and nucleic acid sequences.Proteins are polymers made up of amino acids connected linearly by peptide bonds,that is they are polypeptides. They play an important role as enzymes in themetabolism of the cell. A protein sequence is usually a few hundred units long.On our level of abstraction, proteins can be viewed as sequences of letters drawnfrom the alphabet of the twenty amino acids occurring in living matter. Table 1.1lists the full names, the three letter acronyms and the one letter code.Nucleic acids are also polymers made up of small molecules called nucleotides



1.1. PRELIMINARIES 3Alanine Arginine Asparagine Aspartic acid CysteineAla Arg Asn Asp CysA R N D CGlutamine Glutamic acid Glycine Histidine IsoleucineGln Glu Gly His IleQ E G H ILeucine Lysine Methionine Phenylalanine ProlineLeu Lys Met Phe ProL K M F PSerine Threonine Tryptophan Tyrosine ValineSer Thr Trp Tyr ValS T W Y VTable 1.1: The twenty common amino acids.which can be distinguished by the four bases they contain: adenine (A), cytosine (C),guanine (G), and either thymine (T) or uracil (U) for deoxyribonucleic acids (DNA) orribonucleic acids (RNA), respectively. A and G are purines, C and T are pyrimidines.Nucleic acids contain typically from tens to thousands of units (for RNA) or millionsof units (for DNA).Given one or several such sequences, many questions arising in molecular biologycan be reformulated as string processing problems:� The inference of physical mapping and sequence assembly, i.e. the reconstruc-tion of a DNA molecule from the nucleic acid sequences of fragments within it[189, 76, 106, 113];� Molecular modelling, i.e. the determination of the three-dimensional structureof a protein from its sequence of amino acids [32, 88, 151, 231, 23, 118];� The assessment of structure{function correlations, mostly by conclusions fromstructurally similar or historically related molecules [53];� The reconstruction of phylogenies, i.e. the inference of the evolutionary historyof some species from their associated sequences [66, 110, 55];� The exploration of statistical geometry in sequence space [57];� The database search for sequences similar to a given sequence [49, 129, 10, 154];� The prediction of RNA secondary (and tertiary) structure, i.e. the way in whichdi�erent segments of the sequence connect with each other [202, 230, 56, 131].Most of these applications require the comparison of sequences. An early approach tocompare sequences of the same length is the computation of their Hamming Distance



4 CHAPTER 1. INTRODUCTION[93]. Yet, it is often necessary to compare sequences of di�erent length. An alignmentof the involved sequences is then the method of choice. It can be de�ned for pairsof sequences as well as for whole families of related sequences. In this introduction,it su�ces to view a sequence alignment as a way to specify which parts of the givensequences correspond to each other. The aim of a sequence alignment is to providethe molecular biologist with a simple way of obtaining information about similaritiesand di�erences between sequences.Unfortunately, often more than one reasonable alignment of a family of sequencesexists. In general, it is not easy to decide which one is closest to biological truth.At least for homologous molecules which stem from the same ancestor, there existsa correct alignment which best reects the evolutionary history of the molecule.However, it is often very di�cult { if not impossible { to read this true history fromtoday's data. To �nd out the correct alignment of protein or nucleic acid sequencesis the alignment problem in molecular biology.For amino acid sequences coding for proteins, it has been argued that the bestapproximation of the correct alignment is obtained by the superposition of the three-dimensional protein structures [110, 134, 32, 126]. However, the three-dimensionalstructure is known for only a few hundred proteins. Without knowledge of structure,the sequence of letters from the amino acid alphabet is the only information that canbe used. To this end, quantifying criteria { so-called score functions { are de�nedwhich measure the reasonability of an alignment just in terms of the arrangementof the letters. The development of methods for computing alignments which areoptimal with regard to such a score or { at least { close to the optimum is thealignment problem in computational biology.Statistical advantages of multiple as opposed to pairwise sequence alignment havelong been recognized [69], especially when similarities between component pairs sug-gest homology but are not strong enough on their own to be regarded as signi�-cant. When sensitive statements about multiple sequences are required, a multiplealignment can give more information than can be readily obtained from pairwisecomparison [87, 206]. For instance, the results produced by methods of reconstruct-ing phylogenetic relationships from sequences (e.g. maximum likelihood [63, 164] andmaximumparsimony methods [62, 47], spectral analysis [190], or the split decomposi-tion method [18, 54], see also [55, 195]) depend highly on the choice of the underlyingalignment.Due to the high computational complexity required for the exact solution ofmultiple alignment problems, faster methods for the computation of approximate{ though not necessarily optimal { solutions are used. A well established techniqueis the (order-sensitive) iterated pairwise alignment. However, it is well-known thatthe order in iterated sequence alignments can bias the topology of a reconstructedphylogenetic tree, and thus order-independent, simultaneous alignments are to bepreferred [122, 123, 98]. Consequently, there is a strong need for procedures comput-ing simultaneous rather than iterative multiple sequence alignments.



1.2. OVERVIEW 5In the last decades, various simultaneous multiple alignment algorithms havebeen developed (see e.g. [166, 225, 142, 81, 39, 11, 114, 90]). Unfortunately, almostall of these methods either exhibit a prohibitive computational complexity or yieldbiologically unplausible results. Current algorithms which try to optimize one of thestandard score functions are limited to half a dozen of sequences. With the algorithmDCA developed in this thesis, we improve this situation. By slicing the sequences atappropriate positions in a divide-and-conquer manner, DCA allows to compute highquality { but not necessarily optimal { simultaneous alignments of up to fourteenrelated sequences in a rather short time requiring only moderate computer memory.Surprisingly, to our knowledge, the divide-and-conquer principle, a well establishedmethod in algorithmic computer science (cf. [2, 45]), has never been applied beforesystematically in such a simple way within this context.1.2 OverviewIn Chapter 2, a formal introduction to the multiple sequence alignment problem isgiven. We present de�nitions of pairwise and multiple sequence alignments followedby a discussion of the most commonly used alignment score functions. The multiplesequence alignment problem is formulated on this basis.In Chapter 3, we recall the standard method for solving the alignment problem.Time and space limitations of this approach will be discussed which make it neces-sary to accept fast but in general suboptimal solutions. The standard principles ofcomputing such heuristic alignments are briey summarized.Chapter 4 is devoted to the presentation of the basic divide-and-conquer align-ment algorithm which { in contrast to previous heuristic methods { computes si-multaneous multiple sequence alignments optimizing a well-de�ned alignment score.Time and space complexity of the algorithm are analyzed, and several suggestionsfor variations and further uses of the algorithm are discussed.In Chapter 5, we present improvements of the basic algorithm which allow anenormous increase of e�ciency. Using branch-and-bound techniques, the search forappropriate slicing positions of the sequences is accelerated so that more than a dozenof sequences can be aligned simultaneously by our method.Chapter 6 gives a short description of the computer program DCA which is partof this thesis.The applicability of our algorithm is illustrated in Chapters 7 and 8. We establishthe high quality of the computed alignments in mathematical as well as in biologicalterms and validate the theoretical time and space analyses. Using well establishedbenchmark problems, alignments produced by our algorithm are also compared tothose computed with other methods.Chapter 9 concludes the thesis by recalling its main results.
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Chapter 2Analysis of Di�erences:Sequence Alignment2.1 IntroductionBefore we de�ne alignments formally in Section 2.2, we take a closer look at theevents which created { for the most part millions of years ago { the diversity we�nd in today's nature, and which we aim to detect with our computational methods.In particular, we summarize the principal kinds of mutations which occur on themolecular level during replication and translation of the genetic material. Ignoringany kind of chemical and biophysical properties of the represented molecules, wedescribe mutations solely as changes in abstract sequences.We need to introduce some terminology:Notation 2.1To allow a broad range of application, we consider any �nite set of letters A as thealphabet. A string s of letters from A is called sequence overA, jsj denotes the lengthof s, i.e. the number of letters that s consists of. The symbol si refers to the ith letter(or site) of s. The empty sequence of length zero is denoted by ".The size of A is four in case of DNA or RNA sequences, or twenty in case ofproteins. Throughout this thesis, any single letter of A is written in italics font (a; b; c,s1; s2; : : :) while sequences over A are denoted by bold font characters (s; t; s1; s2; : : :).Examples are indicated by capital typewriter font letters (e.g. A; C; G; T; TATAA).Sequences are concatenated by the \++" operator: s++t, or simply by juxtaposi-tion: st. The reverse of sequence s = s1 : : : sn is denoted by s�1 := sn : : : s1. In anypartition of s = uvw into (possibly empty) strings u, v, and w, u is called a pre�x,v is called a subsequence1, and w is called a su�x of s. For all i with 0 � i � jsj,si denotes the pre�x of s consisting of the �rst i letters of s, and is denotes the1Note that { in contrast to some other authors { we de�ne subsequences as consisting of consec-utive letters of the supersequence. 7



8 CHAPTER 2. ANALYSIS OF DIFFERENCES: SEQUENCE ALIGNMENTcorresponding su�x. So we have si++is = s. We also say that s is cut at slicingposition i. 2The just de�ned formalism facilitates a closer look at mutations as they are ob-served in biological sequences, so-called accepted mutations. Dayho� et al. [49]distinguish two principal kinds: large changes and point mutations.Large changes in genetic sequences are believed to be caused by unequal crossing-over of the chromosomes. These large-scale rearrangements can include entiregenes. The subsequences s and t in the following list of the most importanttypes of large changes can be several thousands or millions of nucleotides long.Inversions: A subsequence is reversed, usv! us�1v.Translocations: Subsequences from di�erent chromosomes are exchanged,usv and wtx! utv and wsx. In most cases, the exchanged subsequencesare terminal, i.e. u or v (and w or x, respectively) are empty in whichcase s and t are pre�xes or su�xes of the chromosome sequence.Deletions: A subsequence is deleted, usv! uv.Duplications: A subsequence is duplicated, usvw! usvsw.Transpositions: Two subsequences on the same chromosome are exchanged,usvtw! utvsw.Point mutations are local changes of one or a few consecutive nucleotides duringthe copying process of DNA. Occurring within coding regions, they may beobserved as changes of a single or a few amino acids in the translated protein. Inthe following formal description of the most important types of point mutations,the subsequences a and b are usually very short (e.g. one to �ve letters in caseof amino acids [153]).Insertions: A single letter or a small number of consecutive letters is inserted,uv! uav.Deletions: A single letter or a small number of consecutive letters is deleted,uav! uv.Substitutions: A short subsequence is substituted by a di�erent sequence,uav! ubv, a 6= b.In other than biological applications of string comparison, further local \mu-tations" are considered:Swaps: Two single neighboring letters are exchanged, uabv ! ubav. Swapsplay an important role in spelling correction [130, 213].



2.2. GLOBAL SEQUENCE ALIGNMENT 9Compression and expansion : In speech recognition [108] and other appli-cations [120], where continuous input streams are compared, it is oftennecessary to re-scale the incoming data. Scaling operations of this kindare also referred to as time- (or space-) warps.In the study of genomic sequences, large changes and point mutations are contem-plated in di�erent situations. In the search for the correct order of sequence fragmentson a chromosome, the so-called sequence assembly problem, and in the comparisonof the gene pool of di�erent species, large changes have to be considered. In con-trast, point mutations play the most important role in the study of single proteinsor other comparatively small regions of the genome (sequences of some hundreds upto 100,000 letters in length). Such sequences are often compared for common overall(also called global) or local similarities. Global and local sequence comparison can behandled by alignments. The divide-and-conquer algorithm developed in this thesisfacilitates global sequence comparison by speeding up the search for global sequencealignments.2.2 Global Sequence AlignmentA standard method in computational molecular biology for presenting the result ofsequence comparison is an alignment, which we formalize in this section. Multiplesequence alignments are a natural generalization of pairwise sequence alignmentswhich we introduce �rst.2.2.1 Pairwise Sequence AlignmentAssume that we are given two sequences s and t which are known to be globallyrelated. In general s and t are of di�erent length. For better comparibility, thelengths of the sequences are equalized: Blanks, denoted by dashes \�", are insertedinto or at either end of s and t such that the two resulting sequences s� and t�,respectively, are of the same length N . Apart from the length equalization, themost important aim of inserting blanks is the following: By selecting the locationof blanks carefully, regions from s may be located in s� at the same position wheresimilar regions of t are located in t�. By writing the sequences s� and t� above eachother, similarities and di�erences are then easier to observe.De�nition 2.2 (Pairwise Sequence Alignment)An alignment of two sequences s and t over A is a matrixA = � s�1 s�2 : : : s�Nt�1 t�2 : : : t�N �with two rows s� := s�1s�2 : : : s�N , t� := t�1t�2 : : : t�N and N columns (maxfjsj; jtjg � N �jsj+ jtj) where



10 CHAPTER 2. ANALYSIS OF DIFFERENCES: SEQUENCE ALIGNMENT� s�j ; t�j 2 A[ f�g for all 1 � j � N ,� the rows s� and t� reproduce the sequences s and t, respectively, upon elimi-nation of blanks, and� A has no column consisting of two blanks. 2Note that, in view of the last condition, the number of alignments of two �nitesequences s and t is �nite. To be more precise, the number f(m;n) of alignments oftwo sequences with m, respectively n letters, can be computed recursively by [221]:f(m;n) = f(m� 1; n) + f(m� 1; n� 1) + f(m;n� 1) (2.1)with initializations f(0; n) = f(m; 0) = 1 for all n;m � 0. The correctness of thisformula can be checked easily by considering all possible endings of the alignment:If sm is aligned with a blank, then there exist f(m � 1; n) alignments of the earlierparts of the sequences. If sm and tn are aligned, f(m� 1; n� 1) alignments remain.If tn is aligned with a blank, then f(m;n � 1) alignments result. Note that manyequivalent alignments are counted, e.g. � A �� T � and �� AT � �.Laquer [124] gives an explicit formula for the values f(m;n):f(m;n) = mXk=maxf0;m�ng n+ km !  mk !:Summing over N := n + k, this can be rewritten asf(m;n) = m+nXN=maxfn;mg Nm!  mN � n!= m+nXN=maxfn;mg N !(N �m)! (N � n)! (m+ n�N)! (2.2)which can also be derived directly: The positions of an alignment of length N ,maxfm;ng � N � m+ n, have either(i) a gap in the �rst sequence (N �m positions), or(ii) a gap in the second sequence (N � n positions), or(iii) two letters aligned to each other (the remaining m+ n �N positions).Equation 2.2 gives exactly the number of three-way permutations of these threedisjoint sets, summed over all N .



2.2. GLOBAL SEQUENCE ALIGNMENT 11Using Stirling's Formula, f(n; n) can be approximated by [124, 221]f(n; n) � (1 +p2)2n+1n�1=2: (2.3)Notation 2.3Two identical letters above each other in an alignment form a match and two distinctones form a mismatch or substitution. A blank in one sequence aligned with a letter ain the other can be viewed as an insertion of a into the �rst sequence or as a deletionof a from the second sequence. Following Kruskal [119], we use the term indel todenote the event of a deletion or an insertion. 2The letters of the original sequence s and of the \padded" sequence s� in analignment are connected by the following maps �s� and �s�:De�nition 2.4Assume a sequence s over A and a corresponding aligned sequence s� of lengthN � jsj, i.e. assume that s� reproduces s upon elimination of the blanks. Forj 2 f1; : : : ; Ng, let �s�(j) be the number of letters in s� before position j which arenot blanks plus one, i.e.�s�(j) := # fk 2 f1; : : : ; j � 1gjs�k 6= �g+ 1:Clearly, �s� is monotonously increasing and the assumed relationship between sand s� implies f1; 2; : : : ; jsjg � f�s�(1); �s�(2); : : : ; �s�(N)g � f1; 2; : : : ; jsj+ 1g with�s�(N) = jsj+ 1 if and only if s�N = �.Hence, for i 2 f1; : : : ; jsjg, we de�ne �s�(i) to be the largest j with �s�(j) = i, i.e.�s�(i) := max1�j�N fjj�s�(j) = ig :Clearly, we have �s�(k) = i if and only if �s�(i � 1) < k � �s�(i) for i = 1; : : : ; jsj(with �s�(0) := 0, for convenience) and we have s�k = si, if k = �s�(i) for somei 2 f1; : : : ; jsjg, and s�k = �, otherwise. 2Note that, apart from alignments, other equivalent or very similar data structurespresenting the result of global sequence comparison are discussed in the literature,denoted as edit scripts, traces, or listings [79, 214, 51, 130, 119, 204, 143, 140]. Inbiological applications, the term alignment and the above de�nitions have becomegenerally accepted.2.2.2 Multiple Sequence AlignmentThe concept of global pairwise alignment can be extended to the comparison of morethan two sequences in a straightforward way.



12 CHAPTER 2. ANALYSIS OF DIFFERENCES: SEQUENCE ALIGNMENTDe�nition 2.5 (Multiple Sequence Alignment)Consider a family2 hs1; : : : ; ski of k sequences over A. A multiple alignment ofhs1; : : : ; ski is given by a k �N matrixA = 0BB@ s�1;1 s�1;2 � � � s�1;N... ... ...s�k;1 s�k;2 � � � s�k;N 1CCAfor some N , maxfjs1j; : : : ; jskjg � N �Pki=1 jsij, where� s�i;j 2 A [ f�g for all 1 � i � k, 1 � j � N ,� for each i = 1; : : : ; k, the row s�i := s�i;1s�i;2 : : : s�i;N reproduces the sequence siupon ignoring all of its blanks, and� A does not contain any column consisting of blanks only.The set of all alignments of S = hs1; : : : ; ski is denoted by A(S). 2Similar to sequences, alignments with the same number of rows may be concate-nated by the ++ operator.De�nition 2.6 (Projection)Consider a family of sequences S and an alignment A 2 A(S). Given a subfamilyS0 � S, the alignment obtained by extracting from A all rows corresponding to thesequences in S0 { where the columns consisting of blanks only are removed { is calledthe projection of A on S0, denoted by �S0(A). 2De�nition 2.7 (Combination)Consider a family of sequences S and subfamilies S1; : : : ; Sn � S. Given alignmentsA1 2 A(S1); : : : ; An 2 A(Sn), an alignment A 2 A(S) is called a combination of theA1; : : : ; An, if �Si(A) = Ai for all i 2 f1; : : : ; ng. 2De�nition 2.8 (Compatibility of Alignments)Consider, as above, a family of sequences S and subfamilies S1; : : : ; Sn � S. Align-ments A1 2 A(S1); : : : ; An 2 A(Sn) are compatible if there exists a combinationA 2 A(S) of the A1; : : : ; An such that �Si(A) = Ai for all i 2 f1; : : : ; ng. 22Note the use of angle brackets h: : :i to designate a family of sequences instead of the usual setnotation with braces. Sequence families in our context are lists of sequences which { in contrast tosets { are ordered and may contain more than one identical element. To denote subfamilies, we usethe standard symbol � from set notation.



2.3. ALIGNMENT SCORES 13Lemma 2.9Let hs1; : : : ; ski be a family of sequences and Ai;j 2 A(hsi; sji) be pairwise alignmentsfor all (i; j), 1 � i < j � k. If for every three sequences sp, sq, sr, the alignmentsAp;q,Ap;r, and Aq;r are compatible, then all of the alignments Ai;j are also simultaneouslycompatible. 2ProofWe show by induction on k how to construct a combination A of the Ai;j:For k = 3, the assertion trivially holds.Assume k > 3. Let Ak�1 2 A(hs1; : : : ; sk�1i) be a combination of the alignmentsAi;j, 1 � i < j � k � 1 (which exists due to the induction hypothesis). A newalignment Ak 2 A(hs1; : : : ; ski) is constructed from Ak�1 by adding a kth row, �lledwith the letters of sk in a left-to-right order by the following procedure: Let a bea letter of sk. If in one of the pairwise alignments Ai;k, 1 � i < k, a is alignedwith a letter b of sequence si, we place a in the same column where b occurs in Ak�1(due to the triplewise compatibility, no conicts can arise here). If a is not alignedwith a letter in any of the pairwise alignments Ai;k, a new column is inserted in thealignment �lled with blanks in all rows except the last one where the a is placed.Finally, those positions of the new row where no letter of sk is placed are �lled withblanks.Obviously, by this process, the projections on hsi; sji with i < j < k remainunchanged. Since also all projections on hsi; ski, i < k, are (compatibly) containedin Ak, we obtain a combination of all the Ai;j, 1 � i < j � k. 22.3 Alignment ScoresIn many contexts it is important to assess the \quality" of an alignment, i.e. todetermine if a given alignment is near to the one that would be produced by a biologistsolving the problem \manually". As there seems to be no universally applicableway of quantifying the biological correctness of an alignment, usually (real-valued)functions are de�ned on the set of alignments, so-called score functions. Designingscore functions in a way that reasonable alignments are scored extremely (high orlow), the biological alignment problem is translated into an optimization problem onthe set of alignments. The di�culty of quantifying the correctness of alignments stillremains in form of �nding adequate score functions.2.3.1 Single Letter SubstitutionsAll commonly used de�nitions of alignment scores are based on the comparison ofpairs of individual letters. Such a letter-to-letter comparison is based on the sim-plifying assumption that the nucleotides/amino acids at di�erent sites of a sequence



14 CHAPTER 2. ANALYSIS OF DIFFERENCES: SEQUENCE ALIGNMENThave evolved independently. Therefore, only a (usually symmetric) substitution scorefunction is needed which quanti�es, for each pair of letters (a; b) 2 A2, the preferenceof aligning letter a with letter b, represented by an jAj� jAj substitution matrix (seee.g. [68, 50, 86, 99]).In general, there are two natural ways of de�ning substitution score functions:(a) in form of a similarity score s : A2 ! R where letters (a; b) with similarproperties are scored with high (positive) values and di�erent letters are scoredwith low (negative) values, or(b) in form of a distance score d : A2 ! R�0 where pairs of similar letters arescored with small values while the alignment of di�erent letters is penalized bya high distance score.The simplest possible distance score is the unit cost function: Non-identical lettersare scored with the value 1, identities are scored with 0. The unit cost functionis member of a broad class of distance score functions with interesting and usefulproperties, the metric functions: d : A2 ! R�0 is said to be a metric on A if,in addition to symmetry, the zero property d(a; b) = 0 , a = b and the triangleinequality d(a; b) � d(a; c)+d(c; b) hold for all a; b; c 2 A. In case d is a metric on A,Sellers [179] and Waterman et al. [225] showed that for global sequence alignments,the metric properties carry over to the set of sequences over A.On the other hand in the context of local alignments, similarity scores with pos-itive and negative values have been shown to be superior to distance scores [185]: Ina similarity score, the value zero has a special meaning since it separates the posi-tively correlated pairs of letters from the negatively correlated pairs. Thus, a seriesof positively scored substitutions in an alignment indicates highly similar regions ofthe involved sequences.For global sequence alignment it has been shown that under certain conditionsboth distance and similarity score are equivalent [184] and it is easy to derive thecorresponding similarity score function from a given distance score function and viceversa [186, 228].Throughout this thesis, we will restrict the discussion of alignment scores andalgorithms to distances. This choice is arbitrary, and with little changes in somede�nitions it is possible to apply the procedures developed in the following chaptersalso to a similarity score function. Furthermore, the algorithms described in thisthesis do not require any of the metric properties except symmetry. Thus, the scorematrices commonly used in biological applications which are non-metric (e.g. thePAM [50] and Blosum [99] series of amino acid substitution matrices) are applicable.The e�ort made for the invention of biologically reasonable score functions di�erssigni�cantly for nucleic acids and for amino acids. For nucleic acids, often rathersimple score functions are used3. Beside the unit cost function mentioned above,score functions are largely established which distinguish only between transitions3This trend may change in the near future: Very recently, Agarwal and States [1] published anucleic acid substitution matrix based on an advanced statistical model.



2.3. ALIGNMENT SCORES 15(exchanges of two purines or of two pyrimidines) and transversions (all other com-binations) [168, 116]. For amino acid sequences, more elaborated score matrices areused. They reect di�erences in the genetic code [68, 71], chemical properties of theamino acids [92, 86, 137, 139], secondary structural propensities of amino acids inproteins [127, 150, 138], or { among which are the most popular ones { they are de-rived from empirical data by counting \true" matches and mismatches in databasesof structural alignments and by computing the most reasonable substitution proba-bilities which might have led to the observed exchanges [50, 162, 7, 111, 99, 24, 156].See [212] for a recent comparison of more than 40 di�erent amino acid substitutionmatrices.2.3.2 Pairwise Alignment ScoreAs in the discussion of alignments, we begin with the case of two sequences s and t.Based on letter-to-letter distances, there is a natural approach of de�ning a pairwisealignment score, motivated by the following consideration: Sequences s and t aresupposed to have a low overall distance if it is possible to �nd an alignment suchthat at many positions the paired letters have low distances. In the case of aligningproteins this can be read as: If the chains of amino acids in both proteins containsimilar residues over their whole length, the proteins are supposed to have similarmain-chain folding patterns and likely related functions [13]. Of course, this is anidealistic view and the existence of false negatives cannot be excluded. Procedureswhich weight di�erent positions of a biological sequence according to their mutabilityor importance have been suggested [64, 152, 98, 174, 175].Formally speaking, we extend the distance score function d to a functiond� : (A [ f�g)2 ! R�0which is identical to d for all pairs of letters, i.e. d�(a; b) := d(a; b) for all a; b 2 A.Additionally, aligning a letter from A with a blank is penalized by a high value,usually a constant d�(a;�) = d�(�; a) :=  for all a 2 A. Hence, a consecutivestring of l blanks receives the value l . That is the reason for calling this way ofscoring blanks also additive or homogeneous gap costs.The alignment score of A is then de�ned as the sum of the d�-values over all sitesof the alignment:De�nition 2.10 (Alignment Score)Assume sequences s and t over A. Given an alignment A = � s�t� � 2 A(hs; ti) oflength N and an extended distance score function d� : (A[ f�g)2 ! R�0, we de�nethe alignment score of A with respect to d� bywd�(A) := X1�i�N d�(s�i ; t�i ): 2



16 CHAPTER 2. ANALYSIS OF DIFFERENCES: SEQUENCE ALIGNMENTNote that wd� is strongly additive: For all pairwise alignments A and B,wd�(A++B) = wd�(A) + wd�(B):As described in the introduction to this chapter, there is a strong biological mo-tivation to score gaps, i.e. runs of consecutive blanks in an aligned sequence, otherthan as the sum of the corresponding number of single letter indels since they maystem from a single mutational event. Thus, instead of summing the values d�(ai;�)along the letters ai of a gap, often a more sophisticated model in form of a length-dependent gap (penalty) function is considered [72, 80, 119, 218, 197, 81, 9, 145, 136,146, 74, 82, 41, 221]. Sometimes, the gap function also depends on the letters that aredeleted or inserted [225, 121, 90] or on additional information, e.g. known secondarystructure of one or both sequences [228, 125, 20, 183, 200, 173].In the following, we restrict our discussion to gap penalty functions g(l) where lis the length of the gap. Here, the score of an alignment A 2 A(hs; ti) is computedas follows:De�nition 2.11 (Alignment Score with Length-Dependent Gap-Costs)Let s and t be sequences overA. Given an alignmentA = � s�t� � 2 A(hs; ti) of lengthN , a distance score function d : A2 ! R�0, and a length-dependent gap functiong(l) : N�1 ! R�0, we de�ne the alignment score of A with respect to d and g bywd;g(A) := X1�i�Ns�i 6=�6=t�id(s�i ; t�i ) + Xl>0 g(l) �#gaps of length l contained in A: 2In some contexts we do not need identify the distance function d and gap penaltyfunction g, and omit the indices.Of course, for the biological reasons mentioned above, the penalty for a gap shouldnever exceed the sum of the penalties given to its parts, i.e. g(l) should be subadditive:g(l1 + l2 + : : :+ lk) � g(l1) + g(l2) + : : :+ g(lk)() g(l +m) � g(l) + g(m)(the equivalence can be easily shown by induction on k).From the subadditivity of the gap function, the subadditivity of the correspondingalignment score can be derived:Lemma 2.12 (Subadditivity of Alignment Score)Given a distance score function d and subadditive gap penalties g(l), the alignmentscore wd;g is subadditive upon concatenation of alignments,wd;g(A++B) � wd;g(A) + wd;g(B) for all pairwise alignments A and B: 2



2.3. ALIGNMENT SCORES 17ProofAssume A = � s�1 : : : s�Nt�1 : : : t�N � 2 A(hs; ti) and B = � u�1 : : : u�Mv�1 : : : v�M � 2 A(hu;vi). Weconsider three cases:1. s� ends with a gap of length, say, l � 1, and u� begins with a gap of lengthm � 1. In this case,wd;g(A++B) = wd;g � s�1 : : : s�N�lt�1 : : : t�N�l �+ g(l +m) + wd;g � u�m+1 : : : u�Mv�m+1 : : : v�M �� wd;g � s�1 : : : s�N�lt�1 : : : t�N�l �+ g(l) + g(m) + wd;g � u�m+1 : : : u�Mv�m+1 : : : v�M �= wd;g(A) + wd;g(B):2. In case t� ends with a gap and v� starts with a gap, the proposition holds bysymmetric logic.3. In all other cases, the score wd;g(A++B) is simply the sum of wd;g(A) andwd;g(B) since all gap lengths remain unchanged upon concatenation of A andB. 2In the literature, some special subadditive gap functions g(l) are discussed. Mostprominent are (a�ne) linear functions of the form g(l) = � + � l with � 6= 0 (seee.g. [80, 119, 72, 9, 82, 145, 58, 41, 221]) and concave functions, i.e. g(l) which ful�llthe quadrangle inequality g(l+m)� g(l) � g(l+m+ n)� g(l+ n) for all l;m; n � 1(see [218, 136, 74, 59, 41]). Subadditivity of these functions can be shown in astraightforward way [218, 205].In our description of the divide-and-conquer alignment algorithm, we will restrictthe alignment scores to functions wd;g with linear gap costs g(l) = �+ � l which arethe most commonly used in biological applications and for which e�cient alignmentalgorithms exist [80, 136]. Other gap functions are applicable with a lack of speed.Of further importance in the discussion of biologically reasonable gap penaltyfunctions is how to score terminal gaps, i.e. gaps at the beginning or at the end of analignment. To make the compensation of di�erences in the length of the sequencesfree of charge, those \necessary gaps" should be scored di�erent from internal gaps[161, 180, 72] which is also known as free shift of the sequences. In score functionsbased on similarity scores, this is easily achieved by scoring terminal gaps with zero.While Fitch and Smith [72] claim that \distance algorithms cannot be de�ned forunweighted end gaps", we adopt the method of Gupta et al. [90]: In terminal gaps,only the length-dependent part �l of the gap is scored, while the �xed portion � isomitted.However, to keep the exposition simpler, we do not discuss free shift when in-troducing the alignment algorithms. In the implementation which we describe inChapter 6, we have incorporated the free shift of the sequences.



18 CHAPTER 2. ANALYSIS OF DIFFERENCES: SEQUENCE ALIGNMENT2.3.3 Multiple Sequence Alignment ScoreHistorically, several approaches of generalizing scores to alignments of more than twosequences have been proposed. The �rst approaches were tree alignment methods[166, 167, 11, 95]. A pre-given (mostly unrooted) phylogenetic tree is considered.The leaves of the tree represent the given sequences to be aligned while inner nodesof the phylogenetic tree correspond to ancestor sequences which are usually unknown.De�ning the length of an edge in such a tree as the pairwise alignment score of thesequences connected by the edge, the tree alignment score is simply the sum of alledge lengths in the tree.In generalized tree alignment methods [167, 105, 95, 96, 91, 211], the topologyof the tree is not given in advance. The tree and the alignment are both to becalculated.The following approach, suggested by G. Gonnet [77] is motivated by tree align-ment. Assuming that the sequences are related by a tree structure, it is generallyeasier to �nd a cyclic order of the sequences than �nding the correct phylogenetictree. The sum of the pairwise projection costs of sequences which are adjacent in aminimum cost cycle de�nes the cyclic alignment score.In the last decade, the so-called sum-of-pairs (SP) score, de�ned as the sum of thescores of all pairwise projections of a multiple alignment, has received large attention(cf. [142, 81, 15, 39, 11, 177, 159, 91, 16, 215]). Sometimes, the projection costs areadditionally weighted according to sequence-dependent (non-negative) weight factors[8, 6, 90]. The weights, in the following denoted by �p;q, reect e.g. phylogeneticrelationship of the sequences. For the moment, assume the weights as given. A moredetailed discussion follows in Section 2.5.De�nition 2.13 (Weighted SP Multiple Sequence Alignment Score)Assume an alignmentA 2 A(hs1; : : : ; ski), a pairwise alignment score function w, andweight factors �p;q 2 R�0 for all (p; q), 1 � p < q � k. The weighted sum-of-pairsmultiple sequence alignment score of A is given byw(A) := X1�p<q�k�p;q w(�hsp;sqi(A)): 2Obviously, subadditivity of the alignment score upon concatenation of pairwise align-ments (Lemma 2.12) carries over to weighted SP multiple alignment score.Note that the cyclic alignment score mentioned above, for a given cyclic orderof the sequences, is just a special case of the weighted SP score with the weightfactors �p;q set to 1 for sequences sp and sq which are neighbors in the cycle and0 otherwise. But, of course, a direct computation of the cyclic alignment score canbe more e�cient than proceeding this way since only as many pairwise scores haveto be considered as there are sequences involved, instead of a quadratic number ofpairwise projections in the general case.



2.4. THE PROBLEM 19In contrast to the approaches discussed so far, in a large number of heuristicalignment procedures (e.g. [109, 20, 66, 101, 201, 133, 223, 199, 42, 22, 163, 21, 39,129, 155, 10]) much more complicated objective functions are considered. Some baseon sophisticated quality models including additional knowledge about the sequencesinvolved and about estimated as well as pre-given phylogenetic relationships, othersuse less transparent heuristics to speed up the computation. But the lack of a simplewell-de�ned score which is optimized or approximated does not necessarily implybiologically unreasonable alignments.In principle, the divide-and-conquer alignment method can be applied to any ofthe introduced alignment scores. In the further discussion, we focus on the weightedSP score. With this approach the least amount of additional knowledge about thesequences is required although methods based on evolutionary trees might be closerto biological intuition [11].2.4 The ProblemWith the de�nitions of the previous section, a formalization of the multiple sequencealignment problem is straightforward. It is based on the largely accepted parsimonyprinciple [38, 71, 70, 169]: Of all possible mutational paths for one sequence tochange into another, we expect the shortest one, i.e. the one with the least amount ofevolution, to approximate the true history best. Note that the parsimony principlecan only underestimate, but never overestimate the true evolutionary distance.Multiple Sequence Alignment ProblemGiven a family of sequences S = hs1; : : : ; ski and a distance-based alignment scorefunction w : A(S)! R�0, �nd an alignment A 2 A(S) that minimizes w(A). 2Such an alignment is called an optimal alignment of S = hs1; : : : ; ski with respect tow, its score is referred to as the optimal alignment score of S, shortwopt (S) := minfw(A)jA 2 A(S)g:Note that optimal alignments are not necessarily unique.By simple reasoning, the subadditivity property discussed above for the concate-nation of pre-given alignments (see Lemma 2.12 and the remark in Section 2.3.3)carries over to optimal alignment scores:Lemma 2.14 (Subadditivity of Optimal Alignment Score)Assume sequence families hs1; : : : ; ski and ht1; : : : ; tki. Given a score function wd;gwith subadditive gap penalty function g(l), the following holds:wopt(hs1++t1; : : : ; sk++tki) � wopt(hs1; : : : ; ski) + wopt (ht1; : : : ; tki): 2



20 CHAPTER 2. ANALYSIS OF DIFFERENCES: SEQUENCE ALIGNMENTProofLet A and B be optimal alignments of hs1; : : : ; ski and ht1; : : : ; tki, respectively. Sincethe optimal alignment score is the minimum over all possible alignment scores of thesequences under consideration,wopt(hs1++t1; : : : ; sk++tki) � wd;g(A++B)� wd;g(A) + wd;g(B)= wopt(hs1; : : : ; ski) + wopt (ht1; : : : ; tki): 2In some cases, solving the multiple sequence alignment problem is trivial when opti-mal pairwise alignment are given:Lemma 2.15 (Combination of Optimal Alignments)Assume a family of sequences hs1; : : : ; ski and triplewise compatible pairwise align-ments Ai;j 2 A(hsi; sji) for all (i; j), 1 � i < j � k. If each Ai;j is an optimalalignment of si and sj, then each combination A of the Ai;j, 1 � i < j � k, is a(weighted) SP-optimal multiple alignment of hs1; : : : ; ski. 2ProofLet A be a combination of the Ai;j (which exists due to Lemma 2.9), and let Aopt bean optimal multiple alignment of hs1; : : : ; ski. Then, by de�nition,X1�p<q�k�p;q w(�hsp;sqi(Aopt)) = w(Aopt) � w(A) = X1�p<q�k�p;q wopt(hsp; sqi):On the other hand, for all (p; q), 1 � p < q � k,w(�hsp;sqi(Aopt)) � wopt(hsp; sqi):Together, this implies w(�hsp;sqi(Aopt)) = wopt (hsp; sqi)for all (p; q), 1 � p < q � k, since all summands are non-negative. Thus,w(Aopt) = w(A);i.e. A is also an optimal alignment of hs1; : : : ; ski. 2It is well-known that the multiple sequence alignment problem is equivalent to theproblem of �nding a shortest path in a directed graph with Q1�i�k(jsij + 1) nodes,a single source vertex and a single sink vertex, the so-called alignment graph (seee.g. [121, 144]). This analogy will not be considered in further detail in this the-sis, although several insights from graph theory have been successfully adapted toalignment problems.



2.5. SEQUENCE WEIGHTING 21Finally, we again have to emphasize that with the formalization of the alignmentproblem only a mathematical framework for the quality assessment of alignments isgiven. But an alignment which is optimal with respect to an arbitrary score functionwd;g does not guarantee to be biologically meaningful. The choice of substitutionfunction d and gap penalty function g is very important. Furthermore, there doesnot seem to exist a single score function wd;g which, applied to any set of biologicalsequences, would result in an alignment that perfectly matches the biologically correctone. Thus, the choice of adequate alignment parameters is and will probably remainfor a long time to be a di�cult problem in computational molecular biology [67, 78,221]. Indeed, it has been shown that alignments optimized with respect to additionalcriteria such as structural models can be closer to the truth than alignments basedon simple numerical score functions as we have de�ned here [87, 88].2.5 Sequence WeightingHow to choose weight factors in a multiple sequence alignment appropriate for agiven task is an important and much studied scienti�c topic (cf. [206, 182, 8, 6, 209]).In some contexts, weights attached to individual sequences are used to avoid over-weighting redundant information which can arise e.g. from some identical or verysimilar sequences in the data set. These problems come up when pro�les (proba-bility vectors representing the relative frequencies of occurrence of each letter in analignment site) are aligned [206, 182, 201, 85], or when edge lengths in a pre-givenevolutionary tree are determined [8]. In the weighted SP alignment score, weightsare not required for individual sequences but for pairs of sequences. Such weightsare often computed from pairwise distances of the sequences in an estimated evo-lutionary tree [8, 6]. Higher weights are given to the more similar pairs, as havingthem aligned optimally should be more important than aligning two fairly unrelatedsequences optimally at the expense of worsening a good alignment of closely relatedsequences. But in contrast to these methods, we do explicitly not want to use atree as a basis for our weights because such weights might bias the alignment in thedirection of a certain phylogeny. So, we decided to develop much simpler weightscomputed from the pairwise distances of the sequences, only.In [203], the following weights are suggested:�p;q := minscorewopt (hsp; sqi)where minscore := min1�i<j�kfwopt(hsi; sji)g. This formula gives rise to two remarks:1. Assume two identical sequences sp and sq and a metric score function w suchthat minscore = wopt (hsp; sqi) = 0. In this case, �p;q is unde�ned.2. An alignment of short sequences usually has a lower absolute score than thealignment of long sequences simply because the corresponding alignments also



22 CHAPTER 2. ANALYSIS OF DIFFERENCES: SEQUENCE ALIGNMENTdi�er in length and the global alignment score increases linearly with the lengthof an alignment [44, 221]. Thus, in the above weighting scheme, pairs of shortsequences in general receive higher weight factors than pairs of long sequences.Due to the second remark, we use length-normalized scores as introduced by Feng etal. [67]: wopt (hsp; sqi) := wopt (hsp; sqi)minfjspj; jsqjgrather than absolute alignment scores. The division by the length of the shortersequence follows from the same rationale as not to penalize dangling ends of longersequences in an alignment. A more sophisticated normalization procedure of align-ment scores is discussed by Johnson and Doolittle [109], but it matches the philosophyof our approach to use this rather simple technique.In conclusion, we propose the following formula for the computation of pairwiseweight factors for the SP alignment with the divide-and-conquer method:�p;q := ( 1 if maxscore = 01� � � wopt (hsp;sqi)�minscoremaxscore otherwisewhere minscore :=min1�i<j�kfwopt (hsi; sji)g, maxscore :=max1�i<j�kfwopt(hsi; sji)g,and � is a (user-speci�able) parameter, the weight intensity. The weight intensitymaybe set to any value between � = 1 (maximum weighting: smallest weights for (p; q)with wopt (sp; sq) = maxscore, highest weights �p;q = 1 for (p; q) with wopt (sp; sq) =minscore) and � = 0 (no weighting: �p;q = 1 for all 1 � p < q � k).



Chapter 3Calculating Distances:Dynamic ProgrammingIn this chapter, we discuss the standard method to compute optimal solutions ofthe multiple sequence alignment problem: dynamic programming. Due to the largenumber of alignments for reasonably long sequences (see Equations 2.1 { 2.3), thenaive way of enumerating all alignments and then to choose the one with the smallestscore cannot be the method of choice. Historically, the use of dynamic programmingalgorithms for sequence comparison has several independent sources. Among themost frequently cited are Needleman and Wunsch [149] for biological applicationsand Wagner and Fischer [214] in the computer science �eld. See [119] for detailsabout the invention process.While the algorithms given in the literature di�er slightly, the general conceptis always the same. We begin with describing the simplest, most basic pairwisealgorithm, followed by extensions for a�ne gap penalty functions and for more thantwo sequences. Finally, we present a famous and elegant branch-and-bound approachwhich speeds up the computation in many cases.3.1 Optimal Alignment of Two SequencesWe consider the problem of aligning two sequences s and t. The standard dynamicprogramming algorithm for sequence alignment proceeds in two stages. The �rststage �nds the optimal alignment score, and an optional second stage can be usedto �nd an optimal alignment if desired. In the following, we will focus on the �rststage and describe the second stage only briey because this stage does not a�ectthe divide-and-conquer procedure.The essential data structure used by dynamic programming algorithms is the dis-tance matrix. In the context of sequence alignment, it contains the optimal alignmentscores of all pre�xes of s with all pre�xes of t:23



24 CHAPTER 3. CALCULATING DISTANCES: DYNAMIC PROGRAMMINGDe�nition 3.1 (Distance Matrix)The distance matrix of sequences s and t is de�ned byDs;t := (Ds;t[i; j])0�i�jsj;0�j�jtjwhere Ds;t[i; j] := wopt(hsi; tji)for all (i; j), 0 � i � jsj, 0 � j � jtj. 2In the simple case of a homogeneous gap function g(l) =  l, the distance matrix canbe computed by the well-known dynamic programming recurrenceDs;t[0; 0] := 0Ds;t[i; 0] := Ds;t[i� 1; 0] + Ds;t[0; j] := Ds;t[0; j � 1] + Ds;t[i; j] := min8><>:Ds;t[i� 1; j � 1] + d(si; tj);Ds;t[i� 1; j] + ;Ds;t[i; j � 1] +  9>=>; (3.1)for all i, 1 � i � jsj, and j, 1 � j � jtj.The initializations in the upper three lines are obvious. The correctness of therecurrence in the fourth line can easily be veri�ed by considering the last column ofan optimal alignment A of si and tj:� Either A ends with a substitution of si by tj, A = � : : : si: : : tj �. In this case,wopt(hsi; tji) is the score Ds;t[i� 1; j � 1] of an optimal alignment of si�1 andtj�1 plus the cost d(si; tj) for substituting si by tj.� Assume now A ends with a deletion of si, i.e. A = � : : : si: : : � �. In this case,the score of an optimal alignment of si and tj is the optimal alignment scoreDs;t[i� 1; j] of the pre�xes si�1 and tj plus the cost  for aligning si with theblank.� The third case A = � : : : �: : : tj � is symmetric to the second one.Thus, the optimal alignment score wopt (hsi; tji) can be obtained by computing thethree-way minimum given in (3.1).A straightforward computation order is to proceed column by column (or row byrow) but any other order consistent with the data dependencies of (3.1) is possibleas well. Every entry in Ds;t is computed in constant time leading to an O(jsj � jtj)time complexity to compute wopt (hs; ti) = Ds;t[jsj; jtj].Once the distance matrix Ds;t is computed, the second stage of the alignmentalgorithm is then rather simple: An optimal alignment is recovered by tracing back



3.2. GENERAL GAP FUNCTIONS 25from the cell Ds;t[jsj; jtj] through the matrix along the entries which yielded thethree-way minima until cell Ds;t[0; 0] is reached. Therefore it may be useful to saveback-pointers at each cell of the distance matrix but given the matrix Ds;t, a re-computation of the minimizations along the way back is possible as well. In bothcases, storing the whole matrix of size O(jsj � jtj) is necessary.If one is interested only in the optimal alignment score of s and t, O(minfjsj; jtjg)space su�ces since for computing the jth column of Ds;t, only entries of the (j�1)thcolumn are required. Based on multiple computation of Ds;t using such a score-onlyalgorithm in a divide-and-conquer manner, Hirschberg [104] showed that it is alsopossible to keep the amount of memory required for the computation of an optimalalignment at O(jsj+ jtj) by the drawback of doubling the computation time. This isoptimal space since it is required even by the sequences s and t alone.Note that the de�nition of the distance matrix Ds;t based on the pre�xes of sand t, respectively, is somewhat arbitrary. In a symmetric way, the calculation of anoptimal alignment is also possible beginning at the right end of the sequences, usinga reverse distance matrixDrs;t := (Drs;t[i; j])0�i�jsj;0�j�jtj where Drs;t[i; j] := wopt (his; jti):For alignment scores which are invariant about reverting both sequences { as all thosediscussed above {, the following holds:Drs;t[i; j] = Ds�1;t�1[jsj � i; jtj � j]:So it is obvious that Drs;t can also be computed in O(jsj � jtj) time. For symmetryreasons, the distance matrix Ds;t is also called forward distance matrix, denoted byDfs;t.3.2 General Gap FunctionsThe standard dynamic programming procedure for sequence alignment can be gen-eralized to subadditive gap penalties g(l). First approaches by Waterman et al. [225]have led to the following generalization of (3.1) with time complexityO(jsj � jtj � (jsj+jtj)): Ds;t[0; 0] := 0Ds;t[i; 0] := g(i)Ds;t[0; j] := g(j)Ds;t[i; j] := min8>>><>>>:Ds;t[i� 1; j � 1] + d(si; tj);min1�l�ifDs;t[i� l; j] + g(l)g;min1�l�jfDs;t[i; j � l] + g(l)g 9>>>=>>>; (3.2)for all i, 1 � i � jsj, and j, 1 � j � jtj.



26 CHAPTER 3. CALCULATING DISTANCES: DYNAMIC PROGRAMMINGFor some special gap penalty functions, more e�cient algorithms have been de-vised. For alignment scores wd;g with a linear gap function g(l) := �+� l, Gotoh [80]and other authors [9, 145] were able to reduce the required time toO(jsj�jtj) as for thehomogeneous case: Due to the fact that the penalties for the gaps of various length allchange by the same additive constant � when the algorithm proceeds to cell Ds;t[i; j]from Ds;t[i�1; j] or from Ds;t[i; j�1], history matrices Vs;t := (Vs;t[i; j])0�i�jsj;0�j�jtjand Hs;t := (Hs;t[i; j])0�i�jsj;0�j�jtj are introduced which indicate the score of the bestalignments ending with a gap in either sequence:Vs;t[i; j] := minfw(A)jA 2 A(hsi; tji); A = � : : : si: : : � �g;Hs;t[i; j] := minfw(A)jA 2 A(hsi; tji); A = � : : : �: : : tj �gfor all (i; j), 0 � i � jsj, 0 � j � jtj. De�ning the minimum of the empty set as +1,note that Vs;t[0; j] = +1 for all j � 0 and that Hs;t[i; 0] = +1 for all i � 0.Using Vs;t and Hs;t, (3.2) can be rewritten for a�ne gap functions g(l) = �+ � l:Ds;t[0; 0] := 0Vs;t[0; 0] = Hs;t[0; 0] := +1Ds;t[i; 0] = Vs;t[i; 0] := g(i)Hs;t[i; 0] := +1Ds;t[0; j] = Hs;t[0; j] := g(j)Vs;t[0; j] := +1Vs;t[i; j] := minfDs;t[i� 1; j] + �; Vs;t[i� 1; j]g+ �Hs;t[i; j] := minfDs;t[i; j � 1] + �;Hs;t[i; j � 1]g+ �Ds;t[i; j] := min(Ds;t[i� 1; j � 1] + d(si; tj);Vs;t[i; j]; Hs;t[i; j] ) (3.3)for all i, 1 � i � jsj, and j, 1 � j � jtj. The proof of the equivalence of bothrecurrences has been shown several times (see e.g. [80, 218, 205, 221]) and is omittedhere.Though, the initializations have not always been devised very carefully. In severalearly publications of this algorithm [80, 197, 218] and even in a very recent one [221]1,the following initializations are suggested:Hs;t[i; 0] := g(i) for all i, 0 � i � jsj;Vs;t[0; j] := g(j) for all j, 0 � j � jtj: (3.4)The following example shows that this might lead to errorneous alignment scores.1Upon our noti�cation, the mistake will be corrected in the next edition of this textbook [216].



3.3. OPTIMAL ALIGNMENT OF MORE THAN TWO SEQUENCES 27Example 3.2Let A := fA; Tg, d(A; T) := 16, and g(l) := 5 + 4 l. Consider the trivial sequencess := A and t := T. With the initializations given in (3.4), the optimal alignmentscore is computed as follows:Ds;t[0; 0] = 0; Vs;t[0; 0] = Hs;t[0; 0] = g(0) = 5;Ds;t[1; 0] = Vs;t[1; 0] = Hs;t[1; 0] = g(1) = 9;Ds;t[0; 1] = Hs;t[0; 1] = Vs;t[0; 1] = g(1) = 9;Vs;t[1; 1] = minfDs;t[0; 1] + 5; Vs;t[0; 1]g+ 4 = 13;Hs;t[1; 1] = minfDs;t[1; 0] + 5; Vs;t[1; 0]g+ 4 = 13;Ds;t[1; 1] = minfDs;t[0; 0] + 16; Vs;t[1; 1];Hs;t[1; 1]g = 13:Thus, wopt(hs; ti) = Ds;t[1; 1] = 13 with the corresponding optimal alignments� A �� T � and � � AT � �. In fact, these alignments have score 18. The correct op-timal alignment is � AT � with score 16. 2In contrast to the publications mentioned above, Altschul and Erickson [9] give thecorrect initializations for Vs;t and Hs;t.In analogy to Drs;t, we de�ne reverse history matricesV rs;t[i; j] := minfw(A)jA 2 A(his; jti); A = � si+1 : : :� : : : �gand Hrs;t[i; j] := minfw(A)jA 2 A(his; jti); A = � � : : :tj+1 : : : �g:To emphasize the symmetry, the forward history matrices Vs;t and Hs;t are alsodenoted by V fs;t and Hfs;t, respectively.Adopting the space-saving technique of Hirschberg [104] to the history matricesHs;t and Vs;t, Myers and Miller [145] showed that also the computation of an optimalalignment with a�ne gap costs is possible in linear space.3.3 Optimal Alignment of More Than Two Se-quencesDynamic programming can be generalized to multiple alignment of a family of ksequences hs1; : : : ; ski [166, 225]. A k-dimensional distance lattice Ds1;:::;sk is usedinstead of the distance matrix Ds;t, taking O(nk) space where n is the length of thelongest sequence under consideration. Straightforward generalizations of (3.1) and(3.2) lead to algorithms with time complexity O(2knk) for homogeneous gap costs



28 CHAPTER 3. CALCULATING DISTANCES: DYNAMIC PROGRAMMINGand O(2knkkn) for arbitrary subadditive gap costs, respectively. The generalizationof the quadratic time algorithm for linear gap costs is not that simple. Gotoh [81]devised an algorithm for the optimal alignment of three sequences which is cubicin space and time. In the general case, e�cient algorithms are rather complicated.The number of \histories" one has to consider at each point of the lattice increasesenormously with the number of sequences. Altschul [5] showed that the growth is ofthe order O([k=e ln(2)]kpk).To avoid this problem, he suggested a slightly di�erent scoring scheme for lineargap penalties in a multiple alignment called quasi natural gap costs [5]. Whether ablank in one row of the multiple alignment when aligned with a letter in anotherrow is the opening of a new or the elongation of an existing gap is decided based onthe entries in the previous column of the alignment, only. Thus, no histories haveto be saved. The number of cases where an alignment optimal with respect to quasinatural gap costs di�ers from an optimal alignment in the \natural" (sum-of-pairs)sense can be shown to be marginal [5].Anyway, space and time usage of standard dynamic programming for sequencealignment grow exponentially with the number of sequences. Less time consumingvariants and a number of speed-ups for the optimal alignment of more than two se-quences have therefore been proposed (e.g. [73, 142, 81, 39, 188, 141, 4, 107, 90]). Insome of these approaches, the search for the optimal alignment is reorganized suchthat most promising regions along the main diagonal of the k-dimensional searchspace are scanned �rst and the search is stopped when it is clear that no alignmentexists which scores better than the best one found so far. Other methods determinein advance parts of the distance lattice which provably cannot contain an optimalalignment. In general, the closer the sequences are related, the better perform suchprocedures. (This observation seems to be valid for most, even for \manual" align-ment methods [198].) But despite all the e�orts made on the development of fasteroptimal alignment procedures, dealing with more than, say, �ve sequences of length1000 or twelve sequences of length 20 within reasonable time (some seconds or min-utes) seems virtually impossible. However, as we shall see, this limited potentialmeets exactly the requirements of the divide-and-conquer approach.3.4 The Approach of Carrillo and LipmanIn this section, we briey describe the approach of Carrillo and Lipman [39] as anillustrative example of a method which allows to reduce the search space of multi-dimensional dynamic programmic applied to optimal sum-of-pairs sequence align-ment.In the �rst stage, a heuristic alignment of the sequences hs1; : : : ; ski is com-puted. Several procedures for fast heuristic SP alignments are available, see e.g.[187, 109, 220, 39]. In the second stage, the projections of this alignment on the two-dimensional surfaces of the k-dimensional lattice together with the pairwise optimal



3.4. THE APPROACH OF CARRILLO AND LIPMAN 29alignment scores are used to compute upper bounds for the projections of the optimalmultiple alignment. These bounds allow to determine regions in the k-dimensionallattice which do not have to be considered when searching for the optimal multiplealignment.To be more precise, let cD be the score of the heuristic multiple alignment and letwopt (hs1; : : : ; ski) = X1�i<j�k fDsi;sjbe the (yet unknown) optimal alignment score with pairwise projection costs fDsi;sj .(For shortness of the exposition, we set all pairwise sequence weights to 1 in thisdiscussion.) The score of the heuristic multiple alignment cD cannot be smaller thanthe optimal alignment score: cD � wopt(hs1; : : : ; ski);and the cost fDsi ;sj of a projection of the optimal alignment is never smaller than thecorresponding optimal pairwise alignment score:fDsi;sj � wopt(hsi; sji):Hence, for each pair of sequences (sp; sq), 1 � p < q � k, an upper bound for theprojection cost fDsp;sq , based only on the cost of the heuristic alignment and of theoptimal pairwise alignments can easily be computed:cD � wopt (hs1; : : : ; ski) = X1�i<j�kfDsi;sj ;thus fDsp;sq � cD � X1�i<j�k(i;j) 6=(p;q)fDsi;sj � cD � X1�i<j�k(i;j) 6=(p;q)wopt (hsi; sji):By this upper bound, for each pair (sp; sq), a region in the corresponding two-dimensional surface of the distance lattice can be de�ned such that the optimalalignment path must lie inside the intersection of the k-dimensional lattice with allthese regions.This procedure with quasi natural gap costs has been implemented in the com-puter program MSA [128, 90]. Unfortunately, the approach of Carrillo and Lipmanalone does not speed up the standard dynamic programming procedure su�cientlyto make it applicable to a much broader range of sequence families. Thus, severallooser heuristics have been implemented in MSA, relaxing from the restriction thatthe optimal alignment necessarily lies within the remaining part of the k-dimensionallattice. Hence, MSA does not always �nd an optimal alignment of the given sequences[90].



30 CHAPTER 3. CALCULATING DISTANCES: DYNAMIC PROGRAMMING3.5 NP-Completeness of Multiple SequenceAlignmentWithout going much into detail, we report in this section an important result ofWang and Jiang [215].Theorem 3.3Multiple sequence alignment with respect to the sum-of-pairs score is NP-complete.2The proof which shows the reducibility of the shortest common supersequence problem[75] to multiple sequence alignment can be found in [215].With the NP-completeness of multiple sequence alignment, any attempt of devel-oping a fast algorithm to compute optimal multiple sequence alignments is expectedto fail. Consequently, there is a strong need for heuristic algorithms producing near-optimal alignments, and an abundance of procedures have been developed. For re-views and comparisons see [13, 40, 160, 135]. Existing approaches fall in general inone of the follwing two classes.� The iterated pairwise or progresssive alignment methods follow the rationale oftree alignments described in Section 2.3.3: Guided by the branching order ofa pre-given (mostly unrooted) tree whose leaves represent the sequences to bealigned { or by any other data structure representing a hierarchical clusteringof the sequences {, in the �rst stage the two closest related sequences arealigned pairwise optimally. The result is stored in form of a so-called weightedaverage sequence [224] or pro�le [89] which permits further alignment withother individual sequences or pro�les/average sequences. In the next stages,this procedure is iterated for the next closest related pair and so on. Severalvariations of this basic strategy have been developed [167, 224, 105, 17, 20, 66,89, 46, 196, 102, 194, 206, 199, 97, 30, 208, 40, 183, 83, 103, 84, 201, 211, 85].� Algorithms that fall in the second class, fragment-based methods, follow thestrategy of assembling pairwise or multiple local alignments to achieve a globalmultiple alignment [132, 228, 187, 15, 109, 206, 223, 207, 12, 208, 52, 177,22, 229, 163, 147, 140]. After a consistency check, the local alignments (alsodenoted as fragments, segments, or diagonals) de�ne �xed regions or anchorsof the intended global alignment. Only the remaining subsequences betweenthe anchors have to be aligned optimally. Unfortunately, the feasibility ofthis approach depends largely on the relatedness of the sequences. For closelyrelated sequences many signi�cant fragments can be found, and the optimalalignment of the intermediate segments is no challenge. But for feebly relatedsequences, often only a small number of consistent local alignments can befound. Then, the usual fragment-based alignment methods take rather longrunning times due to the long subsequences which have to be aligned optimally.



3.5. NP-COMPLETENESS OF MULTIPLE SEQUENCE ALIGNMENT 31The divide-and-conquer approach to multiple sequence alignment developed in thisthesis can be seen as owing from the same concept as the fragment-based methodsbut being more general than previous procedures. Systematically, anchor points are�xed in all sequences, no matter if there are obvious local similarities between thesequences or not. Hence, a considerable speed-up compared to multiple sequencealignment by standard dynamic programming can be guaranteed.



Chapter 4Basic Divide-and-ConquerAlignment4.1 IntroductionThe general idea of the divide-and-conquer multiple sequence alignment (DCA) israther simple. Suppose that we are given a family S = hs1; : : : ; ski of sequences. First,we cut each sequence at a suitable position near to its midpoint, say, we cut sequences1 at position c1, s2 at position c2, and so on. This way, we obtain two new familiesof shorter sequences, one family consisting of the pre�xes hsc11 ; : : : ; sckk i and one ofthe su�xes hc1s1; : : : ; ckski. If we could align these two new families of sequencesoptimally, we could then concatenate our resulting alignments to obtain an alignmentA 2 A(S) of the original sequences. On the other hand, if it takes still too muchtime to align these two new families optimally, we could apply our procedure to thepre�x family and to the su�x family in a recursive manner, thus reducing the originalmultiple alignment problem to more and more alignment problems involving shorterand shorter sequences, until we reach (sub)sequences short enough (e.g. shorter thana threshold L) so that they can be aligned optimally. Thus, we reduce the problem ofaligning k sequences of length at most n to the problem of aligning about nL familiesof short (sub)sequences of maximal length L. For a schematic representation of thedivide-and-conquer method for three sequences, see Figure 4.1.Figure 4.2 gives an impression about the reduction of search space achieved by thisapproach: Suppose each of the three sequences is represented by a set of parallel edgesof the large cube. The size of the corresponding alignment problem is proportionalto the volume of the cube. By slicing the sequences, we reduce the large problemto several small alignment problems, represented by the \chain" of boxes along thediagonal of the cube. The remaining search space is then the sum of the volumes ofthese small boxes.The main di�culty arising with this approach is how to �nd suitable slicingpositions such that the resulting total alignment is optimal or { at least { very32



4.1. INTRODUCTION 33
c1s1c2s2c3s3sc11sc22sc33

c1original sequencesdividedivide dividealign optimallyconcatenate
c2s1s2s3 c3

Figure 4.1: Schematic representation of the divide-and-conquer method.similar to an optimal alignment of the original sequences.De�nition 4.1 (Optimal Slicing Positions)A family of slicing positions hc1; : : : ; cki of sequences hs1; : : : ; ski is called optimal ifthere is an alignmentA of the family of pre�xes hsc11 ; : : : ; sckk i and there is an alignmentB of the family of su�xes hc1s1; : : : ; ckski such that the concatenation A++B is anoptimal alignment of the original sequences hs1; : : : ; ski. 2Two optimal families of slicing positions can be given trivially: h0; : : : ; 0i andhjs1j; : : : ; jskji. But obviously, slicing the sequences this way does not contribute inany way to a solution of the alignment problem. Instead, symmetry reasons suggestslicing positions near to the midpoint of the sequences since this way the largestreduction of search space can be expected (cf. Figure 4.2).



34 CHAPTER 4. BASIC DIVIDE-AND-CONQUER ALIGNMENT
Figure 4.2: The reduction of search space.A simple observation about the existence of optimal families of slicing positionsis the following.Lemma 4.2Suppose that we are given a family of sequences hs1; s2; : : : ; ski and a slicing positionof one of the sequences, say position ĉ1 of sequence s1, 0 � ĉ1 � js1j. Then therealways exist positions c2; : : : ; ck such that hĉ1; c2; : : : ; cki is an optimal family of slicingpositions of hs1; s2; : : : ; ski. 2ProofLet A be an optimal alignment of S = hs1; s2; : : : ; ski. Recall that z := �s�1(ĉ1) isthe index of the column in A in which the ĉ1th letter of s1 occurs. Since A is anoptimal alignment, ĉ1 together with the positions cj := �s�j (z) for j = 2; : : : ; k buildsan optimal family hĉ1; c2; : : : ; cki of slicing positions of S. 2Without a pre-given optimal alignment, the computation of an optimal familyof slicing positions is not at all that simple. In fact, due to the NP-completenessof optimal multiple sequence alignment, we cannot expect that the computation ofoptimal slicing positions requires less time than the computation of an optimal align-ment itself. Consequently, to achieve a fast divide-and-conquer alignment algorithm,the search for optimal families of slicing positions cannot be the method of choice.What we intend to �nd instead is a way to compute good though not necessarilyoptimal families of slicing positions hc1; c2; : : : ; cki. Here we have two main goals: The



4.2. ADDITIONAL-COST MATRIX OF TWO SEQUENCES 35computation should be faster than the O(2knk) time of dynamic programming andthe required space should be less than exponential in the number of sequences. Notethe importance of the second condition since space, not time, is often the limitingfactor when computing simultaneous multiple alignments of long sequences. Indeed,we will present a way of computing high quality slicing positions using the spacerequired for pairwise alignments, only.4.2 Additional-Cost Matrix of Two SequencesAs described above, the computation of an optimal multiple alignment from compati-ble optimal pairwise alignments is very simple (see Lemma 2.15). However, in general,optimal pairwise alignments are not compatible. Consequently, a compromise has tobe made when constructing a multiple alignment from the optimal pairwise align-ments. Some of the alignments have to be \broken", and the sequences are shiftedagainst each other. With the following de�nition, we introduce a measure whichquanti�es the deviation from being an optimal pairwise alignment:De�nition 4.3 (Pairwise Additional Cost)Given two sequences s and t and an alignment score function w, we de�ne for eachpair (i; j) of possible slicing positions of s and t, 0 � i � jsj, 0 � j � jtj, the pairwiseadditional cost with respect to w byCs;t[i; j] := minnw(A++B)jA 2 A(hsi; tji); B 2 A(his; jti)o� wopt(hs; ti):The matrix Cs;t := (Cs;t[i; j])0�i�jsj;0�j�jtjis called the additional-cost matrix of s and t with respect to w. 2Figure 4.31 illustrates the de�nition: An optimal alignment path with cost wopt (hs; ti)is represented by the white boxes. The shaded boxes show a best alignment pathpassing through vertex (i; j). The additional cost is simply the \length di�erence"of these two paths.Obviously, the additional cost is always greater than or equal to zero. Moreover, ingeneral the additional-cost matrices have a particularly regular form (see Figure 4.4).If we regard the scores in each position of the matrices as a \height function", thenthe matrices have a valley which runs along or near to the main diagonal. The lowestelevation is zero height which is attained along the paths of optimal alignments (seethe white boxes in Figure 4.4). From the zero height paths to the top and bottom,1The unusual way of denoting the columns of Cs;t by the �rst index (i) and the rows by thesecond index (j) in Figures 4.3 { 4.6 and 5.1 { 5.9 is by reason of consistency with earlier publications[192, 157].



36 CHAPTER 4. BASIC DIVIDE-AND-CONQUER ALIGNMENT
 s

tj
i

Figure 4.3: De�nition of Cs;t. White boxes denote an optimal alignment path, shadedboxes denote a best alignment path through vertex (i; j).values in each column are almost always monotonically increasing (the darker shadedregions in Figure 4.4).Notation 4.4For all i 2 f0; : : : ; jsjg, we denote the ith column of additional-cost matrix Cs;t byCol is;t := �Col is;t[j]�0�j�jtj where Col is;t[j] := Cs;t[i; j]:For all j 2 f0; : : : ; jtjg, we denote the jth row of Cs;t byRowjs;t := �Row js;t[i]�0�i�jsj where Rowjs;t[i] := Cs;t[i; j]: 2Lemma 4.5For each i 2 f0; : : : ; jsjg, there exists at least one index j 2 f0; : : : ; jtjg such thatCol is;t[j] = 0. 2ProofThis follows immediately from Lemma 4.2 with k = 2. 2
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Figure 4.4: Typical form of an additional-cost matrix. Light boxes denote low values,dark boxes denote high values.Of course, an analogous assertion holds for the rows of an additional-cost matrix.Note that in case of an additive alignment score function w, the above de�nitionof the pairwise additional cost is equivalent to that given in [203] and [192]:Cs;t[i; j] := minfw(A++B)jA 2 A(hsi; tji); B 2 A(his; jti)g �wopt (hs; ti)= minfw(A) + w(B)jA 2 A(hsi; tji); B 2 A(his; jti)g � wopt (hs; ti)= minfw(A)jA 2 A(hsi; tji)g+minfw(B)jB 2 A(his; jti)g � wopt (hs; ti)= wopt(hsi; tji) + wopt (his; jti) �wopt (s; t):Hence, for additive alignment scores, additional-cost matrices are easily computedfrom the forward and reverse distance matrices introduced in Section 3.1:Cs;t[i; j] = Dfs;t[i; j] +Drs;t[i; j]�wopt (hs; ti)with wopt(hs; ti) = Dfs;t[jsj; jtj] = Drs;t[0; 0]:



38 CHAPTER 4. BASIC DIVIDE-AND-CONQUER ALIGNMENTDfs;t C T0 1 2 0A 1 1 2 1G 2 2 2 2T 3 3 2 30 1 2 AAwopt (hs; ti) = 2Drs;t C TA 2 2 3 0G 1 1 2 1T 1 0 1 22 1 0 30 1 2 Cs;t C T0 1 20 0 1 3A 1 0 0 2G 2 1 0 1T 3 3 2 0Figure 4.5: Forward and reverse distance matrix for s = CT and t = AGT with respectto the unit cost function. The additional-cost matrix Cs;t is simply the sum of bothmatrices minus the constant value wopt(hs; ti) = 2.Example 4.6Let A = fA; C; G; Tg, and consider the unit cost function d�(x; y) = 1 � �xy for allx; y 2 A[f�g. The forward and reverse distance matrices as well as the additional-cost matrix for the sequences s = CT and t = AGT are shown in Figure 4.5. 2We now consider the more general case of a�ne gap penalties g(l) = � + � l.Due to the possibility of gaps \running through" a slicing position, the score ofthe concatenated alignment can be di�erent from the sum of the pre�x and su�xalignment scores. As above, consider alignments A 2 A(hsi; tji) and B 2 A(his; jti).We distinguish three cases:1. A gap in t is running through the cut: A = � : : : si: : : � �, B = � si+1 : : :� : : : �;2. A gap in s is running through the cut: A = � : : : �: : : tj �, B = � � : : :tj+1 : : : �;3. None of the above.In the �rst case, the scores of the alignments A and B can be obtained easily fromthe history matrices introduced in Section 3.2:wopt (A) = V fs;t[i; j] and wopt(B) = V rs;t[i; j]:To obtain the score of the concatenation A++B, the gap open penalty � has to besubtracted from the sum of these values because { due to the concatenation { theterminal gap in A merges with the initial gap in B. The second case can be treatedsimilarly, replacing Vs;t by Hs;t. The third case where no gap is running through thecut is identical to the case of additive gap costs discussed above. Together, we take



4.3. C-OPTIMAL FAMILIES OF SLICING POSITIONS 39the minimum of the three possibilities:Cs;t[i; j] = min8>><>>: V fs;t[i; j] + V rs;t[i; j]� �;Hfs;t[i; j] +Hrs;t[i; j]� �;Dfs;t[i; j] +Drs;t[i; j] 9>>=>>;� wopt(hs; ti):Thus, the calculation of additional-cost matrices for a�ne gap penalties is possiblein time O(jsj � jtj) as for the homogeneous case. Obviously, beneath the matricesDfs;t, Drs;t, V fs;t, V rs;t, Hfs;t, Hrs;t, and Cs;t, no additional space is required, such thatthe space usage is also in O(jsj � jtj). Furthermore, note that no alignments but onlyscores are computed. So, when only one or just a few columns or rows of the matrixCs;t are required, the memory usage can be reduced accordingly.In di�erent contexts, matrices similar to additional-cost matrices have been con-sidered: for computing longest similar substrings [180, 181, 60], near optimal align-ments [217, 222, 148], and in the context of dot plots to visualize locally similarregions of sequences [33, 207]. But in all these approaches, the entries of the matri-ces correspond to pairs of letters, as opposed to pairs of slicing positions (betweenthe letters) considered in our case.4.3 C-Optimal Families of Slicing PositionsWe now return to the original problem of �nding a family of k slicing positions forthe sequences hs1; : : : ; ski. In analogy to the weighted SP alignment score, we de�nethe multiple additional cost imposed by forcing the multiple alignment path of thesequences through the particular vertex (c1; : : : ; ck) in the k-dimensional hypercubeassociated with the corresponding alignment problem. To this end, we use a weightedsum of additional costs over all pairwise projections (cp; cq).De�nition 4.7 (Weighted SP Multiple Additional Cost)Suppose that we are given a family of k sequences hs1; : : : ; ski and pairwise weightfactors �p;q, 1 � p < q � k. The weighted SP multiple additional cost of a family ofslicing positions hc1; : : : ; cki is de�ned asC(hc1; : : : ; cki) := X1�p<q�k �p;q Csp;sq [cp; cq]: 2De�nition 4.8 (C-Optimal Families of Slicing Positions)Suppose that, in addition, we are given a slicing position of one of the sequences, sayposition ĉ1 of sequence s1. A family of slicing positions hc2; : : : ; cki of s2; : : : ; sk suchthat the multiple additional cost C(hĉ1; c2; : : : ; cki) is minimal is called C-optimalwith respect to ĉ1. The corresponding minimal additional cost is denoted byCopt = Copt (ĉ1) := minfC(hĉ1; c2; : : : ; cki)j0 � ci � jsij for all i 2 f2; : : : ; kgg :2



40 CHAPTER 4. BASIC DIVIDE-AND-CONQUER ALIGNMENTIn general, we observed that for closely related sequences the values Copt are oftenrather small, sometimes even zero which means that all pairwise projections of themultiple cut are compatible with corresponding optimal pairwise alignments (but notnecessarily that the family of slicing positions is optimal). For less related sequences,the minimal additional cost Copt often has comparatively high values.We now employ the heuristic which is the basis of our divide-and-conquer align-ment procedure:Cutting the sequences at C-optimal slicing positions, the concatenationof an optimal multiple alignment of the pre�x sequences and an optimalmultiple alignment of the corresponding su�x sequences gives a very good,if not optimal multiple alignment of the original sequences.Note that this is not a provable theorem but only a plausible statement motivated bythe reasoning presented above. The high quality of the alignments which we obtainedusing this principle and are going to present in Chapters 7 and 8 justi�es the heuristic.Nevertheless, a C-optimal family of slicing positions does not guarantee an optimalalignment, even if the multiple additional cost is zero. To clarify the notion of optimaland C-optimal slicing positions, as well as to prove this claim, we extend the exampleof Section 4.2:Example 4.6 (cont.)Consider sequences s1 = CT, s2 = AGT, s3 = G. The corresponding pairwise addi-tional-cost matrices are shown in Figure 4.6. We set all pairwise sequence weights�1;2 = �1;3 = �2;3 to 1 and assume ĉ1 := 1 �xed. It is not di�cult to verify that thefamily hc2; c3i = h1; 0i is C-optimal with respect to ĉ1 sinceC(h1; 1; 0i) = Cs1;s2 [1; 1] + Cs1 ;s3[1; 0] + Cs2;s2[1; 0] = 0(see the bold boxes in Figure 4.6). The corresponding pre�x and su�x families are* s11 = Cs12 = As03 = " + and * 1s1 = T1s2 = GT0s3 = G +, respectively. Given this cut, all best possiblealignments have cost 7 (e.g. 0@ C � TA G T� G � 1A). The (only) optimal alignment 0@ � C TA G T� G � 1Awith cost 6 is not compatible with this cut. Thus, h1; 1; 0i is not an optimal familyof slicing positions of hs1; s2; s3i.Note that also another C-optimal family of slicing positions hc2; c3i exists whichindeed leads to an optimal cut: hc2; c3i = h2; 1i. Slicing the sequences this way, theoptimal alignment can be obtained:* s11 = Cs22 = AGs13 = G + ;* 1s1 = T2s2 = T1s3 = " + ! 0@ � CA G� G 1A++0@ TT� 1A = 0@ � C TA G T� G � 1A :2



4.4. THE ALGORITHM 41Cs1;s2 C T0 1 20 0 1 3A 1 0 0 2G 2 1 0 1T 3 3 2 0 Cs1;s3 C T0 1 20 0 0 1G 1 1 0 0 Cs2;s3 A G T0 1 2 30 0 0 1 2G 1 2 1 0 0Figure 4.6: Pairwise additional-cost matrices for s1 = CT, s2 = AGT, s3 = G.The reason for this discrepancy is that a C-optimal family of slicing positions is op-timized on the basis of independent pairwise alignments of the sequences whereas anoptimal family of slicing positions is minimal with respect to the multiple alignment.In contrast to Example 4.6, there may be no C-optimal family of slicing positionswhich is an optimal cut.4.4 The AlgorithmNow we are prepared to present a formal description of the basic divide-and-conquermultiple sequence alignment algorithm. As subfunctions, we use� a function MSA which computes an optimal multiple sequence alignment of afamily of sequences, e.g. by standard dynamic programming, and� a function C-opt which takes as arguments a family of sequences hs1; s2; : : : ; skias well as a slicing position ĉ1 of s1 and returns a corresponding C-optimalfamily of slicing positions hc2; : : : ; cki.As motivated above, we �x ĉ1 in the middle of s1. The recursion of DCA is continuedas long as any one of the (sub)sequences is longer than a threshold L, which isintroduced as a parameter of DCA. As soon as all of the (sub)sequences are oflength L or shorter, they are aligned optimally.FunctionDCA(hs1; s2; : : : ; ski; L):= MSA(hs1; s2; : : : ; ski); if maxfjs1j; js2j; : : : ; jskjg � L:= DCA(hsĉ11 ; sc22 ; : : : ; sckk i; L)++DCA(hĉ1s1; c2s2; : : : ; ckski; L); otherwisewhere ĉ1 := l js1j2 mhc2; : : : ; cki := C-opt(hs1; s2; : : : ; ski; ĉ1) 2



42 CHAPTER 4. BASIC DIVIDE-AND-CONQUER ALIGNMENT2.1 Cmin := +12.2 for c2 := 0; : : : ; js2j dofor c3 := 0; : : : ; js3j do. . . for ck := 0; : : : ; jskj doif C(hĉ1; c2; c3; : : : ; cki) < Cmin thenCmin := C(hĉ1; c2; c3; : : : ; cki)cmin := hc2; c3; : : : ; cki2.3 return cminFigure 4.7: Naive implementation of Step 2 of function C-opt.Note that choosing the parameter L rather small might result in a sequence s1 whichis empty or consists of one letter only such that no proper slicing of s1 is possible.The worst case scenario is then the following: All slicing positions ci, 2 � i � k,of the corresponding C-optimal cut lie before the �rst or after the last letter of\their" sequence such that none of the sequences gets shorter from one division stepto the next. Consequently, the recursion never stops. To avoid this, we re-order thesequences with each call of DCA so that always the longest of the sequences underconsideration is chosen as s1.The problem of computing optimal sequence alignments (MSA) is well understood(see the discussion in Chapter 3), and highly developed solutions are available whichwork well for short and/or highly similar sequences. So we focus our further workon an e�cient implementation of C-opt which also needs a sophisticated treatmentas well. Various realizations are discussed below and in Chapter 5.In a straightforward implementation of C-opt, C(hĉ1; c2; : : : ; cki) is computed foreach family hc2; : : : ; cki, and that cut minimizing this value is returned:FunctionC-opt(hs1; s2; : : : ; ski; ĉ1)1. Calculate and save additional-cost matricesCsp;sq for all (p; q), 1 � p < q � k.2. For all (c2; : : : ck), ci 2 f0; : : : ; jsijg, compute C(hĉ1; c2; : : : ; cki), and returnthat family hc2; : : : ; cki which minimizes this value. 2For a more detailed description of Step 2, see Figure 4.7.A single call of this implementation of C-opt with sequences of length at mostn has time complexity O(k2n2 + nk�1). The term k2n2 comes from calculating the



4.4. THE ALGORITHM 43Csp;sq , while the term nk�1 comes from searching the C-optimal cut. The spacerequirement is O(k2n2) for the �k2� additional-cost matrices Csp;sq . (Note that ofthe matrices Cs1;sq with �xed slicing position ĉ1 only the column Col ĉ1s1;sq has to besaved. Nevertheless, the required space still grows quadratically with the number ofsequences.)The time complexity for the entire call DCA(hs1; s2; : : : ; ski; L) can be estimatedas follows: We assume all sequences s1; s2; : : : ; sk to be of the same length n = L � 2Dand all slicing positions being exactly at the midpoint of the (sub)sequences. Thus,in each dividing level d = 0; : : : ;D� 1, C-opt is called 2d times with sequence lengthnd := n2d . Finally, nL families with sequences of length L each remain to be alignedoptimally. Thus, the overall time complexity TDCA is given byTDCA = D�1Xd=0 2d �k2n2d + nk�1d � + nL �2kLk�= k2n2 D�1Xd=0 �12�d + nk�1 D�1Xd=0 � 12k�2�d + 2knLk�1= 2k2n2 �1� 12D� + nk�11 � � 12k�2�D1 � 12k�1 + 2knLk�1which is in O(k2n2 + nk�1 + 2knLk�1) for D > 0 and k > 1. For the extrema of L,we obtain the expected results:1. In case L = n (or, equivalently, D = 0), the �rst and second summands disap-pear. What remains is the time required for complete dynamic programmingof the original sequences TDCA = 2knk.2. For the shortest possible stop size L = 1 (D = log2 n), the �rst and secondsummands remain in O(k2n2) and O(nk�1), respectively, while the third sum-mand reduces to 2kn. Thus, almost all time is consumed in the dividing phase(at least for n > 2).The space requirement SDCA of the overall procedure isSDCA = max0�d<Dfknd +  k � 12 !n2dg + Lk= kn+  k � 12 !n2 + Lkwhich is in O(k2n2+Lk). The O(nk) space usage of standard dynamic programmingis reduced to the space for the additional-cost matrices plus the space required foraligning the remaining (sub)sequences of length at most L. Thus, by choosing Lappropriately small, the essential space usage is quadratic in n even without using a



44 CHAPTER 4. BASIC DIVIDE-AND-CONQUER ALIGNMENT2.1 Cmin := +12.2 for c2 := l js2j2 m ; l js2j2 m� 1; l js2j2 m+ 1; : : : doif C(hĉ1; c2i) < Cmin thenfor c3 := l js3j2 m ; l js3j2 m� 1; l js3j2 m+ 1; : : : doif C(hĉ1; c2; c3i) < Cmin then.. . for ck := l jskj2 m ; l jsk j2 m� 1; l jsk j2 m+ 1; : : : doif C(hĉ1; c2; c3; : : : ; cki) < Cmin thenCmin := C(hĉ1; c2; c3; : : : ; cki)cmin := hc2; c3; : : : ; cki2.3 return cminFigure 4.8: Improved version of Step 2 of function C-opt.more sophisticated implementation of C-opt. This is one of the main advantages ofour algorithm!Nevertheless, the time required by DCA is still exponential in the number ofsequences, only reduced by a factor of n. Actually, when taking care about depen-dencies in the search space, the average running time will fall considerably belowthis worst case complexity. A simple and e�ective branch-and-bound approach isthe following: Since the multiple additional cost C(ĉ1; c2; : : : ; ck) is a sum of �k2�non-negative numbers, whenever a partial sum is larger than the minimum found sofar, denoted by Cmin , the search with the current slicing positions can be stopped.Additionally, to obtain early a low value for Cmin, we start the search in the middle ofeach sequence. Proceeding in this way, we also get the midmost slicing sites if thereis more than one C-optimal family of slicing positions. Due to being nearest to thesymmetric case, this might also result in better alignments. The improved algorithmis shown in Figure 4.8.Although with these improvements the worst case running time is still exponen-tial in k, the algorithm applied to up to eight sequences computes excellent scoringalignments very quickly (see Chapter 7 for exact running times).4.5 Variations of the Basic AlgorithmMany alignment procedures, especially those presented in the biological literature,combine well-known alignment strategies with additional features such as biochem-ical, structural, or functional knowledge about the sequences (see for instance [22,200, 173]). Indeed, it turned out that most of these approaches (at least those whichhave been published) generate (in biological terms) better alignments than the \pure"algorithms [19, 88, 200]. Proceeding similarly, DCA can certainly be re�ned or com-



4.5. VARIATIONS OF THE BASIC ALGORITHM 45bined with other heuristics to obtain alignments still nearer to the biologically truealignment rather than the weighted SP optimum we pursue.The spirit of this work, instead, is merely of theoretical nature. We are mainlyinterested in the principles underlying the optimization problem caused by the searchfor C-optimal slicing positions. For this purpose, we developed several solutions fora reduction of the practical time complexity of DCA which we present in Chapter5. However, some variations regarding the quality of the alignments obtained withDCA have been worked out. These are briey presented in the remainder of thischapter.4.5.1 Stopping CriteriaIn our implementation of DCA, the recursion in the dividing phase is continueduntil all (sub)sequences under consideration are shorter than the parameter L. Thereason for this choice is rather simple: The time consumed by the computationof the optimal alignments can be delimited by choosing L appropriately small. Asimilar e�ect could be obtained by stopping the recursion whenever the productQki=2(jsij + 1) is smaller than a certain threshold. Since this value is proportionalto the search space of standard dynamic programming, even a better estimate ofthe time required for the optimal alignment of the (sub)sequences may be obtained.However, both approaches require a re-ordering of the sequences to ensure successfultermination of the recursion phase. Another solution to this problem is to stop therecursion whenever the shortest (sub)sequence under consideration is shorter than L(see [203]). But in this case nothing can be predicted about the time required forthe optimal (sub)sequence alignments: Consider a sequence family consisting of oneshort sequence (shorter than L) and k � 1 arbitrarily long sequences.Another stopping criterion which has been suggested is the recursion depth [203]:Depending on the original sequence length, a threshold D for the maximal numberof recursive calls of DCA is chosen such that after D recursions there remain 2Dfamilies of (sub)sequences which are to be aligned optimally. This way we obtain abalanced recursion tree, allowing a simple theoretical analysis of the dividing phase.But properties of the sequences are utterly ignored and an estimation of the runningtime of the remaining optimal alignments is not possible in this way.Of course, much more elaborated sequence properties than simply their lengthcan be taken into account. One could estimate the homology of the (sub)sequencesand stop the recursion when the similarity is lower than a given threshold. This way,bad alignments resulting from suboptimal slicing positions may be avoided. However,time considerations justify also the opposite argumentation: The closer the sequencesare related, the earlier the division phase can be stopped because standard proceduresfor optimal alignment usually proceed much faster for closely related sequences.Beneath the more complicated control structure required, these approaches raisethe di�cult question:



46 CHAPTER 4. BASIC DIVIDE-AND-CONQUER ALIGNMENTIs it possible to infer reliable statements about similarity of multiple se-quences from pairwise comparisons, only?In general, sophisticated approaches like those outlined above seem to be more usefulif the relatedness of the sequences under consideration di�ers considerably along theirlength. In the general study of the divide-and-conquer alignment method to whichthis work is devoted, sequence length as stopping criterion completely su�ces.4.5.2 WindowingTo improve the quality of the alignments obtained with DCA, a windowing approachhas been proposed (see [192]): In some alignments, gaps in the proximity of divisionsites are not distributed optimally. To correct the alignment in these cases, insidea window of width W (which can be chosen depending on the threshold L), placedacross each slicing site of the alignment that is obtained with the standard procedure,the subsequences are re-aligned optimally. Improvements (in terms of alignmentscore) resulting from this approach are presented in Section 7.2.2.4.5.3 Relaxing ĉ1As another variation of the basic algorithm, the constraint of �xing the slicing po-sition ĉ1 exactly at the midpoint of s1 may be relaxed (see [203]). One might ob-tain better alignments (i.e. alignments with lower distance score) if the sequencesare cut at positions h�c1; c2; : : : ; cki which minimize C(h�c1; c2; : : : ; c2i) where all posi-tions in a region of size 2� + 1, � � 0, around the midpoint of s1 are considered:�c 2 fl js1j2 m��; : : : ; l js1j2 m+�g.On the other hand, any ĉ1 2 f0; : : : ; js1jg permits optimal slicing positions (seeLemma 4.2). If the C-optimal slicing positions obtained with ĉ1 = l js1j2 m are subop-timal, will that be di�erent for the other positions �c1 around ĉ1? Furthermore it isnot totally clear if it makes sense to compare the absolute additional-cost values atdi�erent sites of s1. In principle, better (i.e. lower) absolute multiple additional costsat positions �c1 next to the midpoint of s1 in an early stage of the recursion phase canalso lead into only a local optimum, resulting in an overall worse alignment.Results concerning the quality of alignments depending on the position of ĉ1 areshown in Section 7.2.3.4.5.4 Rapid Simultaneous Three-Way AlignmentIn 1994, Vingron and v. Haeseler [210, 211] developed an algorithm which computessimultaneously a multiple sequence alignment and a phylogenetic tree. While theoret-ically well-founded, this generalized tree alignment procedure was rather impracticalbecause of its long running time due to a large number of (cubic time) three-wayalignments that are performed to determine an optimal tree topology.



4.5. VARIATIONS OF THE BASIC ALGORITHM 47As described above, the time used by the alignment of three sequences with DCAgrows essentially quadratic with the sequence length. Indeed, by incorporation ofDCA, the performance of the method could be increased enormously. Thus, oneof the best performing generalized tree alignment methods currently available wasobtained [31].4.5.5 Combination with Fragment-Based MethodsAs outlined in Section 3.5, the divide-and-conquer alignment procedure is somehowrelated to fragment-based multiple alignment methods using a more systematic wayof computing the anchor positions. On the other hand, if there are obvious anchorsobtainable from local alignments, the e�ort to compute C-optimal slicing positionscan be circumvented. A combination of both approaches may be a suitable solu-tion: Anchors are computed as in one of the standard fragment-based methods (e.g.[208, 177, 140]) asking for high similarity scores if necessary, and C-optimal slicingpositions are computed between them if { due to the strong requirements for frag-ment similarity { the intermediate regions are too large. Then, the remaining (short)subsequences in between are aligned optimally as in the standard algorithms.Note that an algorithm proceeding this way is expected to run faster than DCA:The search for conserved regions including the consistency check can be performedin time O(n3k4) [208] and thus is polynomial in the number of sequences and notexponential as the search for C-optimal slicing positions.



Chapter 5Reducing Computation TimeIn Section 4.4, we gave a straightforward implementation of the function C-opt which,for a given family of sequences hs1; s2; : : : ; ski, computes a C-optimal family of slicingpositions hc2; : : : ; cki with respect to a �xed ĉ1. The running time was O(k2n2 +nk�1) with a space consumption of O(k2n2). Although for three sequences, thisis a remarkable improvement compared to the cubic space and time complexity ofstandard dynamic programming, computing time still grows exponentially with thenumber of sequences. In this chapter, we discuss approaches for e�cient searchstrategies based on branch-and-bound techniques leading to signi�cant reductions inrunning time for more than three sequences. This way, we obtain a fast procedure forthe simultaneous alignment of more than a dozen of related sequences of the lengthof an average protein.5.1 Basic ApproachLet us �rst recall the problem. Suppose, as above, that we have given a family ofk sequences hs1; s2; : : : ; ski and pairwise sequence weights �p;q for all (p; q), 1 � p <q � k. Further, we �x a slicing position ĉ1 of sequence s1. Our goal is to �nd afamily hc2; : : : ; cki of slicing positions which is C-optimal with respect to ĉ1, i.e. itminimizes the multiple additional costC(hĉ1; c2; : : : ; cki) = X2�q�k�1;q Col ĉ1s1 ;sq [cq] + X2�p<q�k�p;q Csp;sq [cp; cq]:Figure 5.1 gives a schematic representation of the additional-cost matrices involvedin this search.Our general approach to speed up the search is the following one: We precalculatean upper bound for Copt (ĉ1), denoted by bC, before storing the matrices Csp;sq . Thisestimate allows us to reduce the search space enormously by a branch-and-boundtechnique comparable to that discussed at the end of Section 4.4: A family of slicingpositions hc2; : : : ; cki can be excluded whenever one of the summands or a partial sumof C(hĉ1; c2; : : : ; cki) is larger than the upper bound bC. In particular, for �xed ĉ1, any48



5.1. BASIC APPROACH 49
c4c2c5

ĉ1s2s3 ĉ1ĉ1s4 ĉ1s5
s1 s2 s3 s4

Cs1;s2Cs1;s3Cs1;s4 Cs2;s3Cs2;s4Cs1;s5 Cs3;s5 Cs4;s5Cs3;s4c4 Cs2;s5
Colĉ1s1;s2Colĉ1s1;s3Colĉ1s1;s4Colĉ1s1;s5

c3c2
c3Figure 5.1: Schematic representation of the search space for a C-optimal family ofslicing positions hc2; c3; c4; c5i with respect to a given ĉ1.cq, 2 � q � k with �1;q � Col ĉ1s1;sq [cq] � bC can never lead to a sum C(hĉ1; c2; : : : ; cki)which is smaller than bC. Hence, for given bC, we can determine large regions in oursearch space which cannot contain the minimum:De�nition 5.1 (Lower and Upper Bounds, Relevant Parts)Given an upper bound bC for the optimal multiple additional cost Copt , we de�nelower and upper bounds lq and uq, respectively, for all q 2 f2; : : : ; kg such that�1;q � Col ĉ1s1;sq [j] � bC for all j < lq and for all j > uq.The intermediate segment with indices lq; : : : ; uq forms the relevant part of columnCol ĉ1s1;sq with respect to bC. The relevant part of the matrix Csp;sq is the matrix(Csp;sq [i; j])lp�i�up ;lq�j�uq : 2In Figure 5.2, we show the relevant parts of the columns and matrices for a given bCin a schematic way.Various ways of computing an upper bound bC are discussed in Section 5.3. Givensuch an estimate, the memory required for storing the relevant parts of the columns
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Figure 5.2: Relevant parts of the columns and additional-cost matrices for a givenbC.and matrices su�ces for computing Copt . Yet, the actual time and space requirementsdepend strongly on the quality of the estimate bC. Let r := max2�q�nfuq � lq + 1gbe the maximal size of the relevant parts of the columns Col ĉ1s1;sq . Then, the largerthe upper bound bC is, the larger is the relative length of the relevant parts, i.e. theratio rn . For a very high bC, r can even be as large as n. But for more realisticupper bounds, the e�ect is enormous: We have measured quotients rn of less than1100 for small k or large n yielding memory savings for the matrices of four orders ofmagnitude in these cases. See Section 7.3 for detailed quantitative results.Note that even the best possible upper bound, Copt itself, does not imply uq = lqfor all q 2 f2; : : : ; kg. The search space still grows exponentially with k even forbC = Copt . The asymptotic time complexity is O(k2n2+rk�1). The space requirementis O(n + k2r2) if the upper bound bC is given. (Note that the time and space ofcomputing bC has to be added to these values.)At this stage of the description, it also becomes apparent that DCA { like almostall multiple sequence alignment algorithms { will perform faster and require less spacefor closely related than for feebly related sequences: The size of the relevant searchspace is highly correlated not only with the quality of the upper bound bC but alsowith the absolute value of the minimum Copt . As noted above, this value is muchlower for similar sequences.Also another e�ect can be noticed: The more sequences are involved, the less ef-



5.2. ANALOGY TO THE APPROACH OF CARRILLO AND LIPMAN 51fective is our approach. In the de�nition of the upper and lower bounds, the estimatebC, which is the sum of �k2� pairwise additional costs and hence grows quadraticallywith k, is compared to a single entry in coumn Col ĉ1s1;sq whose value does not dependon the number of sequences. In Section 7.3 where di�erent ways of computing an up-per bound bC are compared, we also show that for nine sequences the relative lengthrn is �ve times as large as for three sequences.On the other hand, the longer the sequences are, the smaller is the relative lengthof the relevant parts: The maximal values at the top and at the bottom of thecolumns grow proportionally with the length of the sequences while the regions nearthe middle of the columns are hardly a�ected by the sequence length. Also theestimate bC keeps rather constant upon elongation of the sequences. Measurementscon�rming these assertions are shown in Section 7.3 as well.Finally note that the shape of the additional-cost matrices and thus the compu-tation time and memory usage of DCA are also inuenced by the score function andthe gap costs used. In particular, gap functions which allow many relatively longindels can widen the \relevant valley" along the main diagonal of the additional-costmatrices considerably.In consequence, we give a re�ned version of the function C-opt. The problem isdivided into two subproblems:� Given a family S = hs1; s2; : : : ; ski of sequences and a slicing position ĉ1 of s1,function calc-Chat computes an estimated value bC (\C-hat") which is alwayslarger than or equal to Copt(ĉ1).� Function calc-Copt takes this estimate as an argument (in addition to thesequences and ĉ1) and then computes a family hc2; : : : ; cki of slicing positionswhich is C-optimal with respect to ĉ1.FunctionC-opt(S; ĉ1) := calc-Copt (S; ĉ1; calc-Chat (S; ĉ1)) 25.2 Analogy to the Approach of Carrillo and Lip-manBefore we describe explicit realizations of the subfunctions calc-Chat and calc-Coptin Sections 5.3 and 5.4, respectively, we show in this section that there is a stronganalogy between our approach to reduce the search space in the additional-cost ma-trices and the approach of Carrillo and Lipman for optimal sequence alignment which



52 CHAPTER 5. REDUCING COMPUTATION TIMEwe described in Section 3.4. For the bene�t of brevity, we set again all weights �p;qto 1.Assume, as above, a family of sequences hs1; s2; : : : ; ski and a �xed slicing positionĉ1 of sequence s1. Let bC be a precalculated upper bound for the minimal multipleadditional cost:bC � Copt (ĉ1) = X1�i<j�kCsi;sj [~ci; ~cj] =: X1�i<j�k eCsi ;sjwhere h~c2; : : : ; ~cki is a (yet unknown) C-optimal family of slicing positions with re-spect to ĉ1 and the eCsi;sj are the additional costs of the projections of these optimalslicing positions on the two-dimensional surfaces of the (k � 1)-dimensional \hyper-box" spanned by the hc2; : : : ; cki. Similar to the approach of Carrillo and Lipman,we can now give upper bounds for these projection costs:eCsp;sq � bC � X1�i<j�k(i;j) 6=(p;q) eCsi;sj :But in contrast to distance matrices where the pairwise optimal distanceswopt (hsi; sji)are lower bounds for the values fDsi ;sj , in our case the only possible lower bound forthe values eCsi;sj is 0: All additional-cost values are non-negative. Thus,eCsi;sj � 0 =) eCsp;sq � bC;i.e. a value larger than bC cannot be part of the minimal additional cost Copt . Thisstatement is not surprising and was already given in the previous section (see De�-nition 5.1).However, by the analogy, the relatedness of the limitations of both approachesbecomes apparent. In the previous section, we remarked a dependence of the quotientrn on the number k of sequences. For the same reason, the method of Carrillo andLipman performs less e�ectively for increasing k: In both approaches, the reductionof search space is based on the comparison of a single matrix entry (fDsp;sq respectivelyeCsp;sq) with a value which is the sum of �k2� such numbers (cD respectively bC).5.3 Computing an Upper Bound: calc-ChatA straightforward method of computing an upper bound bC for Copt(ĉ1) is the calc-Chat-�rstRowZero procedure. It is based on the fact that in any of the columnsCol ĉ1s1;sq , 2 � q � k, there is at least one index cq 2 f0; : : : ; jsqjg with Col ĉ1s1;sq [cq] = 0(see Lemma 4.5). From all these indices, we choose that one which is nearest to the



5.3. COMPUTING AN UPPER BOUND: CALC-CHAT 53
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Figure 5.3: Schematic representation of calc-Chat-�rstRowZero. The estimate bC isthe sum of the values in the shaded boxes.midpoint between 0 and jsqj, denoted1ĉq := midmost0�cq�jsq j fcqjCol ĉ1s1;sq [cq] = 0g:Then, the upper bound bC is computed from the corresponding cells Csp;sq [ĉp; ĉq] inthe additional-cost matrices (see Figure 5.3):Functioncalc-Chat-�rstRowZero(hs1; s2; : : : ; ski; ĉ1) := C(hĉ1; ĉ2; : : : ; ĉki)where ĉq := midmost0�cq�jsq j fcqjCol ĉ1s1;sq [cq] = 0g for all q = 2; : : : ; k. 2Note that in the computation of C(hĉ1; ĉ2; : : : ; ĉki), we do not have to consider entriesfrom the columns Col ĉ1s1;sp since they are zero by de�nition. Thus, in this case,C(hĉ1; ĉ2; : : : ; ĉki) = X2�p<q�k�p;q Csp;sq [ĉp; ĉq]:1We use the notation midmost0�i�n fijp(i)g to denote that i of those indices ful�lling the predicatep(i) which is nearest to the midpoint of the given range, i.e. {̂ = midmost0�i�n fijp(i)g if and only ifjn2 � ~{j � jn2 � {̂j for all ~{ 2 fijp(i)g0�i�n. (In case two indices with the same distance from themidpoint exist, we de�ne the lower one to be the \midmost".)



54 CHAPTER 5. REDUCING COMPUTATION TIMEThe procedure requires O(k2n2) time to compute bC: It computes(i) the columns Col ĉ1s1;sq in O(kn2) time,(ii) the indices ĉq in O(kn) time,(iii) the corresponding entries Csp;sq [ĉp; ĉq] in O(k2n2) time, and(iv) the sum C(hĉ1; ĉ2; : : : ; ĉki) in O(k2) time.The space can be reduced to O(n+k) when all additional-cost matrices are computedone after the other using the O(n) space method outlined in Section 4.2. (The indicesĉq, 1 � q � k, take the additional O(k) space.) But proceeding this way, the columnsCol ĉ1s1;sq have to be computed a second time when the lower and upper bounds of therelevant regions are to be determined. Since the later search phase requires { at leastin the average case { a considerably larger amount of space than this stage of thealgorithm, we prefer the faster variant where the columns Col ĉ1s1;sq are saved, usingO(kn) space.5.3.1 Some O(k2n2)-Time MethodsIn this and the following sections, we propose natural generalizations of the calc-Chat-�rstRowZero function. Some of them lead to provably better, that is, smallerestimates bC. If the calculation of these estimates is fast enough, we obtain fasterversions of DCA.calc-Chat-SCminIn the calc-Chat-�rstRowZero procedure, each index ĉq, 2 � q � k, is chosen depend-ing only on ĉ1. Because we focus on the sum-of-pairs score, each slicing position cq ina family with minimal additional cost Copt (ĉ1) depends on all other indices cp, p 6= q.In the following variant denoted calc-Chat-SCmin (short for \Sum of correspond-ing Columns") of the calc-Chat-�rstRowZero procedure, when �xing an index cq,we consider also the slicing positions ĉ2; : : : ; ĉq�1 computed for the previous se-quences and minimize over the sum of the entries in the corresponding columnsof the additional-cost matrices (see Figure 5.4).Functioncalc-Chat-SCmin (hs1; s2; : : : ; ski; ĉ1) := C(hĉ1; ĉ2; : : : ; ĉki)where ĉq := midmost0�cq�jsq j fcqj q�1Pp=1�p;q Col ĉpsp;sq [cq] is minimalg for all q = 2; : : : ; k. 2Due to the greedy strategy, calc-Chat-SCmin is sensitive to the whole input order ofthe sequences while calc-Chat-�rstRowZero depends only on the choice of s1. The
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ĉ4

ĉ1ĉ2s2 ĉ2
s5

s2s1
s3 s4s3̂c3 ĉ3s4 Col ĉ1s1;s4 Col ĉ2s2;s4 Col ĉ3s3;s4Figure 5.4: Schematic representation of calc-Chat-SCmin. The large arrows show thecolumns which are involved in the minimization process for ĉ4.time complexity O(k2n2) is the same as that of calc-Chat-�rstRowZero. The spaceusage is O(kn) since the minimization is performed in up to k � 1 columns simulta-neously.calc-Chat-SCRminAnother variant of the calc-Chat-�rstRowZero procedure is obtained by taking intoaccount the sum not only of the columns Col ĉpsp;sq for p < q but also of the rowsRow�cpsq ;sp for p > q where the positions �cp are computed previously in a calc-Chat-�rstRowZero-like step (see Figure 5.5).Functioncalc-Chat-SCRmin(hs1; s2; : : : ; ski; ĉ1) := C(hĉ1; ĉ2; : : : ; ĉki)where �cp := midmost0�cp�jspj fcpjCol ĉ1s1;sp[cp] = 0g for all p = 2; : : : ; kĉq := midmost0�cq�jsq j fcqj q�1Pp=1�p;q Col ĉpsp;sq [cq] + kPp=q+1�q;p Row�cpsq ;sp[cq] is minimalgfor all q = 2; : : : ; k.2



56 CHAPTER 5. REDUCING COMPUTATION TIMEThe name calc-Chat-SCRmin of this variant is short for \Sum of correspondingColumns and Rows". Function calc-Chat-SCRmin has the same asymptotic timecomplexityO(k2n2) as the other procedures. The required space is doubled but stillin O(kn). As for calc-Chat-SCmin, the result depends on the order in which weprocess our sequences hs1; : : : ; ski. But this algorithm leads to a provably better (i.e.smaller) upper bound bC:Lemma 5.2calc-Chat-SCRmin(S; ĉ1) � calc-Chat-�rstRowZero(S; ĉ1): 2ProofTo keep the exposition shorter, we set all sequence weights �p;q to 1. Assume k > 2,� 2 f2; : : : ; kg. By de�nition of C(hc1; : : : ; cki), we haveC(hĉ1; : : : ; ĉ��1; �c�; : : : ; �cki)= X1�p<q���1Csp;sq [ĉp; ĉq] + ��1Xp=1 kXq=�Csp;sq [ĉp; �cq] + X��p<q�kCsp;sq [�cp; �cq]= X1�p<q���1Csp;sq [ĉp; ĉq] + ��1Xp=1Csp;s�[ĉp; �c�] + ��1Xp=1 kXq=�+1Csp;sq [ĉp; �cq]+ kXq=�+1Cs�;sq [�c�; �cq] + X�+1�p<q�kCsp;sq [�cp; �cq]� X1�p<q���1Csp;sq [ĉp; ĉq] + ��1Xp=1 kXq=�+1Csp;sq [ĉp; �cq] + X�+1�p<q�kCsp;sq [�cp; �cq]+ min0�c��js�j8<:��1Xp=1Csp;s�[ĉp; c�] + kXq=�+1Cs�;sq [c�; �cq]9=;= X1�p<q���1Csp;sq [ĉp; ĉq] + ��1Xp=1 kXq=�+1Csp;sq [ĉp; �cq] + X�+1�p<q�kCsp;sq [�cp; �cq]+ ��1Xp=1Csp;s�[ĉp; ĉ�] + kXq=�+1Cs�;sq [ĉ�; �cq]= C(hĉ1; : : : ; ĉ�; �c�+1; : : : ; �cki)Applied for � = 2; : : : ; k, the assertion of the lemma follows. 2
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ĉ4

ĉ1ĉ2s2 ĉ2
s5

s2s1
s3 s4�c5s4 ĉ3ĉ3s3 Col ĉ1s1;s4 Col ĉ2s2;s4 Col ĉ3s3;s4 Row�c5s4;s5Figure 5.5: Schematic representation of calc-Chat-SCRmin. The large arrows showthe columns and the row that are involved in the minimization process for ĉ4.Note that the formal descriptions of the functions calc-Chat-... in this section arestill simpli�cations of the �nal implementations. For example, after the determina-tion of the �cp in calc-Chat-SCRmin, already lower and upper bounds are computed,and the search for the ĉq is restricted to the relevant parts of the columns and rowswith respect to these bounds. Also, while computing the ĉq, the bounds can beupdated on-the-y for each smaller upper bound bC. (This is also done in the latersearch for the minimum calc-Copt.) However, in order not to overcomplicate theformal presentation, we maintain the strict distinction between the computation ofbC and the minimization stage.calc-Chat-SCRoiTo avoid the dependence on the sequence order, we also developed a procedurewhich minimizes over columns and rows but whose result { like that of calc-Chat-�rstRowZero { depends only on the choice of s1. This can be achieved by using theindices �cp not only to determine the rows but also the columns where the minimiza-tion takes place (see Figure 5.6):
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Row�c5s4;s5

ĉ1�c2s2 �c2�c3ĉ4 �c3s5
s2s1

s3 s4s3�c5s4 Col�c1s1;s4 Col�c2s2;s4 Col�c3s3;s4Figure 5.6: Schematic representation of calc-Chat-SCRoi. The large arrows show thecolumns and the row that are involved in the minimization process for ĉ4. Note theindices �c2 and �c3 as opposed to ĉ2 and ĉ3, respectively, in Figure 5.5.Functioncalc-Chat-SCRoi (hs1; s2; : : : ; ski; ĉ1) := C(hĉ1; ĉ2; : : : ; ĉki)where �c1 := ĉ1�cp := midmost0�cp�jspj fcpjCol ĉ1s1;sp[cp] = 0g for all p = 2; : : : ; kĉq := midmost0�cq�jsq j fcqj q�1Pp=1�p;q Col �cpsp;sq [cq] + kPp=q+1�q;p Row�cpsq ;sp[cq] is minimalgfor all q = 2; : : : ; k.2Obviously, calc-Chat-SCRoi (\order independent") has the same time and spacecomplexity as calc-Chat-SCRmin.Note that the upper bounds computed with calc-Chat-SCRoi may be worse thanthose computed with calc-Chat-SCRmin since we do not use a greedy strategy whichleads quickly to small values bC. (In fact, we cannot even guarantee that the upperbounds are better than those computed with calc-Chat-�rstRowZero.) However, dueto the independence of the sequence order, the corresponding positions hĉ2; : : : ; ĉkimight be less susceptible of running into local minima of the search space.In the following sections, we present extensions of the above procedures. Analo-gously to Lemma 5.2, it can be shown that some of them lead to further improvementsof the estimate bC.



5.3. COMPUTING AN UPPER BOUND: CALC-CHAT 595.3.2 Iterative MethodsA simple extension of calc-Chat-SCRmin is applying the minimization step itera-tively: Given a number I � 0 of iterations, in each run i = 1; : : : ; I we calculate theminimizing indices ĉiq for all q = 2; : : : ; k by using the indices ĉi�1q obtained in runi � 1, as we use the indices �cp for calculating the ĉq in calc-Chat-SCRmin. Clearly,as starting points we put ĉ0p := �cp for all p = 2; : : : ; k, so that the �rst run of theiterated procedure is calc-Chat-SCRmin itself.Functioncalc-Chat-itSCRmin(hs1; s2; : : : ; ski; ĉ1; I) := C(hĉI1; ĉI2; : : : ; ĉIki)where ĉi1 := ĉ1 for all i = 0; : : : ; Iĉ0p := midmost0�cp�jspj fcpjCol ĉ1s1;sp[cp] = 0g for all p = 2; : : : ; kĉiq := midmost0�cq�jsq j fcqj q�1Pp=1�p;q Col ĉipsp;sq [cq] + kPp=q+1�q;p Row ĉi�1psq ;sp[cq] is minimalgfor all q = 2; : : : ; k and for all i = 1; : : : ; I.2The following lemma summarizes the properties of the upper bounds computed withthis procedure.Lemma 5.3(i) calc-Chat-itSCRmin(S; ĉ1; 0) = calc-Chat-�rstRowZero(S; ĉ1)(ii) calc-Chat-itSCRmin(S; ĉ1; 1) = calc-Chat-SCRmin(S; ĉ1)(iii) calc-Chat-itSCRmin(S; ĉ1; i) � calc-Chat-itSCRmin(S; ĉ1; i� 1)for all i > 0.2Proof(i) and (ii) are trivial. The proof of (iii) is analogous to that of Lemma 5.2: Eachiteration i improves the estimate calculable from the slicing positions hĉi1; : : : ; ĉiki toa value smaller than or equal to C(hĉi�11 ; : : : ; ĉi�1k i). 2Because of the monotonously decreasing values of the upper bounds with increas-ing i, one can easily alter the stopping criterion slightly. The iteration should becarried out as long as further improvement is obtained. We observed that proceedingthis way, the iteration stops mostly after two or three iterations. Note that withthis alteration we have a hill climbing algorithm (in fact, our hill is a hollow) whichin each iteration chooses the direction of steepest descent until a (local) minimumis reached. To avoid running into bad local minima, more sophisticated heuristicoptimization strategies also seem to be applicable, e.g. Metropolis or Monte Carlomethods.



60 CHAPTER 5. REDUCING COMPUTATION TIMEBesides the alternate stopping criterion, calc-Chat-itSCRmin needs computa-tional time of the order O(Ik2n2) for calculating the indices hĉI1; ĉI2; : : : ; ĉIki and isvery useful in order to obtain near-to-optimal estimates bC (see the results shown inSection 7.3). To reduce the dependence of the upper bounds calculated with calc-Chat-SCRmin on the order of the sequences s2; : : : ; sk, one can also change this orderfrom one iteration to the next.Based on the variant calc-Chat-SCRoi, a similar iterative procedure (denotedcalc-Chat-itSCRoi) is possible which is completely independent of the order of thesequences s2; : : : ; sk. But { as for calc-Chat-SCRoi { it cannot be guaranteed thatthe estimates obtained this way are always lower than or equal to those computedwith calc-Chat-�rstRowZero. However, as we shall see in Section 7.3, the estimatescomputed with calc-Chat-itSCRoi are almost as good as those computed with calc-Chat-itSCRmin.5.3.3 Polynomial-Time MethodsUp to this stage we only have tried to minimize C(hĉ1; c2; : : : ; cki) by varying oneindex at a time and keeping all the others �xed. In principle, one can carry outthe minimization of sums of corresponding columns and rows over s indices simul-taneously (s 2 f2; : : : ; k � 1g) which also reduces the probability of running intobad local minima. This leads to algorithms with a computational time complexitypolynomial in n with highest exponent s (and quadratic in k). The exhaustive searchfor the minimum Copt(ĉ1) described in Section 4.4 is identical to this procedure withs = k � 1.However, we do not work out this approach explicitly since it is similar to apreprocessing stage in the calculation of the minimum Copt which we describe inSection 5.4.2. For arbitrary s 2 f2; : : : ; k � 1g, the procedure (denoted siMinC)is described thoroughly in [157] where also the proof can be found that the upperbounds computed by this procedure are always smaller than or equal to the estimatescomputed by calc-Chat-�rstRowZero.5.4 Computing a C-Optimal Family of Slicing Po-sitions: calc-CoptWe now consider the problem calc-Copt : Given a family of sequences hs1; : : : ; ski, aslicing position ĉ1 of s1, and an upper bound bC, compute a family of slicing positionshc2; : : : ; cki which is C-optimal with respect to ĉ1.First of all, one might wonder whether there is a possibility of computing a C-optimal family of slicing positions \directly", e.g. by some kind of steepest descentapproach. While such greedy strategies proved to be very useful to obtain near-optimal estimates bC, we do not see a way to generally avoid local minima. So, allmethods described in the following explore the search space more or less exhaustively.



5.4. COMPUTING A C-OPTIMAL CUT: CALC-COPT 61The simplest way of calculating a C-optimal family of slicing positions hc2; : : : ; ckiwith respect to a given ĉ1 is similar to the implementation of C-opt presented inSection 4.4 (Figures 4.7 and 4.8). The exhaustive search can easily be adapted tothe situation where an upper bound bC for Copt is given: First, the bounds lp andup are computed. Then, within the relevant part of the search space, the minimumCopt and corresponding slicing positions hc2; : : : ; cki are computed by enumerationof all possible combinations of the indices ci, 2 � i � k. Again, the variation oflater indices can be skipped if a partial sum is larger than the minimum found sofar. As described in Section 5.1, this leads to an algorithm with computational timecomplexity O(rk�1) for the search phase which is often much smaller than O(nk�1)but is still exponential in the number of sequences k. Yet, for up to twelve relatedsequences of average length 250, fairly moderate running times were achieved (belowforty seconds). To speed up the procedure for more sequences, we have developedmethods which allow further reduction of the search space and which we describe inthe following sections.5.4.1 Monotony BoundsMotivated by the regular shape of the matricesCsp;sq , we developed a procedure whichutilizes the observation that the entries in a column of an additional-cost matrix fromtop to bottom start with rather high values, decrease almost monotonically for a longtime, then reach a minimum (where the paths of the optimal alignments with valuezero cross the column), and then increase almost monotonically to a high value again.De�nition 5.4 (Monotony Bounds)For each column Col ĉ1s1;sq , q 2 f2; : : : ; kg, we de�ne the lower and the upper monotonybound Lcol ĉ1s1;sq and Ucol ĉ1s1;sq by the formulae:Lcol ĉ1s1;sq := minlq<j<uqfjjCol ĉ1s1;sq [j] > Col ĉ1s1;sq [j � 1];uqg;Ucol ĉ1s1;sq := maxlq<j<uqfjjCol ĉ1s1;sq [j] > Col ĉ1s1;sq [j + 1]; lqg:In other words, jL := Lcol ĉ1s1;sq is the largest j 2 flq + 1; : : : ; uqg such that thesequence Col ĉ1s1;sq [j0] (lq � j0 < j) is monotonously decreasing and jU := Ucol ĉ1s1;sq isthe smallest j 2 flq; : : : ; uq � 1g such that the sequence Col ĉ1s1;sq [j0] (j < j0 � uq) ismonotonously increasing.Similarly, for each column Col isp;sq in the relevant part lp � i � up of theadditional-cost matrix Csp;sq , 2 � p < q � k, we de�ne lower and upper monotonybounds Lsp;sq [i] and Usp;sq [i], given by the formulae:Lsp;sq [i] := minlq<j<uqfjjCol isp;sq [j] > Col isp;sq [j � 1];uqg;Usp;sq [i] := maxlq<j<uqfjjCol isp;sq [j] > Col isp;sq [j + 1]; lqg: 2
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Figure 5.7: Additional-cost matrix Csp;sq and its relevant part with monotony boundsLsp;sq (solid line) and Usp;sq (dotted line). In the column indicated with an asterisk,the lower monotony bound does not correspond to the monotonicity of the completecolumn but only to that of the relevant part.Both Lsp ;sq , indicated by the solid line, and Usp;sq , indicated by the dotted line, arepictured in Figure 5.7, superimposed on the additional-cost matrix of Figure 4.4.(The lower and upper bounds lp; lq and up; uq, respectively, are chosen arbitrarily.)Note that the monotony bounds are de�ned only for the relevant part of theadditional-cost matrix. So they do not necessarily indicate the monotonicity of thecomplete column (see e.g. the column indicated with an asterisk in Figure 5.7).Pre-computed monotony bounds allow in many cases to omit fairly large regionsof the relevant search space: Consider the case of determining slicing position cq ofsequence sq, 2 � q � k, where positions ĉ1; ĉ2; : : : ; ĉq�1 have been already �xed. If,for an index ĉq strictly less than Lcol ĉ1s1;sq , the sumC(hĉ1; : : : ; ĉq�1i) + �1;q Col ĉ1s1;sq [ĉq]is larger than bC or if for any p, 2 � p < q, with ĉq strictly less than Lsp;sq [ĉp], thesum C(hĉ1; : : : ; ĉq�1i) + �p;q Csp;sq [ĉp; ĉq]is larger than bC, then all of the remaining entries in the column above ĉq lead to asum larger than bC as well, and thus the iteration over the indices cq < ĉq can beskipped. Figure 5.8 shows the latter case for q = 4 and p = 2.
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ĉ1 s2 s3s3s4s5 s4
s2̂c2ĉ3 Ls2;s4Us2;s4 Ls3;s4Us3;s4ĉ2 ĉ3c4 Ucols1;s4Figure 5.8: How to utilize monotony bounds: If the sum of the values in the shadedboxes is larger than the upper bound bC, then all smaller indices for c4 (the hatchedregion) can be skipped for this setting of hĉ2; ĉ3i.Of course, a similar statement holds for Ucol and U , respectively.With this technique, we were able to save up to a quarter of the computationtime required for the search of slicing positions for k = 14 sequences. For that manysequences, the relative speed-up is { to our own surprise { even larger than for lesssequences. For exact running time improvements, see Section 7.4.5.4.2 Preprocessing �-SubfamiliesA di�erent approach to deal with, say, more than ten sequences, is a procedure whichutilizes further preprocessing. When considering slicing positions cp, 2 � p � k, themultiple additional cost of some � < k sequences not including sequence sp can beused as an additional estimate.For example, consider the case of k = 5 sequences, and let � = 3. Assume, for�xed ĉ1, that we have chosen ĉ2 as slicing position of s2. We still have to deter-mine appropriate values for c3, c4, and c5. In this case, we can make use of theminimal additional cost contributed, for instance, by the subfamily hs1; s4; s5i: Wepre-compute C1;4;5 := minc42fl4;:::;u4gc52fl5;:::;u5gfC(hĉ1; c4; c5i)g:
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Figure 5.9: Computing an additional estimate C1;4;5 and the corresponding improvedlower and upper bounds (l02; l03 and u02; u03, respectively).Then, an index ĉ3 with C1;4;5 + �1;3 Col ĉ1s1;s3[ĉ3] � bC or C1;4;5 + �2;3 Cs2;s3[ĉ2; ĉ3] � bCcannot lead to a smaller sum C(hĉ1; ĉ2; ĉ3; c4; c5i) for any (c4; c5) 2 f0; : : : ; js4jg �f0; : : : ; js5jg. Thus, no values c4 and c5 have to be evaluated for such a ĉ3.Of course, a pre-computed C1;4;5 can also be used to adapt the relevant parts ofthe columns Col ĉ1s1;s2 and Col ĉ1s1;s3 : Let q 2 f2; 3g. We re-de�ne lq and uq, denoted byl0q and u0q, respectively, such that C1;4;5+�1;q Col ĉ1s1;sq [j] � bC for all j < l0q and for allj > u0q (see Figure 5.9).This process can be generalized in the obvious way to the case where 3 � � < k:A combination of � of the k sequences is selected, using a map� : f1; 2; : : : ; �g ! f1; 2; : : : ; kg with �(i) < �(j) for i < j;and the additional estimateC�(1);:::;�(�) := minnC(hc�(1); : : : ; c�(�)i)j0 � ci � jsij for all i 2 f�(1); : : : ; �(�)gois computed. For larger �, also a recursive call with a smaller �0 < � is possible.Note that, compared to all previous heuristics based on that upper bound bC, animportant step was taken here: Rather than a single value, a sum of ��2� additional-cost values is compared with bC. This way, the dependence of the relative speed-up on the number of sequences can be reduced. For more than twelve sequences



5.5. APPROXIMATE SLICING POSITIONS 65where the \exhaustive" methods alone perform worse and worse, we obtained muchfaster procedures. Of course, the performance also largely depends on the additionalestimate, i.e. which �-subfamily of the k sequences is selected. A detailed discussionof this dependence is given in Section 6.1.2. Section 7.4 shows the correspondingrunning times of the di�erent variations.Note also the relatedness of this approach to the function siMinC of computingan upper bound bC by simultaneous variation of multiple indices (see Section 5.3.3).The simultaneous minimization of s indices is nothing but the computation of a�-subfamily with � = s. But while siMinC uses the exact additional cost of thesubfamily of sequences merely to improve the upper bound bC, here we use it moredirectly to prune the search space utilizing its origin as a sum of ��2� additional-costvalues.Since the technique of preprocessing �-subfamilies and the monotony bounds arebased on rather independent principles, a combination of both approaches is possible.Despite the large preprocessing overhead, for twelve and more sequences the combinedversion yields the shortest running times (see the measurements in Section 7.4). Theresulting alignment algorithm allows to align simultaneously up to fourteen closelyrelated proteins within less than a minute. However, for feebly related sequences,also with the improvements described here, fairly long running times can { and oftenwill { occur when more than ten sequences are under consideration.5.5 Approximate Slicing PositionsAs noted above, for too many sequences the calculation of a C-optimal family ofslicing positions may take rather a long time if the sequences are not very similar.In these cases, it is possible to use a slightly less accurate method for computing theslicing positions. The minimization over all positions c2; : : : ; ck can be skipped anda family of approximate slicing positions hĉ1; ĉ2; : : : ; ĉki which gives rise to the upperbound bC can be used to cut up the sequences. This allows to obtain reasonably goodalignments in timeO(k2n2+2knLk�1), making our procedure for small L comparableto iterative alignment procedures, the advantage being that even these approximatealgorithms align the sequences simultaneously.Note that the di�erent possibilities of computing an estimate bC might resultin di�erent approximate slicing positions and thus in di�erent alignments. By ourgeneral heuristic, those methods leading to good, i.e. small, upper bounds bC arelikely to produce alignments near to the optimal one. A discussion of the quality ofalignments computed from approximate slicing positions is given in Section 7.2.4.By giving up the heuristic of (proper) C-optimal families of slicing positions, ofcourse, the alignment may even improve { especially when measured in biologicalterms. So, it might be possible to de�ne other objectives which may take biologicalproperties of the sequences into account and/or are faster to compute. However, suchcriteria still have to be developed.



Chapter 6The Program DCA6.1 Some Implementational AspectsThe program DCA is an implementation of the divide-and-conquer multiple sequencealignment algorithm in the programming language C [115]. The largest part of theprogram is a direct implementation of the functional speci�cations given in the pre-vious chapters. In the following, we concentrate our discussion on the points wherenon-trivial solutions were necessary or inaccuracies were unavoidable.6.1.1 Incorporation of MSAOne of the main di�culties arising with the implementation of DCA was the incorpo-ration of a fast algorithm for the optimal SP alignment of the families of remainingshort (sub)sequences. A �rst, straightforward self-implementation of the standardk-way dynamic programming algorithm was a tolerable solution for up to six se-quences when the recursion stop size L was set to small values. However, comparedto sophisticated speed-up techniques such as those implemented in the program MSA(see Section 3.4, [39, 128, 90]), this was a fairly slow solution. Another reason fora combination of DCA with MSA was its feature to accept partial alignments of theinput sequences as �xed pieces of the alignment to be computed, much like anchorpoints described in the context of the fragment-based heuristic alignment methods(see Section 3.5). Since a family of slicing positions can be seen as an anchor oflength zero, a single MSA-call with the additional information about all the slicingpositions would be an elegant solution of the entire problem.Unfortunately, the current version 2.1 of MSA accepts anchors only if they havelength � 1.1 So it is necessary to call MSA once for each family of (sub)sequences.But the alignment of the subsequence families independently of each other raisesdi�cult questions concerning the free shift and the handling of a�ne gaps at slicingpositions.1Upon our request, the authors of MSA are working on an extension of their program to allowalso anchors of length zero [170]. 66



6.1. SOME IMPLEMENTATIONAL ASPECTS 67While, in principle, MSA allows to turn the free shift option on and o�, the leftand the right termini are always treated identically. This, of course, makes sensewhen aligning uncut sequences. However, for our purpose we require a left-only freeshift for the leftmost and a right-only free shift for the rightmost subsequence family.Fortunately, this problem can be circumvented by a simple trick (here explained forthe leftmost family): At the right end of each sequence, we add an additional letter,say A. These letters are forced to build an anchor of length one. Then, MSA is calledwith the free shift option switched on, thus scoring left gaps like terminal gaps whilegaps endig immediately before the �xed last column of As are scored like internalgaps. Finally, the As are removed from the obtained alignment.For the other problem, the scoring of gaps running through slicing positions, wecould not �nd an accurate solution. Consider two adjacent families of subsequences.Terminal gaps in the left-hand alignment and initial gaps in corresponding rows ofthe right-hand alignment unify to a single larger gap upon concatenation of thealignments. Hence, the alignments cannot be computed and scored independently.An option which allows { based on the endings in the left-hand alignment { to switchbetween the initiation of a new gap and the elongation of an existing gap individuallyfor each sequence when computing the right-hand alignment might be an acceptablesolution. But none of the e�cient optimal alignment procedures known to the authorallows this exibility. So we had to accept an inaccuracy: We align the families of(sub)sequences independently of each other, charging all gaps (except initial gaps ofthe leftmost and terminal gaps of the rightmost family) like internal gaps.Of course, when re-aligning parts of the sequences as described in Section 4.5.2,the same problems arise at the window bounds, and we evaded them in the sameinexact way.Note that this inaccuracy does not inuence the quality of alignments too muchwhen one is mainly interested in the detection of corresponding regions of the se-quences. The overall structure of the alignment is dominated by the relative shift ofthe sequences against each other due to the location of slicing positions (which arecomputed correctly). In particular for biological sequences, minor e�ects of gaps inthe proximity of slicing positions become quite insigni�cant since the structurally im-portant regions which are of highest interest are mostly gap-free. However, in termsof SP score or when aligning for phylogeny (where each single match or mismatch iscounted), the e�ect might become perceptible.Of course, the problems discussed above do not arise when dealing with a stronglyadditive alignment score. So, for homogeneous gap costs, the alignments of the(sub)sequences approximate the correct objective function.However, also with homogeneous gap costs it is not completely certain that onealways obtains the expected results since { as noted at the end of Section 3.4 { MSAsometimes only �nds a suboptimal alignment. Even more problematic is that thecurrent version of MSA from time to time, mainly when called with more than �veor six sequences, terminates abnormally due to errors in the program and does notreturn any alignment. In such cases, DCA inserts a heuristic multiple alignment which



68 CHAPTER 6. THE PROGRAM DCAis also computed by MSA and whose score is normally used as an upper bound forreducing the search space (as explained in Section 3.4). Of course, this results in amuch worse than optimal (or near-optimal) multiple alignment.Another disadvantage of the current version of MSA is the unability to handlearbitrary sequence weights. It is only possible to choose between the unweightedSP score and sequence weights which are computed internally by MSA based on theneighbor joining method for phylogenetic tree reconstruction [165]. So, in the currentimplementation of DCA, our sequence weights (see Section 2.5) are only used for thecomputation of the slicing positions while the optimal alignments are computed withrespect to the unweighted SP score.6.1.2 Preprocessing �-SubfamiliesOur �rst attempts of implementing the approach of preprocessing the minimal addi-tional cost of a subfamily of � of the k sequences (see Section 5.4.2) has not led to thespeed-up we expected: We computed the value C�(1);:::;�(�) for all �k�� combinations�. While this took comparatively a long time, in most cases the obtained valueswere rather small, often even zero such that they did not lead to any reduction ofthe search space.A �rst reason was quickly detected: If sequence s1 is not among the sequencesof the subfamily from which the additional estimate is computed, then the valueC�(1);:::;�(�) is always zero due to the trivial cuts2 h0; : : : ; 0i and hjs�(1)j; : : : ; js�(�)ji.Thus, to obtain useful additional estimates, �(1) has to be set to 1.More di�cult was the selection of the remaining � � 1 sequences. Here, thefollowing heuristic proved to be successful: The least compatible sequences are ex-pected to result in the highest additional cost. The compatibility of sequences canbe estimated by the pairwise additional costs they contribute to the upper boundbC. So, we select those �� 1 sequences which are involved in the largest projectionsCsp;sq [ĉp; ĉq] of bC. This way, we obtain comparatively large values C�(1);:::;�(�), and thetime of the pre-processing becomes moderate when we consider only one subfamilyof � sequences.However, the running time of our �rst implementation of this technique wasstill larger than the time required for the exhaustive search. The indirect indexingwhen computing the value C�(1);:::;�(�) (see Figure 6.1) and the more complex controlstructure during the later search for Copt made up more than the time saved by thedecrease of search space.Then, we implemented the algorithm in a less elegant way which indeed runsfaster than the exhaustive version: Before computing the additional estimate, thecorresponding sequences are copied (in fact by switching some pointers) such that2This is only true if the relevant parts of the matrices are maximally large. Otherwise, the slicingpositions given here are not within the relevant parts of the additional-cost matrices, and the valuesC�(1);:::;�(�) are not necessarily zero but nevertheless very low.



6.2. PARAMETERS OF DCA 692.1 Cmin := +12.2 for c�(2) 2 f0; : : : ; js�(2)jg dofor c�(3) 2 f0; : : : ; js�(3)jg do.. . for c�(�) 2 f0; : : : ; js�(�)jg doif C(hĉ1; c�(2); c�(3); : : : ; c�(�)i) < Cmin thenCmin := C(hĉ1; c�(2); c�(3); : : : ; c�(�)i)2.3 return CminFigure 6.1: Implementation of the search for an additional estimate C�(1);:::;�(�) withindirect addressing of sequence numbers. We assume that �(1) = 1. For simplicitywe show the naive version corresponding to that shown in Figure 4.7.they receive new (temporary) sequence numbers 1; : : : ; �. Thus, no indirect address-ing is necessary, and the original exhaustive procedure can be used to compute thevalues C�(1);:::;�(�).6.2 Parameters of DCAIn general terms, DCA takes as input a family of sequences and a matrix of pairwiseletter distances with an a�ne gap function and produces a multiple alignment of thesequences. The input formats of both the sequences and the cost function are thesame as those of MSA (see [171]). Several other parameters can be chosen for DCA:� The recursion stop size can be set to any number L � 1. Of course, too large anL (e.g. L > 100) can result in very long running times and very large memoryusage due to the resulting MSA-runs. On the other hand, too small an L (e.g.L < 5) can result in empty subsequences which may lead to bad alignments.We obtained a value of L = 40 as a good compromise between computationtime and alignment quality (see Section 7.2).� The window size can be set to any value W � 0. Note that for W > L2 , thewindows laying across adjacent slicing positions may overlap which is not inaccordance with the original intention of this approach.� The weight intensity � can be set to any value between � = 1 (maximumweighting) and � = 0 (no weighting). However, by reasons mentioned above,the weights are only used when computing the slicing positions while the align-ments of the (sub)sequences are optimized with regard to the unweighted SPscore.� The free shift of the sequences can be turned on and o�.



70 CHAPTER 6. THE PROGRAM DCA� The search phase for a C-optimal cut can be deactivated such that the sequencesare cut at the approximate slicing positions which give rise to the estimates bC.Finally, DCA can also be run in an interactive mode. Here, a series of alignmentsof the same sequence family can be computed with one or more parameters alteredwhile the others remain unchanged. This provides an environment for a comfortableexploration of the parameter space of multiple sequence alignment.We implemented an html-based user interface for the use of DCA via the World-Wide Web. An installation has been set up [191].



Chapter 7Evaluation of the AlgorithmIn this chapter we evaluate the performance of the divide-and-conquer alignment pro-cedure. Because there is no \benchmark problem" for multiple sequence alignmentcontaining comparable problems di�ering only in the number, length, and/or relat-edness of the sequences and because the behavior of alignment methods depends verymuch on the sequence family under consideration, we decided to test our algorithmon families of random sequences.In the �rst part, we show how we create sequence families by a tree-guided mu-tation process simulating evolution. Proceeding this way, we are aware of the trueevolutionary history of the sequences which is an advantage when evaluating meth-ods for the reconstruction of phylogenetic relationships. Then, we use these familiesto assess the quality of the alignments produced by DCA; we compare the di�erentrunning time optimizations; and we validate the theoretical results about space andtime requirements of our procedure.Alignments of biological sequences are presented in Chapter 8.7.1 Families of Random SequencesIt is our aim to create sequence families most similar to \real world" biological data.Of course, a family consisting of k unrelated random sequences does not resemblesuch a typical problem instance since species are part of a hierarchically structuredphylogeny, and thus cannot be regarded as if drawn independently from the samedistribution [65].We simulate an evolutionary process by iterated mutation of a common ancestorsequence following the edges of a pre-given rooted mutation guide tree. Beneath therelatedness of the sequences, the major advantage of this approach is the knowledgeabout the history of the sequences. So it is { in contrast to biological applications {easily possible to verify predictions about the phylogeny of the sequences simply bycomparing the predicted phylogenetic tree to the tree that was used in the creationprocess of the sequences.In the literature, some methods of imitating the evolution of (mostly DNA-like)71



72 CHAPTER 7. EVALUATION OF THE ALGORITHMA R N D C Q E G H I0.087 0.041 0.040 0.047 0.033 0.038 0.050 0.089 0.034 0.037L K M F P S T W Y V0.085 0.081 0.015 0.040 0.051 0.070 0.058 0.010 0.030 0.065Table 7.1: Normalized frequencies of the amino acids in the random sequence families.random sequences have been suggested (e.g. [112, 94, 176]). But in none of themethods known to the author, the length of the sequences is altered by insertionsand/or deletions of subsequences making these approaches unsuitable for the creationof alignment test families. So we had to develop a new procedure which serves ourpurposes.We describe the creation of a family of k sequences of average length n. Theletters of our sequences are independently chosen from a �xed alphabet A with �xedbut di�erent probabilities for di�erent letters. We use A = fA, R, N, D, C, Q, E, G, H,I, L, K, M, F, P, S, T, W, Y, Vg denoting the set of twenty amino acids.Initially, we randomly choose a sequence of length n using the distribution ofamino acids calculated by Dayho� et al. [50] (see Table 7.1). This sequence is thestarting point for a mutation process guided by the branching order of the mutationguide tree which we require to contain at least k nodes. The root of the tree is iden-ti�ed with the initial sequence. Then, at the nodes connected with the root, \childsequences" are created by randomly substituting, inserting, and deleting letters. Theexact way mutations are performed in our model is described below. The process ofassigning mutated sequences to nodes adjacent to those which are already providedwith a sequence is carried on until the leaves of the guide tree are reached and thuseach node of the tree is provided with a sequence which is more or less related tothe common ancestor. If the mutation guide tree contains more than k nodes, fromthe sequences created this way, k sequences are selected randomly, forming the �nalsequence family.The creation of a child sequence from its immediate ancestor is performed asfollows. We assume a constant mutation rate over the whole length of the sequence.At each position of the ancestor sequence, amino acid substitutions are performedaccording to the mutation probability matrix of one accepted amino acid substitutionper hundred sites (1 PAM) given in [50]. (In fact, most sequence positions remainunchanged as in 99 percent of the cases an amino acid is substituted by itself.) Addi-tionally, with �xed probabilies � and �, we allow at most ten consecutive amino acidsto be inserted or deleted at a randomly chosen position of the sequence. (Insertionsmaintain the overall distribution of amino acids.) We denote the new unit of mea-sure for the distance of a child sequence created this way from its ancestor includinginsertions and deletions by 1 PAM�. Note that, if we set the insertion probability �to the same value as the deletion probability �, the expected average length of thesequences remains n, the length of the common ancestor sequence.



7.1. FAMILIES OF RANDOM SEQUENCES 73Dd Udm = 43d = 210depthFigure 7.1: Uniform binary tree of depth m = 4 with M = 25 � 1 = 31 nodes. For anode in depth d = 2 (marked by the circle), those nodes contributing to Dd and Ud,respectively, are shown.Of course, this model is only an approximation to biological reality. The mutationrate of genomic sequences found in nature is not constant for all positions in thegenome of a single species nor seems it to be the same for di�erent species: Mutationsin genomic regions with strong functional and/or structural importance are less oftenobserved than elsewhere [87, 88, 178, 24], and higher reproduction rates tend to resultin higher mutation rates. Nevertheless, constant mutation rates are a commonly usedapproximation [112, 63, 116, 94, 24, 176] and su�ce for the purpose of this model.Also, our model does not reect \evolutionary pressure" since all mutations arereversible.1 More sophisticated methods of creating random sequence families takingthese and other features into consideration have been suggested in the literature[61, 43, 175, 14].To be able to create sequence families of a pre-given average pairwise distance, itis necessary to know, for a given mutation guide tree, the average sequence distancedav (in units of PAM�), i.e. the expected length of a shortest path between tworandomly chosen nodes in the tree where each edge has length 1 PAM�. As it allowsa fairly simple theoretical analysis, we consider a binary uniform tree of depth mwith M = 2m+1 � 1 nodes (see Figure 7.1).We obtain dav by computing the sum of all pairwise distances in the tree dividedby M2, the number of pairs of nodes: Consider a node in level d of the uniformbinary tree, 0 � d � m. In the example of Figure 7.1, we have chosen d = 2. Thecorresponding node is indicated by a circle. In each level i, 0 � i � m � d, of thesubtree \below" the observed node, there are 2i nodes with distance i. The sum ofdistances to all these nodes isDd := m�dXi=0 (2i � i) = 2m�d+1(m� d � 1) + 2:Additionally, there are d nodes \above" the observed node, each being starting point1In fact, because of the reversibility, there is no need of locating a root of the mutation guide tree:Any node can be used as the starting point to which the common ancestor sequence is attached.



74 CHAPTER 7. EVALUATION OF THE ALGORITHMof a subtree. Summing the distances to all these nodes givesUd := dXi=10@i+ m�(d�i)Xj=1 2j�1(i+ j)1A= 2m�d+1(d �m+ 3) + 2m+1(d+m� 3) + d:Hence, the total sum of distances from a node in level d to all other nodes isNd := Dd + Ud= 2m�d+2 + 2m+1(d+m� 3) + d+ 2:Averaging this value over all pairs of nodes, we obtaindav = Pmd=0(2d �Nd)M2= 2 � 2m+1 4 +m(1 + 2m+1)� 2m+2(2m+1 � 1)2which approximates 2 2m+1m� 2m+22m+1 = 2 (m� 2)for m su�ciently large.In conclusion, to obtain sequences of a pre-given relatedness, we simply have toalter the depth m of the tree: m � dav2 + 2:Unfortunately, for large distances dav , the number of sequencesM = 2m+1�1 involvedin our creation process increases enormously (e.g. to M = 2128 � 1038 for dav = 250PAM�). For computation time and memory size reasons, it is not possible to createsuch a large number of sequences. So we decided to use a higher mutability rate,say R PAM� each time creating a new sequence from its immediate ancestor. Thisleads to an average distance of dav � 2(m� 2)R PAM� between two of the resultingsequences.To be able to create sequences of some thousand letters in length, we use amutation guide tree of depth m = 9, creating M = 210 � 1 = 1023 sequences.Choosing R = 18 � 2502(9�2), we obtain an average pairwise distance dav � 250 PAM�.The probability for insertions and deletions is set to � = � = 0:3 percent. With thissetting, the pairwise identity between two sequences (i.e. the number of identicallypaired letters in an optimal pairwise alignment due to unit edit distance dividedby the total number of letters in the two sequences) lies between twenty and thirtypercent. Except stated otherwise, all measurements described in this chapter areobtained on sequence families generated with these parameters.



7.2. QUALITY OF THE ALIGNMENTS 75(a) FSAEAALVSPGKGDDEQVPNKDKCVYHGHKDGKRMNVKTPPTGPLVVGVHQYEGANEVGATCEESSYCYVKEQAIQVKESQECTDFARHEVKSFRGVPGKLTEVIPVPLYGAAHPVGDPIKLGSLFLNHYESKGHTAAMCLLGMKTELIEPIEVQASGVTEPVPNPVPATGIKLDKYTREENCLGMCLMGMGPPMVTIGEVGI(b) FSAEAALVSP--------GKGDDEQVPNKDKCVYHGHKDGKRMNVKTPPTGPLVVGVHQYEGANEVGATCEESSYCYVKEQAIQVKESQECTDFARHEVKSFRGVPGKLTEV-IPVPLYGAAHPVGDP--------IKLGSLFLNH---YESKGHTAAMCLLGMKTELIEP-IEVQASGVTEPVPNP--------VPATGIKLDK---YTREENCLGMCLMGMGPPMVTI-GEVGI(c) FSAEAALVSP--------GKGDDEQVPNKDKCVYHGHKDGKRMNVKTPPTGPLVVGVHQYEGANEVGATCEESSYCYVKEQAIQVKESQECTDFARHEVKSFRGVPGKLTE-VIPVPLYGAAHPVGDP--------IKLGSLFL---NHYESKGHTAAMCLLGMKTELIE-PIEVQASGVTEPVPNP--------VPATGIKL---DKYTREENCLGMCLMGMGPPMVT-IGEVGIFigure 7.2: (a) Sample family of random sequences obtained with the proceduredescribed in the text for n = 50 and k = 4; (b) \true" alignment of these sequences;(c) optimal alignment according to PAM 250 substitution matrix and gap functiong(l) = 8 + 12 l.Note that due to the assumptions we made, aligning biological sequences { even ifthey have the same pairwise identity { might require less or more time than aligningour random sequences. Yet, the aim of this chapter is the validation of the asymptoticbehavior of the divide-and-conquer procedure as derived in the previous chapters.Our random sequence families seem to be suitable for this purpose.In Figure 7.2 (a), a sample family with k = 4 sequences of average length n = 50 isshown. The alignment given in Figure 7.2 (b) is the \true" alignment correspondingto the creation process of the sequences. Figure 7.2 (c) shows the \optimal" alignmentaccording to the PAM 250 substitution matrix [50] (in distance form with valuesbetween 0 and 24) and gap function g(l) = 8 + 12 l. While the overall optimalalignment is correct, the exact location of the gaps does not coincide in all cases.The scores for both alignments show these di�erences as well: The \true" alignmenthas an alignment score of 5184, while the \optimal" alignment has a score 5166. Thisshows that { as is well-known { an optimal alignment is not necessarily the correctone, i.e. the parsimony principle does not always hold strictly.Figure 7.3 shows the corresponding relatedness tree of these sequences.7.2 Quality of the AlignmentsIn this section, we assess the quality of the alignments computed with DCA dependingon several parameters. All alignments are optimized with respect to the substitutionmatrix of 250 PAM as described above. Yet, here we use a homogeneous gap functiong(l) = 15 l since otherwise the results are distorted by the incorrect scoring of a�negaps at slicing positions. We also set all sequence weight factors �p;q to 1. As the
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 36 PAM�s2 s3 s4s1144 PAM� 144 PAM� 108 PAM� 108 PAM�18 PAM�
Figure 7.3: Relatedness tree for the sequences shown in Figure 7.2.standard of truth, we use the optimal SP score computed with MSA (or with DCA whenL is set to a value larger than the length of the longest sequence under consideration).We have run the tests on a Sun SparcStation 10/41 running Solaris 2.4 with 32megabytes of RAM. The programs were compiled with the gcc C compiler version2.7.0 with the -O ag for optimization. To measure time, we have used the timescommand from the <sys/times> C library. The space usage was measured with theset time environment of csh.As our basic test set we have computed for each k 2 f3; 4; : : : ; 14g one hundredfamilies of random sequences with average expected length n = 250. We presentthe results of our measurements mostly in the following form: First, we give foralignments of some individual sequence families the exact scores and other values ofinterest and discuss distinctive features. These families are randomly selected andthus do not always show the the typical behavior. Then, we present the correspondingresults averaged over the whole sets of one hundred sequence families for each k 2f3; 4; 5; 6g. For larger k, the optimal alignment score averaged over all one hundredsequence families was unobtainable due to several incomplete runs of MSA, makingan assessmant of the alignment quality impossible.7.2.1 Dependence on the Recursion Stop SizeWe begin with an assessment of the alignment score and computation time dependingon the recursion stop size L. Table 7.2 shows the absolute alignment scores (�rst rowof each box), the relative score error as percentage of the optimal score (secondrow), and the corresponding running times (third row) for sequence families withk = 3; : : : ; 14 sequences. While for k = 3; 4; 5; 6 the sequence family is chosenrandomly from our one hundred test families, the families with 7 { 9 sequences wereselected more carefully due to the problems of MSA. However, also for the familywith k = 5 sequences, in two cases MSA could not compute optimal alignments of allsubsequence families. This is marked by an asterisk at the score value. For k > 9, wecould not compute the optimal alignment score with MSA (indicated by the questionmarks in Table 7.2). Here, only the score and running time of the DCA-runs withsmaller L are shown.



7.2. QUALITY OF THE ALIGNMENTS 77L = 10 L = 20 L = 30 L = 40 L = 50 L = 100 L = 200 L = 30012 018 12 018 12 018 12 018 12 018 12 014 12 014 12 014k = 3 :033 % :033 % :033 % :033 % :033 % :000 % :000 % :000 %2:79 sec 1:85 sec 1:72 sec 1:32 sec 1:21 sec 1:28 sec 1:95 sec 2:55 sec23 961 23 950 23 950 23 947 23 947 23 947 23 947 23 947k = 4 :058 % :013 % :013 % :000 % :000 % :000 % :000 % :000 %3:47 sec 2:65 sec 2:64 sec 2:23 sec 2:27 sec 2:44 sec 3:14 sec 4:65 sec39 015 39 015 39 015 39 008 39 008 *39 020 *39 020 39 008k = 5 :018 % :018 % :018 % :000 % :000 % :031 % :031 % :000 %4:31 sec 3:66 sec 3:64 sec 3:47 sec 3:56 sec 3:97 sec 5:36 sec 10:09 sec60 184 60 176 60 176 60 171 60 171 60 141 60 131 60 131k = 6 :088 % :075 % :075 % :067 % :067 % :017 % :000 % :000 %7:01 sec 6:16 sec 5:92 sec 6:10 sec 5:97 sec 6:55 sec 9:11 sec 15:98 sec83 653 83 653 83 653 83 652 83 652 83 652 83 652 83 645k = 7 :010 % :010 % :010 % :008 % :008 % :008 % :008 % :000 %8:03 sec 7:69 sec 7:29 sec 7:57 sec 7:62 sec 8:73 sec 11:32 sec 26:39 sec112 411 112 407 112 407 112 370 112 370 112 370 112 344 112 344k = 8 :060 % :056 % :056 % :023 % :023 % :023 % :000 % :000 %10:73 sec 10:20 sec 10:19 sec 10:68 sec 10:74 sec 12:79 sec 23:14 sec 70:30 sec147 150 147 086 147 086 146 992 146 992 *147 079 146 942 146 892k = 9 :176 % :132 % :132 % :068 % :068 % :127 % :034 % :000 %15:94 sec 15:56 sec 15:18 sec 16:24 sec 16:22 sec 19:56 sec 30:31 sec 319:35 sec182 007 181 908 181 908 181 896 181 896 181 812 *181 803k = 10 | | | | | | | ?20:99 sec 20:18 sec 19:93 sec 21:50 sec 21:82 sec 24:52 sec 44:19 sec223 697 223 563 223 563 223 550 223 550 *223 554 *223 879k = 11 | | | | | | | ?30:31 sec 29:13 sec 29:45 sec 30:24 sec 33:87 sec 34:45 sec 438:82 sec274 839 274 564 274 564 274 498 274 498 *274 879k = 12 | | | | | | ? ?56:27 sec 55:63 sec 55:41 sec 56:30 sec 56:04 sec 65:00 sec322 813 322 688 322 688 *322 854 *322 854 *323 289k = 13 | | | | | | ? ?202:48 sec 199:27 sec 204:79 sec 182:63 sec 180:74 sec 162:98 sec377 655 *377 795 *377 795 *377 742 *377 742 *377 913k = 14 | | | | | | ? ?1704:48 sec 1698:37 sec 1702:96 sec 1702:43 sec 1783:18 sec 69:15 secTable 7.2: The trade-o� between alignment score and computation time. The �rstrow of each box shows the absolute alignment score, the second row the relative scoreerror, and the third row shows the running time in seconds. Where MSA could notcompute optimal alignments of all (sub)sequence families, the score is marked withan asterisk.
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Figure 7.4: Relative deviation from the optimal alignment score for di�erent valuesof L and k.Doubtless, even for small L the quality of the alignments is very high. And, asexpected, for larger L { at least where MSA is able to compute optimal alignments ofall subsequence families {, the alignment quality increases further. Of course, thisrise of quality is accompanied with an increase of computation time. However, forsmall L, this trade-o� cannot be observed: In most cases, the shortest running time isachieved for L between 20 and 40 while L = 10 leads for none of the observed familiesto the shortest computation time. This indicates that for very short sequences, theinteraction with the operating system due to the larger number of MSA-calls takesmore time than is additionally required for aligning the longer (but still comparativelyshort) sequences of length � 40.Note that the incorrect runs of MSA result in some unexpected e�ects concerningthe computation time: For example, the abnormally short running time for k = 14,L = 100 results from errorneous terminations of MSA for all subsequence families.The increase of alignment score also con�rms this.The corresponding average values for the complete test sets of one hundred se-quence families are shown in Figures 7.4 (average score error) and 7.5 (average run-ning time; note the logarithmic time scale). The general score vs. time trade-o� iscon�rmed. For the small sequence families in this study, a value for L between 40and 100 seems to be a good compromise with rather high alignment quality and stillcomparatively short running times. For larger sequence families, of course, a valuefor L between 20 and 40 should be preferred.It is noteworthy that the values for L = 20 and L = 30, and the values for L = 40
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Figure 7.5: Running times of DCA for di�erent values of L and k.and L = 50 almost always coincide. This can be easily understood by observing theseries of average sequence lengths of the subsequences when starting with an initiallength of n = 250: 125; 63; 31; 16; : : : Both L = 20 and L = 30 (as well as L = 40 andL = 50) fall in the same class, and thus they have (in most cases) the same numberof recursions, resulting in the same subsequence families being aligned by MSA.A clear dependence of the alignment quality on the number of sequences cannotbe observed.7.2.2 Improvement by WindowingWe also examined the inuence of a re-alignment of parts of the sequences in theproximity of slicing positions (see Section 4.5.2) on the alignment score and runningtime. Table 7.3 shows for di�erent values of L the absolute scores obtained withwindows of size W = L=4 (for L = 10, we used W = 3), W = L=2, and W = L. Inmost cases the alignment score can be improved. Often, the improvement is ratherimpressive (e.g. k = 6, L = 40) while in other cases no improvement can be achieved(e.g. k = 8, L = 10). Of course, the computation time grows with increasing windowsize (except for uctuations in the time measurements). Yet, in some cases (e.g.k = 7, L = 20), the window approach allows a much faster computation of anoptimal alignment than can be achieved by increasing the stop size L.Also the average values over the complete test set, where we �xed L = 40, showa slight improvement of the score for increasing window size (see Figure 7.6). Asexpected, the running time increases correspondingly (see Figure 7.7).



80 CHAPTER 7. EVALUATION OF THE ALGORITHMW = 0 W = 14L W = 12L W = LL = 10 12 018 (2:79 sec) 12 018 (4:65 sec) 12 018 (4:82 sec) 12 014 (4:48 sec)L = 20 12 018 (1:85 sec) 12 018 (2:64 sec) 12 014 (2:75 sec) 12 014 (2:96 sec)L = 40 12 018 (1:32 sec) 12 014 (1:79 sec) 12 014 (1:86 sec) 12 014 (1:97 sec)k = 3 L = 100 12 014 (1:28 sec) 12 014 (1:58 sec) 12 014 (1:78 sec) 12 014 (2:14 sec)L = 200 12 014 (1:95 sec) 12 014 (1:64 sec) 12 014 (1:87 sec) 12 014 (2:78 sec)L = 300 12 014 (2:55 sec)L = 10 23 961 (3:47 sec) 23 961 (5:36 sec) 23 961 (5:59 sec) 23 953 (5:71 sec)L = 20 23 950 (2:65 sec) 23 950 (3:74 sec) 23 950 (3:57 sec) 23 947 (3:97 sec)L = 40 23 947 (2:23 sec) 23 947 (2:95 sec) 23 947 (3:03 sec) 23 947 (3:27 sec)k = 4 L = 100 23 947 (2:44 sec) 23 947 (3:11 sec) 23 947 (3:33 sec) 23 947 (3:98 sec)L = 200 23 947 (3:14 sec) 23 947 (3:39 sec) 23 947 (3:89 sec) 23 947 (5:92 sec)L = 300 23 947 (4:65 sec)L = 10 39 015 (4:31 sec) 39 015 (6:60 sec) 39 015 (6:77 sec) 39 008 (7:34 sec)L = 20 39 015 (3:66 sec) 39 015 (4:92 sec) 39 008 (5:01 sec) *39 020 (5:26 sec)L = 40 39 008 (3:47 sec) 39 008 (3:98 sec) *39 020 (4:33 sec) *39 020 (5:30 sec)k = 5 L = 100 *39 020 (3:97 sec) *39 020 (4:14 sec) *39 020 (4:99 sec) *39 020 (6:31 sec)L = 200 *39 020 (5:36 sec) *39 020 (5:84 sec) *39 020 (5:84 sec) *39 020 (9:02 sec)L = 300 39 008 (10:09 sec)L = 10 60 184 (7:01 sec) 60 170 (9:04 sec) 60 170 (9:27 sec) 60 169 (9:95 sec)L = 20 60 176 (6:16 sec) 60 170 (7:43 sec) 60 170 (8:01 sec) 60 151 (8:30 sec)L = 40 60 171 (6:10 sec) 60 166 (6:65 sec) 60 138 (7:40 sec) 60 131 (8:50 sec)k = 6 L = 100 60 141 (6:55 sec) 60 141 (7:30 sec) 60 134 (8:25 sec) 60 131 (11:10 sec)L = 200 60 131 (9:11 sec) 60 131 (9:69 sec) *60 134 (10:88 sec) *60 135 (20:97 sec)L = 300 60 131 (15:98 sec)L = 10 83 653 (8:03 sec) 83 652 (10:40 sec) 83 645 (10:59 sec) 83 645 (11:29 sec)L = 20 83 653 (7:69 sec) 83 645 (8:61 sec) 83 645 (9:28 sec) 83 645 (10:01 sec)L = 40 83 652 (7:57 sec) 83 645 (8:27 sec) 83 645 (8:89 sec) 83 645 (10:59 sec)k = 7 L = 100 83 652 (8:73 sec) 83 645 (9:62 sec) 83 645 (11:30 sec) *83 656 (14:02 sec)L = 200 83 652 (11:32 sec) 83 645 (12:23 sec) *83 652 (17:88 sec) *83 839 (26:94 sec)L = 300 83 645 (26:39 sec)L = 10 112 411 (10:73 sec) 112 411 (13:13 sec) 112 411 (13:42 sec) 112 411 (14:07 sec)L = 20 112 407 (10:20 sec) 112 407 (12:29 sec) 112 387 (11:96 sec) *112 431 (13:49 sec)L = 40 112 370 (10:68 sec) 112 370 (11:49 sec) 112 370 (12:67 sec) 112 344 (15:01 sec)k = 8 L = 100 112 370 (12:79 sec) 112 370 (13:95 sec) *112 514 (16:77 sec) *112 370 (21:88 sec)L = 200 112 344 (23:14 sec) *112 514 (24:40 sec) *112 465 (28:04 sec) *112 427 (41:21 sec)L = 300 112 344 (70:30 sec)L = 10 147 150 (15:94 sec) 147 150 (20:05 sec) *147 166 (20:28 sec) *147 160 (21:20 sec)L = 20 147 086 (15:56 sec) 147 085 (18:31 sec) 147 085 (19:04 sec) 147 040 (20:51 sec)L = 40 146 992 (16:24 sec) 146 991 (18:50 sec) 146 983 (19:70 sec) 146 942 (22:91 sec)k = 9 L = 100 *147 079 (19:56 sec) *146 997 (22:07 sec) *146 942 (24:81 sec) *147 071 (32:46 sec)L = 200 146 942 (30:31 sec) 146 942 (31:71 sec) *147 062 (32:98 sec) *147 001 (100:67 sec)L = 300 146 892 (319:35 sec)Table 7.3: Alignment score and computation time for varying recursion stop size Land window size W .
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Figure 7.6: Relative deviation from the optimal alignment score for di�erent valuesof W and k (L = 40 �xed). The non-monotonicity of the curve for k = 5 resultsfrom several non-optimal MSA-alignments for W = 20.
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Figure 7.7: Running time of DCA for di�erent values of W and k (L = 40 �xed).



82 CHAPTER 7. EVALUATION OF THE ALGORITHM� = �10 � = �5 � = �2 � = 0 � = +2 � = +5 � = +1012 025 12 014 12 025 12 018 12 014 12 014 12 016k = 3 1 1 1 1 1 1 023 957 23 947 23 947 23 947 23 948 23 958 23 948k = 4 8 4 1 3 2 0 639 028 39 020 39 026 39 008 39 020 39 021 39 027k = 5 0 2 2 2 2 5 060 138 60 140 60 179 60 171 60 161 60 152 60 202k = 6 12 0 0 0 0 0 783 687 83 645 83 656 83 652 83 686 83 645 83 678k = 7 26 34 23 20 16 13 17112 372 112 421 112 370 112 370 112 417 112 401 112 370k = 8 32 3 3 3 1 1 1147 389 147 100 147 151 146 992 147 023 147 032 147 043k = 9 0 0 0 1 0 1 18Table 7.4: Alignment score for di�erent slicing positions ĉ1 := l js1j2 m+� of sequence s1.The second row shows the corresponding minimal multiple additional cost Copt(ĉ1)in the �rst recursion of DCA.7.2.3 Relaxing ĉ1We also examined the inuence of the position ĉ1 on the alignments. Table 7.4shows the alignment scores for di�erent o�sets � = �10;�5;�2; 0;+2;+5;+10 fromthe midpoint of sequence s1. (The recursion stop size is �xed to L = 40 for allthese measurements.) The second row of each box shows the minimal additionalcost Copt(ĉ1) computed in the �rst recursion of DCA. (Note that the alignment scoredepends on all cuts. So it is no contradiction when di�erent alignment scores occuralthough the values of Copt coincide.) A tendency of best alignments to be obtainedfor ĉ1 �xed at or near the midpoint of s1 can only be estimated. However, the meanvalues for the complete sets of test families show that in the average case, the bestalignments are obtained when � is not too large (see Figure 7.8).Even when setting ĉ1 inside a region ��; : : : ;+� around the midpoint of s1 tothat position where the value Copt (ĉ1) reaches its absolute minimum, a clear improve-ment of the alignment score cannot be observed for increasing � (see Table 7.5 andFigure 7.9).7.2.4 Approximate Slicing PositionsFinally, we have examined how much the alignment score gets worse upon the usageof approximate rather than C-optimal families of slicing positions. For these mea-surements, we have also used the larger sequence families with up to 14 sequences
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Figure 7.8: Relative deviation from the optimal score for di�erent slicing positionsĉ1 := l js1j2 m+ �.because the speed-up by use of approximate slicing positions becomes clearly ap-parent only for twelve and more sequences (see Table 7.6). For less sequences, thecomputation of the optimal alignments of the subsequences with MSA dominates theprocedure such that no clear di�erences in the running times can be observed.In the second row of each box in Table 7.6, the upper bounds bC are shown whichgive rise to the approximate slicing positions. Note again that these values are thoseonly of the �rst recursion of DCA and thus a coinciding bC does not necessarily implythe same alignment score. The third row of each box shows the running time ofDCA. In the last column of Table 7.6, the corresponding values for C-optimal slicingpositions are listed.An unexpected result is the running time when the approximate slicing posi-tions computed with the variant calc-Chat-�rstRowZero are used. For k � 12, theseruns take often much longer than those where C-optimal families of slicing posi-tions are computed. This is due to the less compatible sequences resulting from thecomparatively bad slicing positions of calc-Chat-�rstRowZero causing an increase ofcomputation time of MSA which is larger than the time saved by skipping the searchfor C-optimal cuts. In contrast, the more sophisticated methods, especially the it-erative version calc-Chat-itSCRmin, produce alignments whose scores are often veryclose to the scores of the alignments computed with C-optimal families of slicingpositions. In three cases (k = 6, itSCRoi; k = 9, itSCRmin; k = 14, itSCRmin and



84 CHAPTER 7. EVALUATION OF THE ALGORITHM� = 0 � = 2 � = 4 � = 6 � = 8 � = 1012 018 12 018 12 018 12 018 12 018 12 018k = 3 1 1 1 1 1 0� = 0 � = 0 � = 0 � = 0 � = 0 � = 1023 947 23 948 23 948 23 948 23 948 23 948k = 4 3 1 0 0 0 0� = 0 � = �2 � = 3 � = 3 � = 3 � = 339 008 39 008 39 008 39 008 39 070 39 020k = 5 2 2 2 2 1 0� = 0 � = 0 � = 0 � = 0 � = �7 � = 960 171 60 170 60 170 60 163 60 163 60 143k = 6 0 0 0 0 0 0� = 0 � = 0 � = 0 � = 0 � = 0 � = 083 652 83 671 83 645 83 645 83 645 83 645k = 7 20 16 12 12 12 12� = 0 � = 2 � = 4 � = 4 � = 4 � = 4112 370 112 370 112 370 112 370 112 370 112 398k = 8 3 1 1 1 1 1� = 0 � = 2 � = 2 � = 2 � = 2 � = 2146 992 146 992 147 072 147 072 147 197 147 036k = 9 1 0 0 0 0 0� = 0 � = 2 � = 2 � = 2 � = 2 � = 2Table 7.5: Alignment scores when ĉ1 is set inside a region around the midpoint of s1to a position l js1j2 m+�, � 2 f��; : : : ;+�g, where Copt (ĉ1) is minimal. The second rowof each box shows the optimal multiple additional cost Copt (ĉ1) in the �rst recursionof DCA. The third row shows the o�set � to that position ĉ1 where the minimumCopt(ĉ1) is found.itSCRoi), the approximate slicing positions even result in better alignments than theC-optimal cuts.The average values for the complete test sets of one hundred sequence familiesfor each k 2 f3; 4; 5; 6g are shown in Figure 7.10. The trend of calc-Chat-itSCRminresulting in the best alignments with scores close to those computed with C-optimalfamilies of slicing positions is con�rmed.7.3 Comparison of Di�erent Realizationsof calc-ChatIn the previous section, we already measured the di�erences between the variants ofcalc-Chat by the quality of the alignments when using the slicing positions directly
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Figure 7.9: Relative deviation from the optimal score when ĉ1 is set inside the regionfl js1j2 m��; : : : ; l js1 j2 m+�g to that position ĉ1 = l js1j2 m+ �, j�j � �, where Copt(ĉ1) isminimal.to cut the sequences. In this section, we continue this comparison by showing theinuence of the di�erent methods on the search for C-optimal families of slicingpositions. Since the shape of the additional-cost matrices and thus the size of therelevant part of the search space depends considerably also on the gap function, wenow use a�ne gap penalties g(l) := 8 + 12 l with the PAM 250 substitution matrix.Table 7.7 shows the mean values of bC computed with the di�erent algorithms calc-Chat. The corresponding ratios rn are shown in Table 7.8, and the running timesare displayed in Table 7.9. Table 7.10 compares the average and maximal number ofiterations of the iterative methods calc-Chat-itSCRmin and calc-Chat-itSCRoi.For the time evaluation, we have skipped the calculation of the optimal alignmentsof the (sub)sequences since for some sequence families, the MSA-runs largely dominatethe overall running time. Proceeding this way, we ensure that the time-di�erencesobserved indeed result from di�erences in the size of the search space due to thedi�erent upper bounds bC. In all cases, the minimal additional cost Copt is computedexhaustively within the relevant part of the search space.The following observations are remarkable:� For all variants, the upper bound bC, the ratio rn , and the running time behavesimilar, i.e. a lower bC results in a smaller ratio rn which leads to a faster search.



86 CHAPTER 7. EVALUATION OF THE ALGORITHM�rstRowZero SCmin SCRmin itSCRmin SCRoi itSCRoi Copt12 018 12 018 12 018 12 018 12 018 12 018 12 018k = 3 1 1 1 1 1 1 11:21 sec 1:22 sec 1:22 sec 1:22 sec 1:25 sec 1:23 sec 1:32 sec24 246 23 979 23 947 23 947 24 112 24 126 23 947k = 4 9 3 3 3 3 3 32:36 sec 2:24 sec 2:17 sec 2:40 sec 2:31 sec 2:13 sec 2:23 sec39 008 39 026 39 008 39 008 39 008 39 008 39 008k = 5 2 2 2 2 2 2 23:49 sec 3:25 sec 3:37 sec 3:34 sec 3:31 sec 3:38 sec 3:47 sec61 355 60 174 60 171 60 171 60 762 60 143 60 171k = 6 0 0 0 0 0 0 05:50 sec 4:74 sec 5:26 sec 5:33 sec 5:62 sec 5:23 sec 6:10 sec84 095 83 725 83 652 83 652 83 695 83 652 83 652k = 7 58 20 20 20 20 20 207:84 sec 7:24 sec 7:37 sec 7:55 sec 7:48 sec 7:38 sec 7:57 sec113 206 112 543 112 370 112 370 112 370 112 370 112 370k = 8 62 38 3 3 3 3 311:43 sec 10:77 sec 11:22 sec 11:03 sec 10:64 sec 11:03 sec 10:68 sec149 490 147 085 147 350 146 892 147 814 147 283 146 992k = 9 1 1 1 1 1 1 125:74 sec 13:86 sec 16:13 sec 16:21 sec 16:68 sec 16:30 sec 16:24 sec184 959 182 261 182 245 181 913 182 575 182 016 181 896k = 10 184 43 91 43 98 43 4365:90 sec 17:85 sec 20:50 sec 20:39 sec 20:82 sec 20:31 sec 21:50 sec228 527 224 331 223 638 223 638 224 440 223 638 223 550k = 11 434 335 120 120 120 120 120218:19 sec 23:91 sec 27:05 sec 32:32 sec 27:28 sec 27:45 sec 30:24 sec280 694 276 594 275 067 274 498 275 723 274 554 274 498k = 12 663 305 195 195 260 195 195493:61 sec 32:46 sec 43:80 sec 44:49 sec 45:42 sec 43:93 sec 56:30 sec329 369 327 791 324 342 323 722 326 116 323 919 322 854k = 13 1341 1034 243 243 746 267 24375:03 sec 59:12 sec 70:62 sec 69:59 sec 72:65 sec 69:13 sec 182:63 sec382 466 378 853 377 919 377 698 378 326 377 698 377 742k = 14 1031 105 105 105 258 105 105107:24 sec 41:43 sec 61:79 sec 61:95 sec 63:00 sec 61:86 sec 1702:43 secTable 7.6: Alignment score, upper bound bC, and computation time when usingapproximate slicing positions. The last column shows the corresponding values whenC-optimal families of slicing positions are used (L = 40).
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Figure 7.10: Relative deviation from the optimal score for the di�erent algorithmscalc-Chat used to compute approximate slicing positions (L = 40 �xed).� Compared to the naive version without pruning the search space, even themethod calc-Chat-�rstRowZero diminishes the search space considerably. Thisspeeds up the procedure by a factor of four and more for larger k.� Further signi�cant improvement is obtained with the greedy methods. Amongthe non-iterative variants, calc-Chat-SCRmin produces by far the lowest upperbounds bC, again reducing the search time to less than a third. For the test fam-ilies with 14 sequences, the speed-up factor is even larger than ten. For twelveand less sequences, the simpler method calc-Chat-SCmin has shorter runningtimes due to the comparatively faster computation of the upper bounds.� The iteration of calc-Chat-SCRmin allows a further acceleration by approxi-mately ten percent.� The iterated order-independent method calc-Chat-itSCRoi computes upperbounds bC of a similar quality. In some cases, the running times are evenlower than for calc-Chat-itSCRmin. For larger k, the independence from thesequence order seems to be an advantage preventing the procedure from run-ning into bad local minima. This is also con�rmed by the larger numbers ofiterations compared to those of the greedy algorithm calc-Chat-itSCRmin (seeTable 7.10).
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average bC k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 k = 11 k = 12 k = 13 k = 14calc-Chat-�rstRowZero 4.1 10.9 26.0 44.8 70.2 97.0 111.6 216.5 254.1 291.7 402.9 452.4calc-Chat-SCmin 2.1 4.2 9.8 11.3 16.2 28.7 26.6 40.5 37.1 78.1 91.7 74.1calc-Chat-SCRmin 1.8 2.8 7.8 11.1 15.9 17.7 18.0 32.2 36.4 67.7 69.3 55.6calc-Chat-itSCRmin 1.8 2.8 7.5 9.5 11.4 16.3 18.0 25.2 31.1 57.7 61.8 52.6calc-Chat-SCRoi 4.9 6.8 12.3 20.3 22.0 22.9 22.4 56.3 61.1 88.3 83.7 81.0calc-Chat-itSCRoi 3.1 5.0 9.3 15.7 12.4 16.5 18.1 26.2 31.7 56.3 60.8 55.5Copt 1.3 2.3 6.7 8.0 11.1 15.3 17.7 24.8 29.7 51.3 53.6 50.8Table 7.7: Average values of the upper bound bC for the di�erent algorithms calc-Chat.average ratio rn k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 k = 11 k = 12 k = 13 k = 14calc-Chat-�rstRowZero 1.01 % 1.97 % 4.02 % 6.43 % 9.74 % 12.89 % 14.51 % 24.53 % 28.06 % 33.30 % 36.90 % 41.45 %calc-Chat-SCmin 0.72 % 0.98 % 1.99 % 2.13 % 2.84 % 4.58 % 4.23 % 6.39 % 6.06 % 11.56 % 12.93 % 11.21 %calc-Chat-SCRmin 0.64 % 0.81 % 1.74 % 2.15 % 2.74 % 3.10 % 3.14 % 5.27 % 6.06 % 10.14 % 10.39 % 8.98 %calc-Chat-itSCRmin 0.64 % 0.81 % 1.70 % 1.94 % 2.22 % 2.90 % 3.14 % 4.43 % 5.37 % 8.97 % 9.50 % 8.55 %calc-Chat-SCRoi 0.78 % 1.16 % 2.33 % 3.26 % 3.55 % 3.73 % 3.69 % 8.04 % 8.51 % 12.23 % 12.02 % 11.86 %calc-Chat-itSCRoi 0.78 % 1.06 % 1.96 % 2.76 % 2.35 % 2.92 % 3.14 % 4.54 % 5.43 % 8.82 % 9.40 % 8.95 %Copt 0.55 % 0.75 % 1.63 % 1.74 % 2.16 % 2.80 % 3.10 % 4.39 % 5.21 % 8.22 % 8.60 % 8.39 %Table 7.8: Average ratios rn for the di�erent algorithms calc-Chat.



7.3.COMPARISONOFDIFFERENTREALIZATIONSOFCALC-CHAT89

search time (sec.) k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 k = 11 k = 12 k = 13 k = 14full matrices (r = n) 1.19 3.01 5.59 9.33 14.41 21.25 30.80 57.67 129.14 483.12 ? ?calc-Chat-�rstRowZero 0.49 1.06 1.90 3.12 4.79 7.00 10.66 15.80 47.02 120.10 196.30 804.92calc-Chat-SCmin 0.49 1.06 1.84 2.88 4.18 6.10 7.80 10.51 14.27 32.94 83.44 75.92calc-Chat-SCRmin 0.49 1.10 1.89 3.07 4.79 6.83 9.58 14.02 21.11 58.04 61.85 66.39calc-Chat-itSCRmin 0.50 1.09 1.94 3.14 4.73 6.76 9.58 13.89 19.42 39.58 51.44 57.92calc-Chat-SCRoi 0.49 1.10 1.89 3.13 4.75 6.87 9.81 14.50 24.30 72.57 82.07 90.95calc-Chat-itSCRoi 0.49 1.06 1.89 3.09 4.70 6.79 9.50 13.89 19.26 40.23 50.74 57.49Table 7.9: Average time (in seconds) used for the search for C-optimal families of slicing positions for the di�erentalgorithms calc-Chat.# iterations k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 k = 11 k = 12 k = 13 k = 140.42 0.50 0.84 0.98 1.21 1.26 1.33 1.42 1.46 1.68 1.59 1.66calc-Chat-itSCRmin (2) (2) (3) (3) (3) (3) (2) (3) (3) (4) (4) (3)0.33 0.47 0.86 1.02 1.26 1.34 1.37 1.52 1.53 1.81 1.71 1.74calc-Chat-itSCRoi (2) (3) (4) (5) (5) (4) (3) (5) (4) (6) (6) (5)Table 7.10: Average and maximal number of iterations of the iterative functions calc-Chat-itSCRmin and calc-Chat-itSCRoi.



90 CHAPTER 7. EVALUATION OF THE ALGORITHM� Further signi�cant speed-up by improved upper bounds bC cannot be expectedsince the values bC computed by calc-Chat-itSCRmin and calc-Chat-itSCRoi arealready very close to the minima Copt shown in the last row of Table 7.7.� As expected, the ratio rn increases with the number of sequences. However, thisdoes not necessarily mean a lower speed-up factor: Let qk denote the quotientrn obtained for k sequences. By de�nition, 0 < qk � 1. Then, (qk+1)k+1 can besmaller than (qk)k even if qk+1 > qk. See e.g. k = 9, calc-Chat-�rstRowZero:compared to the exhaustive search, the speed-up increases from a factor ofabout three (k = 9) to more than four (k = 10) although the ratio rn worsensconsiderably from q9 = 14:51 to q10 = 24:53.In fact, the least expected observation is that for k = 14 sequences the average valuesof bC and hence the fractions rn are smaller than those for k = 12 and k = 13. Byobserving the data set, one �nds two families with running times of more than �veminutes among the families of twelve as well as among those of thirteen sequenceswhile among the families with fourteen sequences, there is only one such \killerfamily" with comparatively dissimilar sequences. (Of course, this indicates that ourdata sets of one hundred sequence families are still too small to obtain statisticallywell-founded results.) However, { due to the extra dimension { the running times donot show this e�ect in the same clarity.We have also measured the relative size of the relevant parts rn depending on thelength of the sequences. For this purpose, we have created a second set of test familieswith eight sequences of expected average length n for each n 2 f100; 200; : : : ; 1000g.The results are shown in Table 7.13. As we anticipated in Section 5.1, for all variantsthe ratio rn decreases with increasing sequence length.7.4 Comparison of Di�erent Realizationsof calc-CoptIn this section, we compare the basic (\exhaustive") method of computing the min-imal additional cost Copt to the more sophisticated solutions with monotony boundsand/or the preprocessing of the minimal additional cost of a subfamily of the se-quences. For all variants, the upper bound bC is computed with the method calc-Chat-itSCRmin which performs very well in most cases (see the previous section).We have already mentioned in Section 6.1.2 that the preprocessing of subfamiliesof � < k sequences requires some care. While it is rather evident that those sequenceswhich contribute with the highest pairwise additional costs to the upper bound bCgive the highest values C�(1);:::;�(�), it is not so obvious how many sequences should beinvolved. Consequently, we have run tests for all � 2 f3; : : : ; 13g. The computationtimes required by the search for C-optimal cuts are shown in Table 7.11.



7.4. COMPARISON OF DIFFERENT REALIZATIONS OF CALC-COPT 91search time (sec.) k = 8 k = 9 k = 10 k = 11 k = 12 k = 13 k = 14exhaustive search 6.76 9.58 13.89 19.24 39.58 51.44 57.92� = 3 6.90 9.77 14.44 20.87 43.04 74.34 63.00� = 4 7.00 9.80 14.68 20.74 38.41 55.41 58.31� = 5 6.89 9.86 14.40 20.18 31.90 42.84 52.57� = 6 6.96 9.78 14.29 20.66 32.13 41.56 47.98� = 7 6.92 9.73 14.38 19.86 31.25 39.67 44.37� = 8 | 9.74 14.38 20.50 32.77 37.94 42.16� = 9 | | 14.50 21.31 28.76 42.58 45.99� = 10 | | | 20.88 32.45 46.12 45.70� = 11 | | | | 48.30 67.55 46.70� = 12 | | | | | 57.05 54.76� = 13 | | | | | | 59.08Table 7.11: Average running times required by the search for C-optimal familiesof slicing positions where the minimal additional cost of a subfamily with � < ksequences is pre-computed.Of course, for only a few sequences, preprocessing can even slow down the proce-dure: For less than twelve sequences, the exhaustive search is faster than the sophis-ticated method with any �. However, for twelve and more sequences, the bene�t ofpreprocessing becomes visible. The minimal running time seems to be obtained for� = lk2m+ 1 leading to a speed-up of more than twenty-�ve percent for k = 14.We also applied the method recursively with decrement �. Because { as we haveseen above { the pre-computing has no bene�t when the pre-processed sequencefamilies are too small, we stop the recursion if the subfamily contains less than eightsequences (or, of course, if �� � < 3). In Table 7.12, the running times for recursiondecrements � 2 f1; : : : ; 7g are presented. For large k, a further small speed-up ofabout two percent is perceptible.Finally, we present the e�ect of the monotony bounds on the time required for thesearch for C-optimal families of slicing positions. Table 7.14 compares the exhaustivesearch with the \pure" monotony bounds, a combination of monotony bounds andpreprocessing of subfamilies of size � = lk2m+1, and the recursive preprocessing withdecrement � = 4 and its combination with the monotony bounds. For larger k, afurther speed-up of ten to twenty-�ve percent is achieved by the use of monotony-bounds.In conclusion, we have observed that for less than ten sequences, the exhaustiveversion performs best { mostly due to its simplicity. For more sequences, a reductionof the search space by additional upper bounds obtained from pre-computed minimaladditional costs of subfamilies and the use of monotony bounds allows signi�cantspeed-ups.



92 CHAPTER 7. EVALUATION OF THE ALGORITHMsearch time (sec.) k = 8 k = 9 k = 10 k = 11 k = 12 k = 13 k = 14exhaustive search 6.76 9.58 13.89 19.42 39.58 51.44 57.92� = 1 (6.92) 9.92 14.45 20.27 43.36 54.95 59.97� = 2 (6.96) (9.73) 14.85 19.85 30.92 46.74 46.66� = 3 (6.98) (9.78) (14.38) 19.36 28.83 46.00 43.19� = 4 (7.00) (9.86) (14.29) (19.86) 29.57 36.71 41.81� = 5 (6.90) (9.80) (14.40) (20.66) (31.25) 39.72 41.73� = 6 | (9.77) (14.68) (20.18) (32.13) (39.67) (42.16)� = 7 | | (14.44) (20.74) (31.90) (41.56) (44.37)Table 7.12: Average running times required by the search for C-optimal families ofslicing positions where the minimal additional cost of a subfamily is pre-computedrecursively with recursion decrement �. The recursion is stopped when less thaneight sequences remain. The values in parentheses require no recursion. They aretaken from Table 7.11.7.5 Dependence on Sequence Length and NumberThe aim of this section is the empirical validation of the asymptotic time and spacecomplexity of DCA as derived in Section 4.4. Unfortunately, for small problemsize, often boundary e�ects make a validation of the asymptotic behavior impossi-ble. Consequently, we use as many and as long sequences as possible. Moreover,the asymptotic behavior of the algorithm should be best observable for the basicversion without running-time improvements. However, with that version only smallfamilies of short sequences can be aligned. For the measurements presented in thefollowing, we have used the fastest variant of DCA where an upper bound for the mul-tiple additional cost is computed with calc-Chat-itSCRmin and in the search phase,subfamilies are pre-processed recursively with a decrement � = 4 for the size of thesubfamilies, combined with a pruning of the search space with monotony bounds.Figures 7.11 and 7.12 show the running time of DCA for di�erent sequence lengths.The curves show the expected quadratic behavior.The corresponding memory usage is shown in Figures 7.13 and 7.14. Due toboundary e�ects, the quadratic dependence on the sequence length is not visible.The time and memory requirements of DCA depending on the number of sequencesare shown in Figures 7.15 and 7.16. An exponential increase of running time forincreasing sequence number can be observed. By comparison of both �gures, one canalso hypothesize that the memory usage only grows quadratically with the numberof sequences. This behavior would be in accordance with our theoretical analysis.



7.5.DEPENDENCEONSEQUENCELENGTHANDNUMBER93

average ratio rn n = 100 n = 200 n = 300 n = 400 n = 500 n = 600 n = 700 n = 800 n = 900 n = 1000calc-Chat-�rstRowZero 47.23 % 19.44 % 8.99 % 5.15 % 3.37 % 4.04 % 2.79 % 2.36 % 1.94 % 1.89 %calc-Chat-SCmin 22.70 % 6.82 % 3.45 % 2.07 % 1.64 % 1.19 % 1.03 % 0.93 % 0.73 % 0.69 %calc-Chat-SCRmin 19.48 % 5.30 % 2.86 % 1.22 % 1.01 % 1.17 % 0.60 % 0.52 % 0.50 % 0.40 %calc-Chat-itSCRmin 17.83 % 4.67 % 2.50 % 1.22 % 0.95 % 0.94 % 0.56 % 0.50 % 0.40 % 0.40 %calc-Chat-SCRoi 25.19 % 6.13 % 3.82 % 1.22 % 1.12 % 1.64 % 0.80 % 0.54 % 0.55 % 0.78 %calc-Chat-itSCRoi 21.09 % 4.66 % 2.59 % 1.22 % 0.98 % 0.99 % 0.67 % 0.50 % 0.40 % 0.41 %Copt 17.17 % 4.50 % 2.39 % 1.17 % 0.94 % 0.88 % 0.56 % 0.47 % 0.40 % 0.39 %Table 7.13: The ratio rn depending on the length of the sequences for the di�erent variants of computing an estimate. (Allfamilies contain k = 8 sequences.)search time (sec.) k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 k = 11 k = 12 k = 13 k = 14exhaustive search 0.50 1.09 1.94 3.14 4.73 6.76 9.58 13.89 19.42 39.58 51.44 57.92monotony bounds 0.50 1.10 1.90 3.21 4.81 6.83 9.52 13.78 19.20 34.11 40.51 46.15subfamilies (� = dk2e + 1) | | | | 4.83 6.89 9.78 14.29 19.86 31.25 37.94 42.16with mon. bounds | | | | 4.77 6.93 9.76 14.25 19.57 29.81 34.86 41.14rec. subfamilies (� = 4) | | | | | | | | | 29.57 36.71 41.81with mon. bounds | | | | | | | | | 27.42 34.14 41.09Table 7.14: Average running times required by the search for C-optimal families of slicing positions with the approach ofmonotony bounds and combinations of this approach with that of pre-processed subfamilies.
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Figure 7.11: The time usage of DCA depending on the sequence length.
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Figure 7.12: The time usage of DCA for longer sequences.
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Figure 7.13: The memory usage of DCA depending on the sequence length.
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Figure 7.14: The memory usage of DCA for longer sequences.
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Figure 7.15: The time usage of DCA depending on the number of sequences.
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Figure 7.16: The memory usage of DCA depending on the number of sequences.
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Figure 7.17: The time usage of DCA for di�erent sequence similarities.7.6 Dependence on Sequence SimilarityFinally, we have evaluated the dependence of DCA on the similarity of the sequences.We have created random sequence families with di�erent average similarity from 100up to 1000 PAM�. The sequences are of average expected length n = 250. Timeand memory usage of DCA are presented in Figures 7.17 and 7.18. As presumed, thecloser the sequences are related, the faster proceeds the algorithm and { due to thesmaller relevant parts of the additional-cost matrices { the less memory is consumed.We emphasize again that by reason of the large dependence on the sequence sim-ilarity, the results presented for the random sequences do not necessarily { althoughaveraged over a large number of di�erent sequence families { generalize to arbitrarydata sets. As we will also see in the discussion of results on biological sequences inthe following chapter, the (un)relatedness of sequences has a much larger inuenceon the practicability of DCA than the number or length of the involved sequences.
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Figure 7.18: The memory usage of DCA for di�erent sequence similarities.



Chapter 8Results on Biological Sequences8.1 Six Tyrosine KinasesAs a �rst example on biological data, we present an alignment of six tyrosine kinaseprotein sequences of length between 273 and 280 amino acids which were also alignedby Kececioglu using the maximum weight trace approach [114]. The sequences arerather similar such that even a (sum-of-pairs-) optimal alignment can be computedwith MSA in 12.3 seconds using the PAM 250 score matrix in distance form withvalues between 0 and 24 and an a�ne gap function g(l) = 8 + 12 l. However, withthe recursion stop size set to L = 40, DCA computes an alignment which di�ers fromthe score-optimal one by only a single gap within 5.7 seconds.This alignment is shown in Figure 8.1. The numbers above the alignment denotethe slicing positions. The asterisks denote the region where the alignment di�ers fromthat computed by MSA. In Table 8.1, the scores of several alignments computed withDCA with di�erent stop lengths L and window sizes W are listed. In parentheses,the number of alignment positions is shown where the alignments di�er from thescore-optimal one.Note that, although from L = 40 to L = 100 the score improves, the numberW = 0 W = 14L W = 12L W = LL = 10 61965 (22) 61965 (22) 62019 (30) 61963 (31)L = 20 61917 (16) 61949 (19) 61917 (17) 61898 (9)L = 40 61898 (9) 61898 (9) 61898 (9) 61898 (9)L = 100 61883 (22) 61883 (22) 61883 (22) 61898 (9)L = 200 61883 (22) 61883 (22) 61883 (22) 61883 (22)L = 300 61880 (0)Table 8.1: Results of aligning a family of six tyrosine kinases with DCA. The alignmentscore and the number of positions where an alignment di�ers from the score-optimalone (in parentheses) are shown for di�erent values of L and W .99
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8.2. FOUR FAMOUS BENCHMARK PROBLEMS 101of incorrectly aligned positions increases. In contrast to the measurements of theprevious chapter, the windowing approach more often worsens the alignment ratherthan improving it. Of course, this is caused by the incorrect handling of a�ne gapcosts at window bounds.8.2 Four Famous Benchmark ProblemsIn 1994, McClure et al. [135] applied a wide variety of multiple alignment programsto four di�erent sequence families containing twelve globin, kinase, aspartic acid pro-tease, and ribonuclease H (RH) proteins, respectively. They also de�ned subfamiliescontaining the six and ten sequences of each protein family with the widest distancedistribution of sequence relationship. While the globins and the kinases are rathersimilar and hence the computation of reasonable alignments of these sequences is notdi�cult, the protease and RH sequences are much more diverse. Here most proce-dures in the study of McClure et al. did not perform very well, and some of theprograms even could not at all align these sequences. Especially the fragment-basedmethod ASSEMBLE [208] { which produces excellent alignments of the globins andthe kinases { had enormous problems to detect reliable anchor subsequences in theprotease sequences and the RH proteins.The output of the alignment programs was scored by the following procedure:From structurally veri�ed alignments of the test families, highly conserved regions {so-called motifs { of three to nine amino acids and some single completely conservedresidues were extracted: �ve motifs in the globin family, eight in the kinase, three inthe protease, and four motifs in the RH family. Then { individually for each motif{ the percentage of the number of sequences in each data set for which the motif iscorrectly identi�ed (i.e. all positions of the motif coincide) is measured. If a motif isaligned correctly in more than one subfamily of the sequences without aligning thesemotifs to one another, the total percent correct match is a combined score of thealigned subfamilies.Also a condensed way of presenting the results has been used [90]: The scoresof all individual motifs are added, and the sum is divided by 100. When motifs arespread over more than one subfamily of the aligned sequences, we mark this by anasterisk before the score. Thus, a single number gives an impression of the qualityof an alignment. However, this method does not allow to determine the individualscores of the distinct motifs.Table 8.2 shows both the detailed and the condensed scores of alignments com-puted with DCA using default paramters (PAM 250 substitution matrix with a�negap costs, stop size L = 40) as well as the corresponding running times of our pro-gram. While the globins and the kinases are fairly well aligned in rather a short time,the alignments of the proteases and of the RH sequences are of lower accuracy andtheir computation takes comparatively long time.



102 CHAPTER 8. RESULTS ON BIOLOGICAL SEQUENCESsequences length percent correctly aligned motifs total max. CPU timeGlobins 6 141-153 100 83 100 100 100 4.83 5.00 2.2 secGlobins 10 141-153 100 90 100 100 100 4.90 5.00 7.9 secGlobins 12 141-153 100 92 100 100 100 4.92 5.00 14.3 secKinases 6 255-339 100 100 100 100 100 100 100 83 7.83 8.00 14.1 secKinases 10 255-339 100 80 100 100 100 100 100 90 7.70 8.00 36.3 minKinases 12 255-339 100 75 92 100 100 100 100 100 7.67 8.00 24.1 minProteases 6 108-150 100(67,33) 50 33 *1.83 3.00 1.6 minProteases 10 98-160 90 40(20,20) 80 *2.10 3.00 71.8 minProteases 12 98-160 83 58(25,17,17) 75(50,25) *2.17 3.00 4.7 hRH 6 126-157 100 50 67 83(50,33) *3.00 4.00 4.2 secRH 10 126-157 90 80(60,20) 90(70,20) 100(30,30,40) *3.60 4.00 20.9 minRH 12 126-158 92 67(50,17) 75(50,25) 92(42,33,16) *3.25 4.00 83.5 minTable 8.2: The percentages of correctly aligned motifs and the computation time ofDCA for the protein families fromMcClure et al. [135] using the PAM 250 substitutionmatrix and recursion stop size L = 40.In the measurements carried out by McClure et al., the parameters of the indi-vidual programs were chosen optimally for each single test family. We have also runour algorithm with di�erent parameters. While other values of L or a windowingonly have minor e�ects, signi�cant improvements can be achieved by a change ofthe substitution matrix. Tables 8.4 (L = 20) and 8.5 (L = 40) compare the resultsobtained using the PAM 250 matrix with those obtained with the substitution ma-trix of 160 PAM and for three di�erent matrices from the Blosum series [99]. Someof the runs took rather a long time (more than 500 hours of CPU time) and havetherefore been stopped. This is indicated by a question mark. Table 8.3 lists theranges of the substitution matrices and the corresponding gap functions used in thisstudy.In general, we have observed that substitution matrices from the Blosum seriesproduce on these data slightly better results than the corresponding PAM matrices.(Due to Heniko� and Heniko� [99], the PAM 250 matrix is comparable to Blosum45, and PAM 160 is comparable to Blosum 62.) This result is in accordance withHeniko� and Heniko� [100] who also observed that the Blosum matrices performbetter for distantly related proteins. It can be explained by recalling the di�erentderivations of the matrices: The Blosum matrices are derived from the BLOCKSdatabase [99] of highly conserved alignment regions, so they might be better suitedfor the detection of conserved motifs than the PAM matrices which are derived froman alignment database containing also less conserved protein regions.The globins are very quickly aligned by DCA. Also for the kinases (which arecomparatively long protein sequences) and for the smaller families of the kinase and



8.2. FOUR FAMOUS BENCHMARK PROBLEMS 103substitution matrix min. max. gap function(lowest distance) (highest distance)PAM 250 0 25 g(l) = 8 + 12 lPAM 160 0 29 g(l) = 8 + 12 lBlosum 62 0 15 g(l) = 6 + 10 lBlosum 45 0 20 g(l) = 10 + 9 lBlosum 30 0 27 g(l) = 10 + 11 lTable 8.3: The substitution matrices and corresponding gap functions used in thisstudy.RH sequences, DCA is relatively fast. However, the families of twelve RH sequencesas well as those with ten and twelve protease sequences require extensively moretime. As emphasized above, not the length or the number of sequences is the mostrelevant factor concerning the computation time of DCA but the relatedness. By closerobservation, we have found that { despite all the e�orts we have made to speedingup this stage of our algorithm { it is still the search for C-optimal families of slicingpositions taking so much time.One also observes an inuence of the score function on the computation time:Some alignments with the PAM 160 matrix take more than 200 times as long asthe corresponding runs with the Blosum 62 matrix. As noted in Section 5.1, thisis by reason of the high dependence of the size of the relevant search space also onsubstitution matrix and gap function.We have also computed alignments of these sequence families using approximateslicing positions. Table 8.6 shows the results for L = 20. Compared to Table 8.4, therunning times are reduced enormously. Each of the sequence families can be alignedwithin some seconds up to maximally eight minutes. Where the computation ofC-optimal slicing positions takes extremely long (e.g. for the family of ten proteasesequences), a speed-up factor of more than 5 000 is achieved. Accompanied with thisspeed-up is only a low decrease of alignment accuracy. Often, the same number ofmotifs are aligned correctly. Occasionally, the score even increases (e.g. for the RHsequences with the PAM 250 substitution matrix).Due to the enormous speed-up and the still high quality of the alignments, work-ing on a re�nement of the de�nition of approximate slicing positions seems to berewarding.In Table 8.7 we compare the best alignments obtained with DCA to the results ofthe alignment programs DFALIGN [66] and AMULT [20, 19] which were the bestand second best scoring programs in the study of McClure et al. Both DFALIGNand AMULT are implementations of the progressive sequence alignment approach.McClure et al. do not give the running times of the methods they tested. So, wecan only compare the quality of the alignments. DCA outperforms AMULT in all



104 CHAPTER 8. RESULTS ON BIOLOGICAL SEQUENCESsequences max. PAM 250 PAM 160 Blosum 62 Blosum 45 Blosum 30Globins 6 5.00 4.83 2.8 sec 4.83 3.1 sec 5.00 2.4 sec 4.83 2.8 sec 4.67 4.8 secGlobins 10 5.00 4.90 9.4 sec 4.90 10.5 sec 5.00 7.5 sec 4.90 9.3 sec *4.90 12.2 secGlobins 12 5.00 4.92 17.5 sec 4.92 18.0 sec 5.00 12.1 sec 4.92 14.6 sec 4.83 20.8 secKinases 6 8.00 7.92 17.0 sec *8.00 13.4 sec 7.83 13.9 sec 8.00 11.6 sec 8.00 13.3 secKinases 10 8.00 7.60 45.8 min 7.80 2.5 h 7.80 10.7 min 7.90 2.1 h 8.00 3.5 hKinases 12 8.00 7.83 25.6 min 8.00 1.6 h 7.92 8.2 min 7.92 52.8 min 8.00 46.8 minProteases 6 3.00 *1.83 6.6 sec 1.33 20.9 sec 1.00 4.3 sec 1.66 15.3 sec 2.17 37.7 secProteases 10 3.00 *2.00 87.5 min *2.40 2.5 h *2.20 38.3 min *2.40 4.3 h *2.20 2.3 hProteases 12 3.00 *2.25 5.7 h ? *2.00 78.1 h ? ?RH 6 4.00 2.83 4.4 sec *3.83 5.3 sec 3.00 3.0 sec 3.33 4.9 sec 3.67 6.8 secRH 10 4.00 *3.50 20.1 min *3.50 66.8 min *3.30 4.5 min *3.70 80.1 min 3.60 16.2 hRH 12 4.00 *2.75 1.7 h ? *3.42 6.5 h ? ?Table 8.4: Score and running time of DCA with L = 20 using di�erent amino acidsubstitution matrices.sequences max. PAM 250 PAM 160 Blosum 62 Blosum 45 Blosum 30Globins 6 5.00 4.83 2.2 sec 4.67 2.6 sec 4.83 2.9 sec 4.83 3.5 sec 4.67 3.0 secGlobins 10 5.00 4.90 7.9 sec 5.00 38.9 sec 5.00 12.3 sec 4.90 11.4 sec *4.90 10.0 secGlobins 12 5.00 4.92 14.3 sec 4.83 14.5 sec 5.00 15.0 sec 4.92 17.8 sec 4.83 17.4 secKinases 6 8.00 7.83 14.1 sec 8.00 14.2 sec 7.83 14.8 sec 7.83 14.6 sec 7.67 11.6 secKinases 10 8.00 7.70 36.3 min 7.90 3.3 h *7.70 13.0 min 7.90 2.6 h 8.00 2.8 hKinases 12 8.00 7.67 24.1 min 7.92 110.7 min 7.92 10.4 min 7.92 89.8 min 8.00 51.8 minProteases 6 3.00 *1.83 1.6 min 1.33 45.4 min 1.33 11.9 sec 1.83 1.8 min *2.50 23.2 secProteases 10 3.00 *2.10 71.8 min *2.30 4.8 h 1.90 46.2 min *2.40 7.8 h *2.50 15.7 hProteases 12 3.00 *2.17 4.7 h ? *2.08 91.7 h ? ?RH 6 4.00 *3.00 4.2 sec 3.33 11.1 sec 3.17 3.7 sec *3.00 10.6 sec 3.67 12.4 secRH 10 4.00 *3.60 20.9 min *3.50 4.1 h *3.30 66.5 min 3.50 1.8 h 3.50 15.3 hRH 12 4.00 *3.25 83.5 min ? *3.42 55.2 h ? ?Table 8.5: Score and running time of DCA with L = 40 using di�erent amino acidsubstitution matrices.sequences max. PAM 250 PAM 160 Blosum 62 Blosum 45 Blosum 30Globins 6 5.00 4.83 2.4 sec 4.83 2.5 sec *4.83 2.3 sec *4.67 3.1 sec *4.67 4.0 secGlobins 10 5.00 5.00 7.8 sec 4.80 7.9 sec 5.00 6.9 sec 4.90 10.0 sec 5.00 11.0 secGlobins 12 5.00 5.00 12.0 sec 4.83 12.1 sec 5.00 12.8 sec 4.92 15.9 sec 4.83 18.6 secKinases 6 8.00 7.50 12.5 sec 7.50 9.7 sec 7.67 12.3 sec 7.50 11.8 sec 7.33 11.4 secKinases 10 8.00 7.40 44.1 sec 7.50 45.6 sec 7.80 43.4 sec 7.90 48.7 sec 8.00 59.2 secKinases 12 8.00 8.00 65.4 sec *7.83 68.4 sec 7.83 63.9 sec 8.00 75.2 sec 8.00 78.2 secProteases 6 3.00 1.50 3.1 sec 1.33 4.4 sec 0.67 2.6 sec 1.83 4.0 sec *2.00 4.7 secProteases 10 3.00 *1.90 22.8 sec *2.20 10.4 sec *1.90 9.2 sec *2.40 10.4 sec *2.50 45.4 secProteases 12 3.00 *2.17 13.7 sec *2.25 187.4 sec *1.92 13.8 sec *2.42 19.2 sec *2.50 479.3 secRH 6 4.00 3.33 5.1 sec 3.50 3.6 sec 2.83 2.5 sec 2.67 3.0 sec 2.50 3.0 secRH 10 4.00 3.60 13.4 sec 3.40 13.1 sec *3.50 11.0 sec *3.60 11.7 sec *3.10 11.0 secRH 12 4.00 *3.25 16.6 sec *3.33 19.5 sec *3.00 16.8 sec 3.25 20.3 sec 3.42 20.0 secTable 8.6: Score and running time of DCA with L = 20 when approximate slicingpositions computed with calc-Chat-itSCRmin are used.



8.2. FOUR FAMOUS BENCHMARK PROBLEMS 105sequences max. DFALIGN AMULT DCAGlobins 6 5.00 5.00 5.00 5.00 (Blosum 62, L = 20)Globins 10 5.00 5.00 5.00 5.00 (e.g. Blosum 62, L = 20)Globins 12 5.00 5.00 5.00 5.00 (e.g. Blosum 62, L = 20)Kinases 6 8.00 7.67 7.33 8.00 (e.g. Blosum 30, L = 20)Kinases 10 8.00 8.00 7.70 8.00 (e.g. Blosum 30, L = 20)Kinases 12 8.00 8.00 7.75 8.00 (e.g. Blosum 30, L = 20)Proteases 6 3.00 2.33 1.17 *2.50 (Blosum 30, L = 40)Proteases 10 3.00 *3.00 *2.40 *2.50 (e.g. Blosum 30, L = 40)Proteases 12 3.00 *3.00 2.33 *2.50 (Blosum 30, L = 20, approx.)RH 6 4.00 3.67 *3.30 *3.83 (PAM 160, L = 20)RH 10 4.00 3.30 *3.20 *3.70 (Blosum 45, L = 20)RH 12 4.00 3.83 *2.92 3.42 (Blosum 30, L = 20, approx.)Table 8.7: Numbers of correctly aligned motifs in alignments computed with the pro-grams DFALIGN and AMULT compared to the highest scoring alignments computedwith DCA.cases and produces results comparable to those of DFALIGN. For four families, DCAcomputes alignments scoring higher than any of the programs evaluated in the studyof McClure et al. [135]. This proves that { when the score function is selectedcarefully { the divide-and-conquer alignment method can compete with the bestalignment programs currently available.Of course, we wondered why for some sequence families the results obtainedwith DCA are still a bit di�erent from the biologically correct alignments despitethe proximity of our alignments to the sum-of-pairs optimal ones. And of course,the answer is that our alignment can hardly be better than the score function weapproximate. Consequently, we have compared the score of alignments computedwith DCA to that of the biologically correct, \true" alignments as published in [135].The result of this comparison is presented in Tables 8.8 and 8.9. For the exampleof the PAM 250 score, Table 8.8 explains how we compute the relative di�erence ofthe score of the correct alignment from the score of the DCA-alignment. Table 8.9shows the relative di�erences for all the examined sequence families and substitutionmatrices.In all cases, the score of the alignment computed with DCA is lower than thatof the corresponding true alignment. However, for the globins and the kinases {where we detected almost all motifs correctly { both scores di�er much less thanfor the proteases and the RH proteins. It also can be observed that the subfamiliesof six sequences are much harder to be aligned than the larger families which is inaccordance with our results shown in Tables 8.4 { 8.6. Assuming that an alignmentcomputed with DCA di�ers by less than one percent from the optimal score, this provesthat the studied alignment score functions { even if we could compute a sum-of-pairs



106 CHAPTER 8. RESULTS ON BIOLOGICAL SEQUENCESsequences true DCA di�erence rel. di�erenceGlobins 6 37 054 36 834 220 0.60 %Globins 10 108 460 108 093 367 0.34 %Globins 12 156 074 155 657 417 0.27 %Kinases 6 73 685 71 249 2436 3.42 %Kinases 10 217 760 214 661 3099 1.44 %Kinases 12 314 288 308 662 5626 1.82 %Proteases 6 36 089 34 138 1951 5.71 %Proteases 10 107 085 103 972 3113 2.99 %Proteases 12 156 051 151 663 4388 2.89 %RH 6 40 334 37 596 2738 7.28 %RH 10 118 720 112 129 6591 5.88 %RH 12 178 069 168 600 9469 5.62 %Table 8.8: Comparison of the absolute PAM 250-scores of the true alignments and ofthose computed with DCA (L = 20). The relative di�erence is the absolute di�erencedivided by the score of the DCA-alignment.sequences PAM 250 PAM 160 Blosum 62 Blosum 45 Blosum 30Globins 6 0.60 % 0.75 % 0.93 % 0.61 % 0.45 %Globins 10 0.34 % 0.45 % 0.68 % 0.38 % 0.08 %Globins 12 0.27 % 0.24 % 0.60 % 0.11 % 0.33 %Kinases 6 3.42 % 3.30 % 4.63 % 2.90 % 1.99 %Kinases 10 1.44 % 0.72 % 3.44 % 1.15 % 0.16 %Kinases 12 1.82 % 0.97 % 3.70 % 1.81 % 0.74 %Proteases 6 5.71 % 4.76 % 8.78 % 3.44 % 2.41 %Proteases 10 2.99 % 1.19 % 5.04 % 0.88 % 0.24 %Proteases 12 2.89 % ? 3.82 % ? ?RH 6 7.28 % 5.58 % 10.69 % 6.66 % 4.54 %RH 10 5.88 % 3.45 % 8.11 % 3.91 % 3.18 %RH 12 5.62 % ? 8.78 % ? ?Table 8.9: Relative di�erence of scores of the true alignments and of those computedwith DCA (L = 20) for the di�erent amino acid substitution matrices.



8.3. COMPARISON WITH MSA 107sequences # (length) max. MSA (PAM250) DCA (PAM250) DCA (Blosum)Globins A 7 (141-153) 5.00 4.86 157 sec 4.86 4.3 sec 5.00 5.3 secGlobins B 10 (141-153) 5.00 5.00 130 sec 4.90 10.4 sec 5.00 10.9 secKinases A 5 (255-293) 8.00 8.00 10 min 8.00 10.6 sec 8.00 16.8 secKinases B 6 (255-293) 8.00 8.00 118 min 8.00 9.7 sec 8.00 57.5 secKinases C 4 (255-339) 8.00 6.75 210 sec *7.50 4.6 sec 7.25 4.8 secProteases A 5 (98-150) 3.00 2.80 37 sec 2.40 2.8 sec 2.80 18.3 secProteases B 4 (113-150) 3.00 0.50 9 min 0.00 1.4 sec 1.00 3.3 secRH A 5 (126-157) 4.00 2.60 68 min *2.60 3.4 sec 3.40 29.0 secTable 8.10: Running time and percent correctly aligned motifs in alignments com-puted with MSA (using the PAM 250 substitution matrix) and the correspondingvalues of DCA (PAM 250 and the best-scoring matrix from the Blosum series).optimal alignment { will not allow to compute a biologically correct alignment of theRH sequences, for example. Further work on the development of better alignmentscore functions will be necessary.Similar to the results shown above, this comparison of alignment scores showsthat the alignments computed with the Blosum matrices mostly are nearer to thetrue alignments than those computed with the matrices from the PAM series. Withthis study, we have shown that due to its speed and the high accuracy of the results,DCA makes it possible to analyze directly the properties of multiple alignment scorefunctions.8.3 Comparison with MSAGupta et al. [90] applied the improved version 2.0 of MSA to the same sequences aswere used by the comparison of McClure et al. described above. Because they stillcould not align the full data sets, they selected some subfamilies (denoted by theletters A, B, C) which MSA was able to align SP-optimally (with regard to PAM 250and gap function g(l) = 8 + 12 l). In Table 8.10, we report their results comparedto the results of DCA on the same subfamilies. The speed-up factor of DCA over MSAranges from 15 to 1 500. The memory usage of DCA lies by a factor of two to twentybelow that of MSA.One observes that our alignments with the same substitution matrix often �ndthe same number of motifs as those computed with MSA. In four cases, there areless, in one case even more motifs are aligned correctly. Again, with matrices fromthe Blosum series, the results can be improved: For all sequence families, DCA cancompute alignments which score higher than or equal to the SP-optimal one regardingPAM 250 score. This, again, supports our assertion that the alignment score functioninuences the alignment quality (in biological terms) much more than the remaining



108 CHAPTER 8. RESULTS ON BIOLOGICAL SEQUENCESsequences max. PAM250 Blosumcyclic score sum-of-pairs cyclic score sum-of-pairsGlobins A 5.00 *4.86 4.86 *5.00 5.00Globins B 5.00 4.80 4.90 *4.80 5.00Kinases A 8.00 8.00 8.00 8.00 8.00Kinases B 8.00 8.00 8.00 8.00 8.00Kinases C 8.00 7.50 *7.50 7.00 7.25Proteases A 3.00 *3.00 2.40 2.40 2.80Proteases B 3.00 0.50 0.00 1.50 1.00RH A 4.00 1.80 *2.60 3.40 3.40Table 8.11: Numbers of correctly aligned motifs in alignments computed with regardto the cyclic alignment score and the sum-of-pairs score.di�erence of less than one percent between an alignment computed with our methodand an SP-optimal one.For these sequence families, we also have computed alignments with regard to thecyclic alignment score mentioned in Section 2.3.3: Based on the pairwise distancesof the sequences, a shortest cycle is computed and the weight factors of DCA areset accordingly. Unfortunately, due to the impossibility of feeding MSA with user-de�ned sequence weights, only the slicing positions are computed using the cyclicscore while the alignments of the remaining subsequences are optimized with regardto the (unweighted) sum-of-pairs score. In Table 8.11, we compare the percentageof correctly aligned motifs of both approaches for both the PAM 250 substitutionmatrix and the best-scoring matrices from the Blosum series. While the sum-of-pairs alignment in general seems to score slightly better, in three di�cult cases theslicing positions computed with regard to the cyclic score yield better alignments.Hence, the cyclic score seems to be an interesting alternative which allows a muchfaster computation of multiple alignments (when implemented e�ciently).8.4 Alignment and Phylogenyof RNase MRP RNA SequencesWe have also compared alignments computed with DCA to those computed with it-erative methods in order to �nd out if the simultaneity of our approach can yieldadvantages. We aligned a family of highly diverged RNase MRP RNA sequences.The eight currently known sequences1 are from human, animals (bovine, mouse,1There are actually two more tobacco sequences. Because they are almost identical to theArabidopsis sequence we have excluded them here.



8.4. ALIGNMENT AND PHYLOGENY OF RNASE MRP RNA 109organism GenBank acc. no. lengthHuman Homo sapiens X51867 264Bovine Bos taurus Z25280 278Mouse Mus musculus J03151 274Rat Rattus norvegicus (see caption) 273Frog Xenopus laevis Z11844 276Yeast1 Saccharomyces cerevisiae Z14231 339Yeast2 Schizosaccharomyces pombe X52530 399Plant Arabidopsis thaliana (see caption) 261Table 8.12: The eight currently known RNase MRP RNA sequences used for demon-strating the quality of alignments computed with DCA. The Arabidopsis sequence andthe Rat sequence are not contained in GenBank. They were obtained from [172] and[117], respectively.rat, frog), yeasts (Saccharomyces cerevisiae, Schizosaccharomyces pombe) and plant(Arabidopsis) (see Table 8.12). In the following, we will refer to Saccharomycescerevisiae and Schizosaccharomyces pombe as yeast1 and yeast2, respectively.There are three single-stranded regions common to all molecules which are re-sponsible for the tertiary structure and which are crucial for the functionality of themolecules. They are structurally conserved and of slightly di�erent lengths. In theDCA alignment shown in Figure 8.2, we have highlighted them by capital letters.Note that all regions (except the second and third of yeast2) are reasonably wellaligned. The reason why yeast2 appears to be di�cult to align is that this sequenceis signi�cantly longer than the other sequences (in fact it contains an additionalsubsequence of length 60 between the �rst and the second single-stranded region)and the second and third motifs of yeast2 di�er signi�cantly from the accordingmotifs of the other sequences. The gaps in the second motif of all sequences otherthan yeast correspond to an (unusual) loop in the secondary structure of the yeastsequence, unique for the RNase MRP RNA sequences found so far.None of the commonly used programs we have tested on this data set (e.g.ClustalW [201], TreeAlign [98], Malign [227]) is able to align this set with respect tothe motifs as well as DCA does. Neither they predict the loop in the second motif.In order to analyze why progressive alignment procedures fail to produce a reason-able alignment of this data set, we have investigated the phylogenetic relationshipsbetween these species. In particular, we have looked at the potential trees for guidinga successive alignment. In Figure 8.3, we show the graph generated by the Splits-Tree program [54] for the set of Hamming Distances derived from the alignment ofeach pair of sequences. This program does not always return (phylogenetic) trees,but more general graphs indicating conicting information in the data which do not�t into just a tree.



110 CHAPTER 8. RESULTS ON BIOLOGICAL SEQUENCESHuman g------------uucgugcugaaggccuguauccuaggcuacacacugaggacucuguuBovine g------------uucgugcugaaggccuguuuccuaggcuacauacggaggacua-guuMouse a-----------gcucgcucugaaggccuguuuccuaggcuacauacgagggacau-guuRat a-----------gcucgcucugaaggccuguuuccuaggcuacguacgggggaccuuguuFrog g----------uaggcauucugaagaccugaagucuaggcaacguacgggagacguaguuYeast1 aauccaugaccaaagaaucgucacaaaucgaagcuuacaaaauggaguaaaauuuuuuuuYeast2 c----aaaugaccuuugagcucgaacgaucgugguugaagcagucauacaggaauuuuuaPlant a-------------caauugucacuggacgaag--ugaaugggucauaugggcuug----Human ccuccc---cuuuccgccuagGG--GAAAGUCCCCGGA---CCUCGg----------gcaBovine ccuugu-----uugcgccuagGG--GAAAGUCCCCGGA---CCGUGg----------gcaMouse ccuuau---ccuuucgccuagGG--GAAAGUCCCCGGA---CCACGg----------gcaRat ccuuau---ccuuucgccuagGG--GAAAGUCCCCGGA---CCAUGg----------gcaFrog cuucaaucacaugacgccuagGG--GAAAGUCCCCGGA---UCUCGg----------guaYeast1 acucag---uaauaugcuuuggguuGAAAGUGUCCACCAAuucguau----------gcgYeast2 uuccuc---uaaacagcuuuagG--GAAAGUCCCCGGACUCuugcgucuugaucuccaugPlant --ucca---aguuccggacccaG--GAAAGUCCCCGGG---CCACUu----------aucHuman gagagugccacgug---cauacgcacguagacau--------------------------Bovine gagagugccacgug---cccgugcacguagacuu--------------------------Mouse gagagugccgcgug---cacacgcgcguagacuu--------------------------Rat gagagugccgcgug---cacacgcgcguaggcuu--------------------------Frog gaaagugccgugcgcuacuauggcgugcaauaau--------------------------Yeast1 gaaaacguaaugagauuuaaaaauuuuaaauugu--------------------------Yeast2 gagauugggacagg---cgguaacgugcugacuugaagaaucagcgguuucauuaauggcPlant cgcagagaugcggc---cucgguaacgagagaau--------------------------Human ----uccccgcuucccacuccaa------aguccgccaagaagcg--------uaucccgBovine ----cccccgcuucucacgacua------aacccgccaagaagcgaucc----uacccugMouse ----cccccgcaagucacuguu-------agcccgccaagaagcgaccc----cuccgggRat ----cccccgcaagucacuguu-------agcccgccaagaagcagccc----cuccgggFrog ----cccgcccugcuguccauauc-----aacccgcuaagaagcu--------cccagagYeast1 ----uuaaaucaacucauuaaggagg---augcccuuggguauucugcuucuugaccuggYeast2 gcuaguuuuuccuuuagccuuuguacuuuaaaccucaagagauauaacucc--uguccagPlant ----cuugcgguggagagauuc-------aaauugcugagacgcg--------uguguggHuman ---------cugagcggcguggcgcg----ggggcguc----AUCCGUCAGCUCC-----Bovine --gggguggggaagcggagcggcguguugcgggguguc----AUCCGUCAGCUUC-----Mouse ---------gcgagcugagcggcgugcagcggggccuc----AUCCGUCAGCUCA-----Rat ---------gcgagcugagcggcgugcggcgggguguc----AUCCGUCAGUUCU-----Frog ---------ccgagcggcuuggauuagggcgggauCUC------UCAUCAGUCAC-----Yeast1 uaccucuauugcaggguacugguguuuucuUCGGUACU-GGAUUCCGUUUGUAUGGAAUCYeast2 aaugaguagauaaggaauacagucuauaguuguguuucuugagcgucuaguguacgaacgPlant -----------agcuuauguggucucuccgccGAUGAU----AUCAUGGCCGUUC-----Human -----UCUAGUUACgcag----------gcagugcguguccgcgc-------acCAACCABovine ----UAAUAGUUACgcag----------gcagugccuccaugcgc-------acCAACCAMouse -----CAUAGUGACgcag----------gcagugcgaccuggcucgc-----acCAACCARat -----CCUAGUGACgcag----------gcagugcgaccuuguacgc-----acCAACCAFrog -----CAUAGUAACucag----------guagcgcggcaacguccac-----gcUAACUAYeast1 UAAACCAUAGUUaugacg----------auugcucuuucccgugcuggaucgagUAACCCYeast2 guaugguugauuacgccauuucugaAUUGUGGUUUUUCGUCGUAGUU-----GAUAGUUAPlant -----GAGAGUUAuucac----------cucuuccucuaugg----------acUAACUGHuman CACGGGGCUCA----UUcucagcgc-ggcu-------------------------Bovine CACGGGGCUCA----UUcucaccac-gucu-------------------------Mouse CACGGGGCUCA----UUcucagcgcggcuac------------------------Rat CACGGGGCUCA----UUcucgcgcg-gcug-------------------------Frog AACGGGGCUCA----UUcucagaau-gcac-------------------------Yeast1 AAUGGAGCUUACUAUUCuuggucca-uggauucacc-------------------Yeast2 uacggucgcauccauuuguugaugu-AUCACAAUGGGGCUUAGUCucgugcucaaPlant AACGGGGCUUACGUuucaaugacaa-gcaacuuuu--------------------Figure 8.2: The alignment of eight RNase MRP RNA sequences, computed with DCAusing a weighted transition/transversion matrix for substitutions and a linear gappenalty function of g(l) = 6 + 2 l.
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MouseFigure 8.3: The SplitsTree graph for the pairwise Hamming Distances of eightRNase MRP RNA sequences.



112 CHAPTER 8. RESULTS ON BIOLOGICAL SEQUENCESObviously, any reasonable guide tree puts the two yeasts and the Arabidopsissequence close together. But any successive alignment of these three sequences isincorrect for the second and third motif due to the fact that pre-aligning any pair ofthese sequences goes wrong in this respect. Moreover, a simultaneous alignment ofonly these three sequences does neither identify motif 2 nor motif 3, even between anypair. But including the animal (and human) sequences, a simultaneous alignmentidenti�es these motifs, at least for yeast1 and the plant sequence (see Figure 8.2).This example shows the weak point of the progressive alignment method: Once agap, always a gap [66]. Long indels in similar sequences, introduced in an early stageof the procedure, can disturb the complete multiple alignment. Common structureswhich are only detected as signi�cant when all sequences are observed simultaneouslycan be suppressed.8.5 How Many Sequences?Finally, we have intended to �nd out how many (similar) sequences we could max-imally align simultaneously with the DCA method. Therefore we have selected afamily of several hundred sequences which is often used to obtain the evolutionaryrelationship of di�erent species, the cytochrome C. Cytochrome C is a small, very oldprotein which plays an important role in the metabolic reactions in mitochondria.The amino acid sequence of cytochrome C is comparatively easy to obtain, so it wasan early object of study for molecular evolutionists.Due to the high similarity of the cytochrome C molecules, the correct alignment isno great challenge. It is easily obtained by hand and also most automatic methods arequite sucessful producing almost always the same alignment. However, for theoreticalreasons, we wanted to �nd out where DCA reaches its limits. Unfortunately, the limitsof DCA are highly correlated with the limits of MSA which { although we have evenexamined the source code { could not be persuaded into aligning more than forty-twosequences even if they were identical.An alignment of forty cytochrome C sequences which was computed with DCAin less than a minute is shown in Figure 8.4. The sequences have length between99 and 113 amino acids. In fact, the computation of slicing positions was possibleeven for more than sixty-�ve sequences in about two minutes. Table 8.13 shows thetime and memory usage of DCA for di�erent numbers of cytochrome C sequences. At�rst glance, the speed of DCA for these sequences seems to be in sharp conict withthe measurements of the previous chapter. However, due to the very high similarity,nearly all relevant parts of the matrices consist of one single cell only such that thesearch for a C-optimal family of slicing positions is trivial. This is supported by themainly quadratical increase of running time for growing k.This example shows that the memory usage and not the running time can be thelimiting factor also for DCA: We stopped the run with k = 70 because of a drastic



8.5. HOW MANY SEQUENCES? 113CPU time memory usagek = 5 1.11 sec 0.52 MBk = 10 3.29 sec 2.06 MBk = 15 6.79 sec 3.26 MBk = 20 11.95 sec 5.03 MBk = 25 18.92 sec 7.40 MBk = 30 27.97 sec 9.99 MBk = 35 41.23 sec 13.10 MBk = 40 55.57 sec 16.22 MBk = 45 (45.91 sec) (11.40 MB)k = 50 (58.57 sec) (14.29 MB)k = 55 (84.00 sec) (26.43 MB)k = 60 (103.01 sec) (31.38 MB)k = 65 (122.87 sec) (36.17 MB)Table 8.13: Running time and memory usage of DCA for di�erent numbers k ofcytochrome C sequences. The values in parentheses for k > 40 denote that MSA couldnot compute alignments of the subsequences in these cases, and the values are forthe computation of the slicing positions, only.swapping-out of computer memory and not because of too large computation time.In fact, the CPU times shown in Table 8.13 are somewhat misleading. The total(wallclock) time for the run with k = 65 was more than ten minutes on the computerwith 32 megabytes of main memory we used.Conclusively, it can be said that simultaneous alignment methods are not nece-sarily restricted to less than, say, twenty sequences. For the combination with DCA,alignment methods which { other than MSA { are specialized to the optimal alignmentof several short sequences would allow a signi�cant step towards the simultaneousalignment of many (su�ciently similar) sequences.
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Chapter 9ConclusionIn this thesis we have developed a new algorithm for the approximate solution of themultiple sequence alignment problem, a well studied but still not satisfactorily solvedproblem in string processing, whose most important application is in computationalmolecular biology. We have given a formal description of the problem and discussedthe standard solution and its high computational complexity. We have reviewedprior work on approximate solutions of the problem. We have studied, implemented,and improved a new principle for deriving approximative solutions of the multiplesequence alignment problem. Finally, we have extensively tested the behavior of thenew algorithm with random sequences as well as with real biological data.The main bene�t of our divide-and-conquer algorithm is its simplicity. We haveshown that even the most simple version allows a very fast computation of highlyaccurate alignments for three to, say, six sequences of relevant length. Due to itssimplicity, the algorithm is highly suitable for being incorporated into larger sys-tems which require a large number of reliable, but not necessarily optimal multiplesequence alignments. An example has already been implemented successfully.Using branch-and-bound strategies for speeding up the basic algorithm, we alsowere able to develop a program for independent sequence alignment: DCA. The simul-taneous alignment of more than a dozen of related sequences is possible providingthe following advantages:� The memory usage of DCA is in the magnitude required for pairwise alignments(about 30 megabytes for twelve sequences of average length 250).� Compared to previous simultaneous alignment methods, our program is veryfast (about 40 seconds for twelve sequences of average length 250).� The alignments are of a very high quality, in mathematical as well as in bi-ological terms. For none of the analyzed random sequence families did thesum-of-pairs score of the alignment computed with DCA di�er by more than0:3 percent from the optimal score. Applied to biological sequences, DCA cancompete with the best alignment methods currently available.115



116 CHAPTER 9. CONCLUSION� Due to the simultaneity, the computed alignments are also very well suited asan unbiased starting point for the reconstruction of evolutionary relationships.� Because DCA approximates the optimal score very closely, new ways of testingand validating alternative choices for multiple alignment score functions arepossible.� Due to the stable interdependence of the parameters of DCA and its performance,the behavior of the program is transparent to the user.� A state-of-the-art html-based user interface facilitates the use of the programvia the World-Wide Web.Our research has shown that { although the multiple sequence alignment problemhas been a much studied subject over the last decades { the systematic applicationof the classical divide-and-conquer principle opens the way to a new, e�cient, ande�ective simultaneous multiple sequence alignment algorithm.In this thesis, not even the full potential of divide-and-conquer alignment couldbe worked out. For instance, further work on the following questions seems to bepromising:� Slicing positions which incorporate biological heuristics and are quickly com-putable might be an interesting alternative to C-optimal families of slicingpositions.� By a combination of DCA with a fragment-based alignment method, the de-velopment of an algorithm seems to be possible which is faster and produceshigher accurate alignments than any of the separate approaches.� Mainly for theoretical reasons, through the DCA program, certain principlessuch as the use of the same way of computing slicing positions regardless ofthe (sub)sequence length, for example, have been maintained. In special con-texts, the practicability of the divide-and-conquer method might be improvedby giving up some of these puristics.� The development of a program for the optimal alignment of several short se-quences, which is better than MSA suited for combinating with DCA would bevaluable. This program should also allow a exible handling of gaps at thesequence termini.Beyond the evaluation of the divide-and-conquer algorithm, our studies on biologicalsequence data have raised some important aspects of the multiple sequence alignmentproblem in biology:



117� The relatedness of the sequences has much more impact on computation timethan the length and/or the number of sequences. While more than forty highlysimilar cytochrome C sequences can be aligned in few minutes, the alignmentof ten less related protease sequences of about the same length takes more thanan hour of computation time.� Progressive alignment methods can be misled by long indels in otherwise highlysimilar sequences. In such cases, simultaneous alignments { like those computedby DCA { are to be preferred.� With DCA we have reached a limit of what can be done with the sum-of-pairsmodel and the commonly used alignment score functions. For obtaining resultswhich are still nearer to biologically correct alignments, it seems that moresophisticated score functions incorporating further biological criteria have tobe considered.We hope that our work has brought us a small step forward in applying computationalmethods to handle the data of life and that it may some day bring us closer tounderstanding life itself.
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