
Phylogenetic Comparative Assembly

Peter Husemann1,2 and Jens Stoye1

1 AG Genominformatik, Technische Fakultät, Bielefeld University, Germany
2 International NRW Graduate School in Bioinformatics and Genome Research

Bielefeld University, Germany
{phuseman,stoye}@techfak.uni-bielefeld.de

Abstract. Recent high throughput sequencing technologies are capable
of generating a huge amount of data for bacterial genome sequencing
projects. Although current sequence assemblers successfully merge the
overlapping reads, often several contigs remain which cannot be assem-
bled any further. It is still costly and time consuming to close all the
gaps in order to acquire the whole genomic sequence. Here we propose
an algorithm that takes several related genomes and their phylogenetic
relationships into account to create a contig adjacency graph. From this
a layout graph can be computed which indicates putative adjacencies of
the contigs in order to aid biologists in finishing the complete genomic
sequence.

1 Introduction

Today the nucleotide sequences of many genomes are known. For the first avail-
able genomic sequences, the process of obtaining the sequence was costly and
tedious. The most common approach for de-novo genome sequencing is whole
genome shotgun sequencing [1, 2]. Here, the genome is fragmented randomly into
small parts. Each of these fragments is sequenced, for example, with recent high
throughput methods. In the next step, overlapping reads are merged with an
assembler software into a contiguous sequence. However, instead of the desired
one sequence of the whole genome, often many contigs remain, separated by
gaps. The main reasons for these gaps are lost fragments in the fragmentation
phase and repeating sequences in the genome. In a process called scaffolding,
the relative order of the contigs as well as the size of the gaps between them
is estimated. In a subsequent finishing phase the gaps between the contigs are
closed with a procedure called primer walking. For the ends of two estimated
adjacent contigs, specific primer sequences have to be designed that function as
start points for two polymerase chain reactions (PCRs) for Sanger sequencing.
These PCRs ideally run towards each other until the sequences overlap. To close
a gap completely, new primer pairs have to be generated again and again since
the maximum read length for Sanger sequencing is restricted. This makes the
process expensive and work intensive. It is thus advisable to reduce the pairs of
contigs that have to be considered. If no further information about the order of
the contigs is given there are O(n2) possibilities for n contigs to apply primer

walking. If the order is known, it suffices to do O(n) primer walks to fill the
gaps.

An algorithm that estimates a reasonable order for the contigs is thus a good
help for sequencing projects. The estimation is usually based on the sequences of
closely related species that are assumed to have a high degree of synteny. A few
tools have been developed which use one or several related reference genomes to
devise an ordering of the contigs: OSLay [3] for example takes a set of BLAST [4]
matches between the contigs and a reference sequence and computes from this
a layout for the contigs. The algorithm minimizes the height differences of so-
called local diagonal extensions, which are basically matches from the border of a
contig to the reference sequence. The program Projector2 [5] is a web service that
maps contigs on a reference genome, based on experimentally validated rules,
and automatically designs suitable primer sequences. Zhao et al. [6] developed
an algorithm to integrate the information of multiple reference genomes. For
the ordering, the enhanced ant colony optimization algorithm PGA (pheromone
trail-based genetic algorithm) is used.

Our work commenced when analyzing data from inhouse sequencing projects
for different species of the Corynebacteria genus, where we observed several as-
pects making it hard to find an ordering of the contigs. Zhao et al. show that
poor sequence coverage can be overcome by using multiple reference genomes,
but problematic for this approach are major rearrangements in the genomic se-
quences of more distantly related species. Another challenge are repeating regions
in the sequence of the newly sequenced genome. We developed an algorithm that
uses the information of all similar regions between a set of contigs and several
related reference genomes to estimate an ordering of the contigs. The novel idea
is to incorporate the phylogenetic distance of the species in order to alleviate
the impact of rearrangements to the ordering. While generating one ‘optimal’
order of the contigs is the predominant approach to aid the closure of gaps, we
propose a more flexible format to describe contig adjacencies that is also capable
of dealing with repeating contigs.

The algorithm we present here is based on a simple data structure, the contig
adjacency graph that is introduced in Sect. 2. There we also give an optimal solu-
tion for finding a linear ordering of the contigs using this graph. However, a linear
ordering is not sufficient to reflect all relations of real contig data. Therefore we
propose a heuristic in Sect. 3 by which the most promising, but not necessarily
unique, adjacencies are revealed in a layout graph. Sect. 4 shows the results of
applying our method to real sequencing data and compares these with a recent
approach from the literature.

2 Phylogeny Based Contig Ordering Algorithm

A natural strategy to devise an ‘optimal’ linear ordering of the contigs, based
on one or several related reference genomes, works in three steps: At first, all
similar regions between the contigs and each reference genome are determined.
Then a graph is created, containing edge weights that reflect the neighborhood

of the contigs. In the last step a weight maximizing path through the graph is
calculated, which defines the desired order of the contigs. In the following, we
describe these three steps in more detail, in particular in Sect. 2.2, we define a
novel edge weight function that incorporates the phylogenetic distance of the
involved species.

2.1 Matching Contigs Against a Reference

Let Σ={A,C,G, T} be the alphabet of nucleotides. We denote by Σ∗ the set of
all finite strings over Σ, by |s| := ` the length of string s= s1 . . . s`, s∈Σ`, and
by s[i, j] := si . . . sj with 1≤ i≤ j≤ ` the substring of s that starts at position i
and ends at position j. Suppose we are given a set of contigs C = {c1, . . . , cn},
ci∈Σ∗ and a set of already finished reference genomes R={g1, . . . , gm}, gr∈Σ∗.
The relation of the reference genomes is given by a phylogenetic tree T which
contains the evolutionary distances of the species. Note that the tree can be
generated even if some genomes are not completely assembled yet, for example
from 16S-rRNAs.

To infer information about the order and orientation of the contigs, these
are mapped onto each reference genome by calculating local alignments. Let
s=c[sb, se] be a substring of contig c and t=g[tb, te] be a substring of reference
genome g. The tuple m=

(
(sb, se), (tb, te)

)
is called a matching region or simply

match if s and t share sufficient sequence similarity. The length of a match,
|m| := te−tb+1, is defined as the length of the covered substring in the reference
genome. Sufficient sequence similarity can be defined, for example, by a BLAST
hit of significance above a user-defined threshold. We, on the contrary, employ
in our implementation the swift algorithm [7] for matching. It utilizes a q-gram
index and provides for each match m the number of exactly matching q-grams,
denoted as qhits(m), which can be used as a quality estimation for that match.
Note that each contig can have several matches on a reference genome. For sb>se

we define c[sb, se] to be the reverse complement of c[se, sb] and call m a reverse
match. Further we assume w.l.o.g. that tb<te for all g[tb, te], otherwise we can
replace the involved contig sequence by its reverse complement. For brevity of
notation, mr

i denotes a match between contig ci∈C and reference genome gr∈R,
andMr

i ={mr
i,1, . . . ,m

r
i,s} denotes the (possibly empty) set of all such matches.

Each match mr
i =
(
(sb, se), (tb, te)

)
implies a projection of the contig ci onto

the reference genome gr. The projected contig π(mr
i) =

(
(tb − sb), (te + |ci| −

se)
)

refers to the implied pair of index positions on gr. For reverse complement
matches, the projection can be defined similarly. Fig. 1 shows an example of two
projected contigs as well as their distance, which will be defined next.

The distance of two projected contigs π(m) = (tb, te) and π(m′) = (t′b, t
′
e) is

defined as follows:

d
(
π(m), π(m′)

)
=

t′b − te if tb < t′b
tb − t′e if tb > t′b
−min{|m|, |m′|} if tb = t′b .

{

Fig. 1. Illustration of the projected contigs π(m1) and π(m2), which are based on their
matches m1 and m2.

If the matches refer to different reference genomes, the distance of their pro-
jections is undefined. Note that the term distance is used here in the sense of
displacement, d is not a metric in the mathematical sense. For example, d is
negative if the projected contigs overlap.

2.2 Contig Adjacency Graph

In the following we define the edge-weighted contig adjacency graph GC,R,T =
(V,E) that contains for each contig ci ∈ C two vertices: li as the left connector
and ri as the right connector of contig ci. The set of vertices V is then defined
as V =L ∪R, where L={l1, . . . , ln} and R={r1, . . . , rn}.

The graph G is fully connected: E =
(
V
2

)
. We split these edges into two

subsets: the intra contig edges I={{l1, r1}, . . . , {ln, rn}} which connect for each
contig its left and its right connector; and the set of adjacency edges A=E\I
that connect the contigs among each other.

Now we define a weight function for the edges. For each intra contig edge
e∈I we set the weight w(e)=0. For the remaining edges let e={vi, vj}∈A with
vi∈{li, ri} and vj ∈{lj , rj} be an adjacency between contigs ci and cj . Then the
weight of this adjacency edge is defined as

w(e) =
∑

gr∈R
wr(vi, vj)

where the function wr(vi, vj) defines a likelihood score for contigs ci and cj
being adjacent, based on the matches to reference gr. Moreover, the phylogenetic
distance dT between the contig’s species and the reference genome’s species is
employed as a weight factor. Thus we define

wr(vi, vj) =
∑

mr
i∈Mr

i , mr
j∈Mr

j

s
(
d
(
π(mr

i), π(mr
j)
)
, dT

)
· qhits(mr

i) · qhits(mr
j)

where d is the distance between the projected contigs and s(d, dT) is a suitably
defined scoring function.

In order to define s we will give some further biological motivations. The
scoring function s models the likelihood that two contigs are adjacent based on
the distance d of their projected contigs. Projected contigs which are not adjacent
should have a high distance and thus a low score. Adjacent contigs should have a
distance close to zero and a high score. But on the one hand, the distance of the
two projected contigs reaches positive values due to insertions in the reference’s
genome. On the other hand, the distances are negative if the projections are
overlapping which is the case if there are insertions in the contigs’ genome. Both
cases can be seen in Fig. 2. Note that an insertion in the one genome corresponds
to a deletion in the other.

{ {
Fig. 2. An insertion in the reference genome leads to a positive distance (left side),
whereas an insertion in a contig leads to a negative distance (right side).

A second important aspect that is included in our model are rearrangements
between the related species, which can lead to misleading adjacencies of pro-
jected contigs. Assuming that between closer related species less rearrangements
have taken place, we use the phylogenetic tree distance dT to weight the match
information. To model the mentioned two considerations, we use a Gaussian
distribution with an expected value of zero:

s(d, dT) :=
1

dT · σ
√

2π
e
− 1

2 (d
dT ·σ

)2

where σ is the standard deviation for the size of deletions or insertions. A higher
tree distance dT allows larger insertions and deletions, but scores the reliability
of the matches to more distantly related genomes to a lesser degree.

However, this model neglects the fact that in the fragmentation phase, for
example in parallel pyrosequencing, often fragments disappear such that there
are no reads for this fragment. If a fragment is not sequenced, the same situation
arises as if there is an insertion into the reference genome, which causes positive
distances. To include this detail we use two superimposed Gaussian distributions
for the scoring. The first distribution models insertions into the contigs and
into the reference genome, the second models lost fragments during sequence

assembly. The influence of each model is determined by a weighting factor ϕ:

s(d, dT) :=
(1− ϕ)

dT · σ1

√
2π
e
− 1

2 (d
dT ·σ1

)2 +
ϕ

σ2

√
2π
e−

1
2 (d−µσ2

)2 . (1)

The expected value µ of the second Gaussian distribution is equal to the aver-
age size of the sequence fragments. The standard deviations σ1 and σ2 can be
estimated from sequencing projects.

2.3 Finding a Tour Through the Graph

The contig adjacency graph with the described edge weights can be used to find a
linear ordering of the contigs. This can be achieved by computing a tour through
the graph that incorporates all contigs and maximizes the total weight. With
minor enhancements of the graph, this becomes equivalent to finding a shortest
Hamiltonian cycle.

The modifications are as follows: At first all edge weights have to be converted
to distances. This is done by replacing each edge weight w by m − w where m
is the maximum weight in the graph. To ensure that each contig is incorporated
exactly once, and only in one direction, we add an intermediate node between the
left and the right connector of each contig. The modified graph is then defined as
G′C,R,T =(V ′, E′) with V ′=V ∪{vi | 1≤ i≤n} and E′=A∪{{li, vi}, {vi, ri} | 1≤
i≤ n}. The distance of all edges that lead to an intermediate node vi is set to 0.
It is easy to see that a shortest Hamiltonian cycle in the modified graph defines
an ordering as well as the orientation of all contigs, and thus any TSP algorithm
can be used to find an optimal linear layout of the contigs.

3 Fast Adjacency Discovery Algorithm

As described in the previous section, a linear ordering of the contigs, which
is optimal with respect to the adjacency edge weights, can be computed using
a suitable optimization algorithm. However, our results on real data in Sect. 4
show that a linear order of the contigs is not necessarily possible, mainly due to
arbitrary placement of repeated or rearranged regions. A method that provides
a unique layout where possible, but also points out alternative solutions where
necessary, may be more useful in practice. We present an approach following this
overall strategy in this section.

The basis of our algorithm is a greedy heuristic for the TSP, known as the
multi-fragment heuristic [8], that proceeds as follows: First the edges of the
graph are sorted by increasing distance and then added in this order into an
initially empty set of path fragments. Whenever an involved node would exceed
the maximal degree of two, or if a path fragment would create a cycle, the edge is
skipped. The only exception to the latter is a cycle of length n which constitutes
the final Hamiltonian path.

This best connection first procedure creates multiple low distance path frag-
ments which are merged sooner or later. We chose this approach because it

seems natural to incorporate those adjacencies first into an ordering that are
most promising to be investigated for gap closure.

As already indicated, repeating or rearranged regions may prohibit an un-
ambiguous linear ordering of the contigs. Repeating contigs create cycles in a
possible path, and rearrangements can lead to conflicting adjacencies of a contig.
To model both, we relax the constraints of the multi-fragment heuristic: First,
we do not check for cycles, which permits repeating contigs to be incorporated
adequately. Secondly, when inserting an edge, we allow one of the incident nodes,
but not both, to exceed the degree of two, which allows to also include conflicting
information into our layout. The result of this modified heuristic is a subgraph of
the contig adjacency graph L ⊂ G that we call the layout graph. The procedure
to generate the layout graph is formally described in Algorithm 1. Note that the
resulting layout graph is not necessarily connected.

Algorithm 1: Contig adjacency discovery algorithm
Input: set of contigs C, set of related genomes R, phylogenetic tree T
Output: layout graph L of the contigs
create contig adjacency graph GC,R,T =(V, I ∪A)1

create empty layout graph L = (VL, EL) with VL = ∅ and EL = ∅2

foreach adjacency edge e={vi, vj}∈A, sorted by decreasing weight w(e) do3

if |VL ∩ {vi, vj}| < 2 then4

VL = VL ∪ {vi, vj}5

EL = EL ∪ e6

end7

end8

EL = EL ∪ I9

The layout graph can be analyzed to make assumptions about repeating
contigs and rearrangements. Conflicting edges can give hints about these two
problems. The information about unambiguously incorporated contigs can be
used to generate primer pairs for gap closure. Displaying also the ambiguities
allows to investigate the conflicting connections further. Instead of pinning the
result down to a single, possibly wrong, order of the contigs we prefer to output
the best possibilities. Nonetheless it should be kept in mind that rearrangements
can cause seemingly good adjacencies that do not belong to a correct layout.

4 Results

We tested our algorithm on real contig data of the Corynebacteria genus. For
the genomic sequences of C. aurimucosum (unpublished), C. urealyticum [9], and
C. kroppenstedtii [10] we obtained the finished genomic sequences as well as the
underlying contig data from sequencing projects that were conducted at Bielefeld
University. Additionally we chose four more publicly available Corynebacteria

Fig. 3. Phylogenetic tree of the employed Corynebacteria. Contig data was available
for the species marked with an asterisk (*). Tree calculated with EDGAR [13], image
generated with PHY.FI [15]

(a) C. jeikeium (b) C. aurimucosum

Fig. 4. Synteny plots of the above species and the contigs of C. urealyticum. The latter
are stacked on the vertical axis in reference order, separated by horizontal lines.

genomes, C. diphtheriae, C. efficiens, C. glutamicum ATCC 13032 Bielefeld,
and C. jeikeium that we downloaded from NCBI [11, 12]. Figure 3 shows the
evolutionary tree of all employed genomes. The tree was generated with the
EDGAR framework [13] applying Neighbor Joining [14] to a set of core genes. As
an illustration of the major rearrangements that happened between the employed
species, Fig. 4 shows two example synteny plots. It is clearly observable that due
to rearrangements a mapping of the contigs on the displayed related genomes
would provide incorrect adjacencies of some contigs.

All finished sequences, except the genome of the contigs to be layouted,
served as references to find a layout for the contig sets. As a standard of truth
we computed for each set of contigs a reference order by mapping them onto the
corresponding finished genome. We would like to note here that this reference
order is not unique since many contigs contain or even consist of repeating regions
which map non-uniquely to different locations.

We implemented our proposed algorithm in Java. The software tree-cat (tree
based contig arrangement tool) contains a re-implementation of the fast local

alignment algorithm swift [7], the contig adjacency graph creation, a branch and
bound exact TSP algorithm, and the fast layout graph heuristic described in
Sect. 3. The software is open source (GPL) and available upon request.

Input to tree-cat are the FASTA sequences of the contigs and of the related
references as well as a phylogenetic tree in NEWICK format. Each reference can
consist of several sequences, for example several chromosomes. When the algo-
rithm is run, first all matches from the contigs to each reference are computed.
For the following results, matches were considered to have a minimal length of
64 bases and a maximum error rate of 8%. The matches are cached which allows
a visualization like in Fig. 4 and avoids a new computation if subsequent steps
are re-run with different parameters. As the second step, after the matching,
the contig adjacency graph is constructed as defined in Sect. 2.2. The follow-
ing (empirically estimated) parameters were used for the scoring function (1) to
compute the results: The standard deviation of the insertion/deletion size was
set to σ1 = 10 000 bases and the expected lost fragment size to µ= 2 000 bases
with a standard deviation of σ2 =1 000 bases. The lost fragment weighting factor
ϕ was set to 0.1. In the last step, the computed adjacency graph is used to de-
vise the contig layout graph which can then be visualized with the open source
software package GraphViz [16].

We compared the output of our method with the results of applying PGA [6]
to the same data sets. OSLay [3] and Projector2 [5] were not included in the
comparison since they use only one single genome as reference. Due to space
restrictions we give in Fig. 5 only the results for the set of C. urealyticum contigs,
but the other results are comparable. The data set consists of 69 contigs with a
total size of 2.3 Mb and six reference genomes which have a total size of 16.6 Mb.
To compute the results, a sparcv9 processor operating at 750 MHz under Solaris
was used. Figures 5(a) and 5(b) show two PGA results and Fig. 5(c) contains
our resulting layout graph. The node labels of all graphs are the rank of the
corresponding contig with respect to the reference order of the contigs. The
correct path should therefore be 0, 1, . . . , 68.

PGA uses BLAST to match the contigs on each genome. After that it com-
putes five paths for the contigs that optimize a fitness matrix which is compara-
ble to our contig adjacency graph. For that purpose a genetic algorithm is used,
possibly giving different connections with each run. The connections of all five
paths are included into the result and the edge weights give the percentage how
often a connection occurred. Some nodes are missing in the first two graphs since
PGA filters all contigs of length less than 3 500 bases.

In Fig. 5(a) PGA was applied with only one reference, the already finished
genome of C. urealyticum, which ought to provide the ‘perfect’ information. The
resulting graph shows that it is impossible to find a unique linear ordering of the
contigs, even if the best possible reference sequence is available.

A comparison between PGA and tree-cat is given by the graphs in Figs. 5(b)
and 5(c). Both are created with all other related genomes of our data set as
reference genomes. For the graph in Fig. 5(b) the matching using BLAST needed
457 seconds and after that PGA took 161 seconds to compute its result, using

0

1

1.00 210.20

40
0.20

45

0.2058

0.40

4

1.00

68

0.20

22

1.00

44 0.60

0.60
0.20

41

1.00

47

0.80

59
0.40

0.20

6

1.00

7
1.00

8

1.00

12

1.00

13

0.80

0.20

0.20
14

1.00

15

1.00

16

1.00
17 1.00

19

1.00

0.20
20

0.60
0.20

361.00
0.40

48

1.00

60

1.00

24
1.00

0.20

0.20

251.00 26
1.00

30

1.00

31

1.00

33

1.00

35

1.00

1.00

42

1.00

1.00

49
1.00

51 1.00

52
1.00

55

1.00

56

1.00

57

1.00

1.00

64 1.00

65

1.00

1.00

(a) PGA with perfect information.

1

68

0.20

57

0.40

64
0.40

6

0.20

4

0.40

25

40

0.20
410.40

35

0.20

47

0.20

26

0.80

0.20
49

0.20

65

0.20

45
0.20

0 0.40

33
0.20

0.20 80.20
7 0.40

58
0.20

0.20
36

0.20

0.80

0.20 44

0.20

1.00

0.2059
0.40

15
0.20

42
0.20

0.20

16

1.00
0.20

0.60

24

0.20

0.20
0.20

12

0.80

55
0.60

51
0.40

0.20

56

1.00

0.40

0.20

0.80
0.20

60

1.00

1.00

0.20

1.00

0.20

0.20

48 0.80
0.20

0.20

0.20

0.20

0.20

0.20

0.20
0.20

1.00

1.00 0.200.60

0.60

19

20

1.00

21
1.00

0.20

0.60

17

1.00

0.20

0.40

0.200.20
0.60

1.00

0.20

0.20

0.20

52

1.00

0.20
131.00

14 1.00
0.20

0.40

0.20

22

0.20

0.80

31
1.00

30
1.00

1.00

1.00

1.00

(b) PGA using multiple references.

10
2.6kb

12
64.5kb

3.40

13
56.2kb

4.23

37
1.3kb

3.09

53
1.4kb

2.11

63
1.0kb

1.8134
0.8kb 3.76

14
142.3kb

3.90

2.68

15
102.2kb

3.31

2.33
49

8.3kb 2.21

9
1.4kb

0.36

16
21.1kb

3.02

57
5.9kb

1.28

17
61.6kb

3.13
61

1.8kb

2.25

44
3.6kb

0.97

19
72.1kb

3.41

20
108.1kb

3.50

1
86.4kb

4
106.4kb

3.25

21
23.2kb3.22

22
77.6kb

3.21

23
0.6kb

2.37

1.76

24
19.9kb

3.18

25
3.5kb

2.13

26
176.0kb

3.31
2.82

27
1.0kb

2.92

30
164.5kb

3.43

28
0.6kb

2.97

29
1.0kb

3.28
2

0.7kb

3.26 3
0.6kb

3.39

0.37
0

7.7kb
1.14

3.02

3.163.30

31
39.7kb

3.60

33
35.2kb

2.7354
1.8kb 2.63

65
54.3kb

3.74

3.46

35
96.6kb

2.20

18
0.7kb

2.05

36
51.3kb

2.30

3.83

39
1.0kb 2.32

2.29

2.63

3.27

40
31.1kb

41
43.1kb

2.86

45
28.6kb

2.78

47
4.4kb

3.17

48
17.5kb

2.30

62
1.1kb

2.24

56
135.7kb

3.92

51
14.8kb

8
9.3kb

3.12

52
35.5kb 2.34

55
56.2kb

3.43

3.54

3.62

58
50.2kb

59
51.2kb

2.90

7
89.7kb

3.35

5
0.5kb

1.68

6
6.0kb

2.24

60
3.8kb

1.61
64

38.5kb

2.90

1.53

0.96

2.10

2.24

3.77

68
55.5kb

2.22

2.46

1.60

2.05

3.87

50
0.8kb 2.39

3.37
3.27

3.31

2.73

46
0.9kb

2.75

2.40

2.95

42
4.2kb

1.23

2.45

3.03
2.72

2.42

2.392.63

67
0.7kb

1.67

1.66

2.92

(c) tree-cat using multiple references. Contigs smaller than
3.5 kb have gray nodes, repeating contigs for which at least
95% of the sequence occurs more than once on a reference
genome have rectangular nodes. Edge weights are given in
logarithmic scale.

Fig. 5. C. urealyticum contig connections generated by PGA and tree-cat. The contig
nodes are numbered in reference order.

the standard parameters given in [6]. Our algorithm, within tree-cat, required
95 seconds for the matching and about two seconds for the creation of the contig
adjacency graph as well as the calculation of the layout graph, shown in Fig. 5(c).
Although the reference order is not completely reliable, we used it as a rough
estimation for the quality of the results. For each edge in the graphs we tested
whether it is present in the reference order. PGAs graph contains 19 true positive
connections and 75 false positive. tree-cat computed 27 correct and 70 false
connections. This shows that our method achieved a better sensitivity (0.39
to 0.28) as well as a better precision (0.28 to 0.2), while being much faster.
Additionally, PGA’s result contains connections that are obviously incorrect,
like, for example, placing contig 26 next to contig 52. Our approach does not show
this connection. Manual inspection shows that this is due to the evolutionary
distances that we incorporate for the edge scoring since phylogenetically closer
genomes do not contain this adjacency. This is further supported by the fact
that the connection is also not present when PGA uses the ‘perfect’ reference,
see Fig. 5(a).

5 Conclusion

The contribution of our paper is twofold. On the one hand our results demon-
strate that the common approach of searching one linear optimal ordering of
the contigs is not feasible for real world data, due to repeating regions and re-
arrangements between the species. Therefore, we propose a more flexible output
for the ordering of contigs and give an algorithm which generates such results.

On the other hand we developed a novel scoring function for the contig
adjacency estimation based on multiple reference genomes that is biologically
motivated in two ways: Firstly, it contains a sophisticated weighting scheme for
the distances of projected contigs, and secondly it integrates the phylogenetic
distances of the species to alleviate the effects caused by rearrangements.

A first evaluation of our algorithm shows that its implementation tree-cat
is considerably faster than a recent approach from the literature while it is at
the same time generating better results. We believe that with our approach of
including phylogenetic information into the problem of contig layouting, we have
gone one step further in using all available information for this important task
within genome finishing.

Nevertheless, in sequencing projects, often additional information emerges
which is not yet included in our approach. For example, information derived
from mate pairs, fosmid libraries or radiation hybrid maps might give valuable
hints on the orientation and the distance of contigs while not being biased by
evolutionary events. Concerning the phylogenetic tree, rearrangements between
the genomes were not predicted by the methods presented in this paper. This
leads to ambiguous information for the ordering of contigs and thus to weak
or misleading adjacency scores which need to be curated manually. A strategy
for the discovery of rearrangements is thus desired in future work. Furthermore,
due to horizontal gene transfer some regions of a genome can have different

evolutionary histories than others. Detecting such regions and treating them in
a special way might be advisable in an even more sophisticated approach.

Acknowledgments

The authors wish to thank Christian Rückert, Susanne Schneiker-Bekel, and
Andreas Tauch for the sequence data, Jochen Blom and Burkhard Linke for the
phylogenetic tree, and Travis Gagie and Roland Wittler for helpful discussions.

References

1. Staden, R.: A strategy of DNA sequencing employing computer programs. Nucleic
Acids Res. 6(7) (1979) 2601–2610

2. Anderson, S.: Shotgun DNA sequencing using cloned DNase I-generated fragments.
Nucleic Acids Res. 9(13) (1981) 3015–3027

3. Richter, D.C., Schuster, S.C., Huson, D.H.: OSLay: optimal syntenic layout of
unfinished assemblies. Bioinformatics 23(13) (2007) 1573–1579

4. Altschul, S., Gish, W., Miller, W., Myers, E., Lipman, D.: Basic local alignment
search tool. J. Mol. Biol. 215 (1990) 403–410

5. van Hijum, S.A.F.T., Zomer, A.L., Kuipers, O.P., Kok, J.: Projector 2: contig map-
ping for efficient gap-closure of prokaryotic genome sequence assemblies. Nucleic
Acids Res. 33 (2005) W560–W566

6. Zhao, F., Zhao, F., Li, T., Bryant, D.A.: A new pheromone trail-based genetic
algorithm for comparative genome assembly. Nucleic Acids Res. 36(10) (2008)
3455–3462

7. Rasmussen, K.R., Stoye, J., Myers, E.W.: Efficient q-gram filters for finding all
epsilon-matches over a given length. J. Comp. Biol. 13(2) (2006) 296–308

8. Bentley, J.J.: Fast algorithms for Geometric Traveling Salesman Problems. In-
forms. J. Comp. 4(4) (1992) 387–411

9. Tauch, A., et al.: The lifestyle of Corynebacterium urealyticum derived from its
complete genome sequence established by pyrosequencing. J. Biotechnol. 136(1-2)
(2008) 11–21

10. Tauch, A., et al.: Ultrafast pyrosequencing of Corynebacterium kroppenstedtii
DSM44385 revealed insights into the physiology of a lipophilic corynebacterium
that lacks mycolic acids. J. Biotechnol. 136(1-2) (2008) 22–30

11. Wheeler, D.L., Chappey, C., Lash, A.E., Leipe, D.D., Madden, T.L., Schuler, G.,
Tatusova, T.A., Rapp, B.A.: Database resources of the national center for biotech-
nology information. Nucleic Acids Res. 28(1) (2000) 10–14

12. Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Rapp, B.A., Wheeler,
D.L.: Genbank. Nucleic Acids Res. 28(1) (2000) 15–18

13. Blom, J., Albaum, S.P., Doppmeier, D., Pühler, A., Vorhölter, F.J., Goesmann, A.:
EDGAR: A software framework for the comparative analysis of microbial genomes.
BMC Bioinformatics (2009) to appear.

14. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing
phylogenetic trees. Mol. Biol. Evol. 4(4) (1987) 406–425

15. Fredslund, J.: PHY.FI: fast and easy online creation and manipulation of phylogeny
color figures. BMC Bioinformatics 7 (2006) 315

16. Gansner, E.R., North, S.C.: An open graph visualization system and its applica-
tions to software engineering. SPE 30 (1999) 1203–1233

